1 |
friis |
1.1 |
#!/usr/bin/env python
|
2 |
|
|
import os
|
3 |
|
|
import glob
|
4 |
|
|
import re
|
5 |
|
|
from string import Template
|
6 |
|
|
|
7 |
|
|
LATEX_NAME_MAPPING = {
|
8 |
|
|
'OneProngNoPiZero':
|
9 |
friis |
1.2 |
r'$\tau^{-} \rightarrow \pi^{-}\nu_\tau$',
|
10 |
friis |
1.1 |
'OneProngOnePiZero':
|
11 |
friis |
1.2 |
r'$\tau^{-} \rightarrow \pi^{-}\pi^0\nu_\tau$',
|
12 |
friis |
1.1 |
'OneProngTwoPiZero':
|
13 |
friis |
1.2 |
r'$\tau^{-} \rightarrow \pi^{-}\pi^0\pi^0\nu_\tau$',
|
14 |
friis |
1.1 |
'ThreeProngNoPiZero':
|
15 |
friis |
1.2 |
r'$\tau^{-} \rightarrow \pi^{-}\pi^{+}\pi^{-}\nu_\tau$',
|
16 |
friis |
1.1 |
'ThreeProngOnePiZero':
|
17 |
friis |
1.2 |
r'$\tau^{-} \rightarrow \pi^{-}\pi^{+}\pi^{-}\pi^0\nu_\tau$',
|
18 |
|
|
}
|
19 |
|
|
|
20 |
|
|
LATEX_NAME_MAPPING_NO_TAU = {
|
21 |
|
|
'OneProngNoPiZero':
|
22 |
|
|
r'$\pi^{-}\nu_\tau$',
|
23 |
|
|
'OneProngOnePiZero':
|
24 |
|
|
r'$\pi^{-}\pi^0\nu_\tau$',
|
25 |
|
|
'OneProngTwoPiZero':
|
26 |
|
|
r'$\pi^{-}\pi^0\pi^0\nu_\tau$',
|
27 |
|
|
'ThreeProngNoPiZero':
|
28 |
|
|
r'$\pi^{-}\pi^{+}\pi^{-}\nu_\tau$',
|
29 |
|
|
'ThreeProngOnePiZero':
|
30 |
|
|
r'$\pi^{-}\pi^{+}\pi^{-}\pi^0\nu_\tau$',
|
31 |
friis |
1.1 |
}
|
32 |
|
|
|
33 |
|
|
PLOT_TEMPLATE = Template(
|
34 |
|
|
r'''\put($x, $y) {\mbox{\includegraphics*[height=60mm]{${file_location}}}}
|
35 |
|
|
\put(${letterx}, ${lettery}){\small ($letter)}
|
36 |
|
|
''')
|
37 |
|
|
|
38 |
|
|
|
39 |
|
|
FIGURE_TEMPLATE = Template(
|
40 |
|
|
r'''
|
41 |
|
|
\begin{figure}[b]
|
42 |
|
|
\setlength{\unitlength}{1mm}
|
43 |
|
|
\begin{center}
|
44 |
|
|
|
45 |
|
|
\begin{picture}($width, $height)(0,0)
|
46 |
|
|
${figures}
|
47 |
|
|
\end{picture}
|
48 |
|
|
|
49 |
|
|
\caption{
|
50 |
|
|
Training sample distributions of signal (red) and background (blue) for different observables used
|
51 |
|
|
(see section~\ref{sec:$decayModeSection}) in the neural network corresponding to the $decaymode decay mode.
|
52 |
|
|
}
|
53 |
|
|
|
54 |
|
|
\label{fig:${label}}
|
55 |
|
|
\end{center}
|
56 |
|
|
\end{figure}
|
57 |
|
|
''')
|
58 |
|
|
|
59 |
|
|
VARIABLE_TEMPLATE = Template(
|
60 |
|
|
r'''
|
61 |
|
|
\begin{itemize}
|
62 |
|
|
$items
|
63 |
|
|
\end{itemize}
|
64 |
|
|
''')
|
65 |
|
|
|
66 |
|
|
VARIABLE_ITEM_TEMPLATE = Template(
|
67 |
|
|
r'''
|
68 |
|
|
\item $item (Figure~$description)
|
69 |
|
|
''')
|
70 |
|
|
|
71 |
|
|
#VARIABLE_TEMPLATE = Template(
|
72 |
|
|
#r'''
|
73 |
|
|
#\begin{table}[h]
|
74 |
|
|
# \centering
|
75 |
|
|
# \begin{tabular}{l|r}
|
76 |
|
|
# Input observable & Figure index \\
|
77 |
|
|
# \hline
|
78 |
|
|
# $items
|
79 |
|
|
# \end{tabular}
|
80 |
|
|
#\end{table}
|
81 |
|
|
#''')
|
82 |
|
|
#
|
83 |
|
|
#VARIABLE_ITEM_TEMPLATE = Template(
|
84 |
|
|
#r'''
|
85 |
|
|
#$item & $description \\
|
86 |
|
|
#''')
|
87 |
|
|
|
88 |
|
|
DESCRIPTION_TEMPLATE = Template(
|
89 |
|
|
r'''
|
90 |
|
|
\begin{description}
|
91 |
|
|
$items
|
92 |
|
|
\end{description}
|
93 |
|
|
|
94 |
|
|
''')
|
95 |
|
|
|
96 |
|
|
DESCRIPTION_ITEM_TEMPLATE = Template(
|
97 |
|
|
r'''
|
98 |
|
|
\item[$item] \hfill \\
|
99 |
|
|
$description
|
100 |
|
|
''')
|
101 |
|
|
|
102 |
|
|
VAR_DESCRIPTIONS = {
|
103 |
|
|
'ChargedOutlierAngleN':
|
104 |
|
|
r'''$\Delta R$ between the Nth charged object (ordered by $P_T$) in the isolation region
|
105 |
|
|
and the tau--candidate momentum axis. If the number of
|
106 |
|
|
isolation region objects is less than N, the input is set at one.''',
|
107 |
|
|
|
108 |
|
|
'ChargedOutlierPtN': r'''Transverse momentum of the Nth charged object in the isolation region. If the number of
|
109 |
|
|
isolation region objects is less than N, the input is set at zero.''',
|
110 |
|
|
|
111 |
|
|
'DalitzN': r''' Invariant mass of four vector sum of the ``main track'' and the Nth signal
|
112 |
|
|
region object ''',
|
113 |
|
|
|
114 |
|
|
'Eta': r'''Pseudo-rapidity of the signal region objects ''',
|
115 |
|
|
|
116 |
|
|
'InvariantMassOfSignal': r'''Invariant mass of the composite object formed by the signal region constituents''',
|
117 |
|
|
|
118 |
|
|
'MainTrackAngle': r'''$\Delta R$ between the ``main track'' and the composite four--vector formed by the
|
119 |
|
|
signal region constituents''',
|
120 |
|
|
|
121 |
|
|
'MainTrackPt': r'''Transverse momentum of the ``main track'' ''',
|
122 |
|
|
|
123 |
|
|
'OutlierNCharged': r'''Number of charged objects in the isolation region''',
|
124 |
|
|
|
125 |
|
|
'OutlierSumPt': r'''Sum of the transverse momentum of objects in the isolation region''',
|
126 |
|
|
|
127 |
|
|
'PiZeroAngleN': r'''$\Delta R$ between the Nth $\pi^0$ object in the signal region (ordered by $P_T$) and
|
128 |
|
|
the tau--candidate momentum axis''',
|
129 |
|
|
|
130 |
|
|
'PiZeroPtN': r'''Transverse momentum of the Nth $\pi^0$ object in the signal region.''',
|
131 |
|
|
|
132 |
|
|
'TrackAngleN': r'''$\Delta R$ between the Nth charged object in the signal region (ordered by $P_T$) and
|
133 |
|
|
the tau--candidate momentum axis, exclusive of the main track.''',
|
134 |
|
|
|
135 |
|
|
'TrackPtN': r'''Transverse momentum of the Nth charged object in the signal region, exclusive of the
|
136 |
|
|
main track''',
|
137 |
|
|
}
|
138 |
|
|
|
139 |
|
|
def groups_of(group_size, iterable):
|
140 |
|
|
count = 0
|
141 |
|
|
output = []
|
142 |
|
|
for item in iterable:
|
143 |
|
|
output.append(item)
|
144 |
|
|
count += 1
|
145 |
|
|
if count == group_size:
|
146 |
|
|
count = 0
|
147 |
|
|
yield output
|
148 |
|
|
output = []
|
149 |
|
|
# Yield partial at end
|
150 |
|
|
if output:
|
151 |
|
|
yield output
|
152 |
|
|
|
153 |
|
|
def put_eta_first(x, y):
|
154 |
|
|
if x == 'Eta':
|
155 |
|
|
return 1
|
156 |
|
|
if y == 'Eta':
|
157 |
|
|
return -1
|
158 |
|
|
return cmp(x,y)
|
159 |
|
|
|
160 |
|
|
if __name__=="__main__":
|
161 |
|
|
# parse file names
|
162 |
|
|
file_name_matcher = re.compile(r'(?P<network>[^_]*)_(?P<variable>\w*).pdf')
|
163 |
|
|
|
164 |
|
|
figures_list = glob.glob('figures/NeuralNetObservables/*.pdf')
|
165 |
|
|
|
166 |
|
|
# Keep track of all our plots
|
167 |
|
|
info_dict = {}
|
168 |
|
|
|
169 |
|
|
variable_list = []
|
170 |
|
|
|
171 |
friis |
1.2 |
# Keep track of full variable names
|
172 |
|
|
variable_list_raw = []
|
173 |
|
|
|
174 |
friis |
1.1 |
for figure_file in figures_list:
|
175 |
|
|
figure_file_name = os.path.basename(figure_file)
|
176 |
|
|
parse = file_name_matcher.match(figure_file_name)
|
177 |
|
|
network = parse.group('network')
|
178 |
|
|
variable = parse.group('variable')
|
179 |
|
|
|
180 |
|
|
# skip correlation variable
|
181 |
|
|
if variable == 'correlation':
|
182 |
|
|
continue
|
183 |
|
|
|
184 |
|
|
# Get the dict for this network, otherwise create a new one
|
185 |
|
|
network_dict = info_dict.setdefault(network, {})
|
186 |
|
|
network_dict[variable] = figure_file
|
187 |
|
|
|
188 |
|
|
# Remove trailing indices from variables
|
189 |
|
|
|
190 |
friis |
1.2 |
variable_list_raw.append(variable)
|
191 |
friis |
1.1 |
variable_list.append(re.sub("[0-9]+$", "N", variable))
|
192 |
|
|
|
193 |
|
|
# Build description of variables
|
194 |
|
|
variable_set = list(set(variable_list))
|
195 |
|
|
variable_set.sort()
|
196 |
|
|
print variable_set
|
197 |
|
|
|
198 |
friis |
1.2 |
variable_set_raw = list(set(variable_list_raw))
|
199 |
|
|
variable_set_raw.sort()
|
200 |
|
|
|
201 |
friis |
1.1 |
description_output_file = open(os.path.join(
|
202 |
|
|
'note/observable_distributions/','var_descriptions.tex'), 'w')
|
203 |
|
|
description_items = ""
|
204 |
|
|
for variable in variable_set:
|
205 |
|
|
description_items += DESCRIPTION_ITEM_TEMPLATE.substitute(
|
206 |
|
|
item = variable, description=VAR_DESCRIPTIONS[variable]
|
207 |
|
|
)
|
208 |
|
|
|
209 |
|
|
description_output_file.write(DESCRIPTION_TEMPLATE.substitute(
|
210 |
|
|
items = description_items))
|
211 |
|
|
|
212 |
|
|
# Loop over neural nets and build each section
|
213 |
|
|
for network, network_info in info_dict.iteritems():
|
214 |
|
|
print ""
|
215 |
|
|
print "Building %s" % network
|
216 |
|
|
output_file = open(os.path.join(
|
217 |
|
|
'note/observable_distributions/', network+'.tex'), 'w')
|
218 |
|
|
|
219 |
|
|
section_label = '%s_input_descriptions' % network
|
220 |
|
|
output = "\label{sec:%s}\n" % section_label
|
221 |
|
|
|
222 |
|
|
# Count variables
|
223 |
|
|
variables = network_info.keys()
|
224 |
|
|
# Sort nicely
|
225 |
|
|
variables.sort(put_eta_first)
|
226 |
|
|
n_vars = len(variables)
|
227 |
|
|
|
228 |
|
|
|
229 |
|
|
variable_table_entries=""
|
230 |
|
|
|
231 |
|
|
# max group size of 5
|
232 |
|
|
for figure_index, plot_group in enumerate(groups_of(6, variables)):
|
233 |
|
|
letter_values = list("abcdefghijklmnopqrstuv")
|
234 |
|
|
current_height = 0
|
235 |
|
|
figures_list = ""
|
236 |
|
|
figure_label = "%s_%i" % (network, figure_index)
|
237 |
|
|
for plot_row in groups_of(2, plot_group):
|
238 |
|
|
|
239 |
|
|
letter = letter_values.pop(0)
|
240 |
|
|
figures_list += PLOT_TEMPLATE.substitute(
|
241 |
|
|
x = 0.5, y = current_height,
|
242 |
|
|
letterx=0.5+10, lettery=current_height+60, letter=letter,
|
243 |
|
|
file_location = network_info[plot_row[0]])
|
244 |
|
|
|
245 |
|
|
# Update variable table
|
246 |
|
|
variable_table_entries += VARIABLE_ITEM_TEMPLATE.substitute(
|
247 |
|
|
item=plot_row[0],
|
248 |
|
|
description=r"\ref{fig:%s}%s"% (figure_label, letter))
|
249 |
|
|
|
250 |
|
|
letter = letter_values.pop(0)
|
251 |
|
|
figures_list += PLOT_TEMPLATE.substitute(
|
252 |
|
|
x = 65, y = current_height,
|
253 |
|
|
letterx=65+10, lettery=current_height+60, letter=letter,
|
254 |
|
|
file_location = network_info[plot_row[1]])
|
255 |
|
|
|
256 |
|
|
# Update variable table
|
257 |
|
|
variable_table_entries += VARIABLE_ITEM_TEMPLATE.substitute(
|
258 |
|
|
item=plot_row[1],
|
259 |
|
|
description=r"\ref{fig:%s}%s"% (figure_label, letter))
|
260 |
|
|
|
261 |
|
|
# go to next row
|
262 |
|
|
current_height += 65
|
263 |
|
|
|
264 |
|
|
output += FIGURE_TEMPLATE.substitute(
|
265 |
|
|
width=130, height=current_height,
|
266 |
|
|
figures = figures_list,
|
267 |
|
|
decaymode = LATEX_NAME_MAPPING[network],
|
268 |
|
|
decayModeSection=section_label, label = figure_label)
|
269 |
|
|
|
270 |
|
|
variable_index = VARIABLE_TEMPLATE.substitute(
|
271 |
|
|
items = variable_table_entries)
|
272 |
|
|
|
273 |
|
|
output_file.write(variable_index)
|
274 |
|
|
|
275 |
|
|
output_file.write(output)
|
276 |
|
|
|
277 |
friis |
1.2 |
# Build table
|
278 |
|
|
table_file = open("note/observable_distributions/nn_var_table.tex", "w")
|
279 |
|
|
|
280 |
|
|
table_file.write(r'''
|
281 |
|
|
\begin{table}[h]
|
282 |
|
|
\centering
|
283 |
|
|
''')
|
284 |
|
|
networks = [
|
285 |
|
|
'OneProngNoPiZero',
|
286 |
|
|
'OneProngOnePiZero',
|
287 |
|
|
'OneProngTwoPiZero',
|
288 |
|
|
'ThreeProngNoPiZero',
|
289 |
|
|
'ThreeProngOnePiZero',
|
290 |
|
|
]
|
291 |
|
|
|
292 |
|
|
# Write column defintion
|
293 |
|
|
table_file.write(
|
294 |
|
|
r"\begin{tabular}{l|"
|
295 |
|
|
+ "|".join(
|
296 |
|
|
["c" for network in networks])
|
297 |
|
|
+ r"|}")
|
298 |
|
|
table_file.write("\n")
|
299 |
|
|
|
300 |
|
|
# Write header
|
301 |
|
|
table_file.write(
|
302 |
|
|
r"\multirow{2}{*}{Input observable} & \multicolumn{%i}{c}{Neural network} \\"
|
303 |
|
|
% len(networks))
|
304 |
|
|
table_file.write("\n")
|
305 |
|
|
|
306 |
|
|
table_file.write(
|
307 |
|
|
" & "
|
308 |
|
|
+ " & ".join(
|
309 |
|
|
[r"%s" % LATEX_NAME_MAPPING_NO_TAU[network] for network in networks])
|
310 |
|
|
+ r"\\")
|
311 |
|
|
table_file.write("\n")
|
312 |
|
|
|
313 |
|
|
table_file.write(r"\hline")
|
314 |
|
|
table_file.write("\n")
|
315 |
|
|
|
316 |
|
|
# build each row
|
317 |
|
|
for variable in variable_set_raw:
|
318 |
|
|
row_output = variable + "&"
|
319 |
|
|
# list that contains a flag if a given network has this variable
|
320 |
|
|
def has_it(network):
|
321 |
|
|
if variable in info_dict[network]:
|
322 |
|
|
return r"$\bullet$"
|
323 |
|
|
else:
|
324 |
|
|
return ""
|
325 |
|
|
row_output += " & ".join([
|
326 |
|
|
has_it(network) for network in networks])
|
327 |
|
|
row_output += r"\\"
|
328 |
|
|
table_file.write(row_output)
|
329 |
|
|
table_file.write("\n")
|
330 |
|
|
|
331 |
|
|
table_file.write(r"\end{tabular}")
|
332 |
|
|
|
333 |
|
|
table_file.write(
|
334 |
|
|
r'''
|
335 |
|
|
\caption{
|
336 |
|
|
Input obervables used for each of the neural networks implemented by the Tau Neural Classifier.
|
337 |
|
|
The columns represents the neural networks associated to various decay modes and the rows represent
|
338 |
|
|
the superset of input observables(see section~\ref{sec:tanc_nn_discriminants}) used in the neural networks.
|
339 |
|
|
A dot in a given row and column indicates that the observable in that row is used in the neural network corresponding
|
340 |
|
|
to that column.
|
341 |
|
|
}
|
342 |
|
|
\label{tab:nn_var_table}
|
343 |
|
|
''')
|
344 |
|
|
|
345 |
|
|
table_file.write("\n")
|
346 |
|
|
table_file.write(r"\end{table}")
|
347 |
|
|
|
348 |
|
|
|
349 |
|
|
|
350 |
|
|
|
351 |
|
|
|
352 |
|
|
|
353 |
|
|
|
354 |
friis |
1.1 |
|
355 |
|
|
|
356 |
|
|
|