ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Friis/TancNote/note/summary.tex
Revision: 1.2
Committed: Wed Apr 28 02:59:29 2010 UTC (15 years ago) by friis
Content type: application/x-tex
Branch: MAIN
Changes since 1.1: +44 -32 lines
Log Message:
Really almost done

File Contents

# User Rev Content
1 friis 1.2 The Tau Neural classifier introduces two complimentary new techniques for tau
2     lepton physics at CMS: reconstruction of the hadronic tau decay mode and
3     discrimination from quark and gluon jets using neural networks. The decay mode
4     reconstruction strategy presented in section~\ref{sec:decay_mode_reco}
5     significantly improves the determination of the decay mode. This information has
6     the potential to be useful in studies of tau polarization and background
7     estimation.
8    
9     The Tau Neural classifier tau identification algorithm significantly improves
10     tau discrimination performance compared to isolation--based
11     approaches~\cite{PFT08001} used in previous CMS analyses.
12     Figure~\ref{fig:finalPerfCurve} compares the performance of the ``shrinking
13     cone'' isolation tau--identification algorithm~\cite{PFT08001} to the
14     performance of the TaNC for a scan of requirements on the transformed neural
15     network output. The signal efficiency and QCD di--jet fake rate versus
16     tau--candidate transverse momentum and pseudo--rapidity for the four benchmark
17     points and the isolation based tau identification are show in
18     figure~\ref{fig:kinematicPerformance}. For tau--candidates with transverse
19     momentum between 20 and 50 GeV/c, the TaNC operating cut can be chosen such that
20     the two methods have identical signal efficiency; at this point the TaNC
21     algorithm reduces the background fake rate by an additional factor of 3.9. This
22     reduction in background will directly improve the significance of searches for
23     new physics using tau leptons at CMS.
24 friis 1.1
25 friis 1.2 \begin{figure}[thbp]
26 friis 1.1 \setlength{\unitlength}{1mm}
27     \begin{center}
28     \begin{picture}(150, 150)(0,0)
29     \put(0.5, 0.5)
30     {\mbox{\includegraphics*[height=150mm]{figures/20_pt_50_perf_curve_from_5_pt_200_transform_plain_test_wrt_classic.pdf}}}
31     \end{picture}
32     \caption{
33     Performance curve (red) of the TaNC tau identification for various
34     requirements on the output transformed according to
35     equation~\ref{eq:tancTransform}. The horizontal axis is the efficiency for
36     true taus with transverse momentum between 20 and 50 GeV/c to satisfy the tau
37     identification requirements. The vertical axis gives the rate at which QCD
38     di--jets with generator--level transverse momentum between 20 and 50 GeV/c are incorrectly
39     identified as taus. The performance point for the same tau--candidates using
40     the isolation based tau--identification~\cite{PFT08001} used in many previous
41 friis 1.2 CMS analyses is indicated by the black star in the figure. An additional requirement
42     that the signal cone of the tau contain one or three charged hadrons (typical
43     in a final physics analysis) has been
44     applied to the isolation based tau--identification to ensure a conservative
45     comparison.
46 friis 1.1 }
47     \label{fig:finalPerfCurve}
48     \end{center}
49     \end{figure}
50    
51    
52 friis 1.2 \begin{figure}[thbp]
53 friis 1.1 \setlength{\unitlength}{1mm}
54     \begin{center}
55     \begin{picture}(150, 150)(0,0)
56     \put(2.5, 75)
57     {\mbox{\includegraphics*[height=70mm]{figures/eff_background_pt.pdf}}}
58     \put(75, 75)
59     {\mbox{\includegraphics*[height=70mm]{figures/eff_background_eta.pdf}}}
60     \put(2.5, 0)
61     {\mbox{\includegraphics*[height=70mm]{figures/eff_signal_pt.pdf}}}
62     \put(75, 0)
63 friis 1.2 {\mbox{\includegraphics*[height=70mm]{figures/eff_signal_eta.pdf}}}
64 friis 1.1 \end{picture}
65 friis 1.2 \caption{ Comparison of the identification efficiency for hadronic tau decays from
66     $Z \rightarrow \tau^{+} \tau^{-}$ decays (bottom row) and the misidentification
67     rate for QCD di--jets (top row) versus tau--candidate transverse momentum
68     (left) and pseudo-rapidity (right) for different tau identification
69     algorithms. The efficiency (fake--rate) in a given bin is defined as the
70     quotient of the number of true tau hadronic decays (generator level jets) in
71     that bin that are matched to a reconstructed tau--candidate that passes the
72     identification algorithm divided by the number of true tau hadronic decays
73     (generator level jets) in that bin. In the low transverse momentum region
74     both the number of tau--candidates in the denominator and the algorithm
75     acceptance vary rapidly with respect to $P_T$ for both signal and background;
76     a minimum transverse momentum requirement of 20 GeV/c is applied to the
77     psuedorapidity plots to facilitate interpretation of the plots.
78 friis 1.1 }
79     \label{fig:kinematicPerformance}
80     \end{center}
81     \end{figure}
82