1 |
econte |
1.1 |
|
2 |
|
|
#include "Alignment/TwoBodyDecay/interface/TwoBodyDecayDerivatives.h"
|
3 |
|
|
#include "Alignment/TwoBodyDecay/interface/TwoBodyDecayModel.h"
|
4 |
|
|
|
5 |
|
|
#include "FWCore/Utilities/interface/Exception.h"
|
6 |
|
|
|
7 |
|
|
#include <algorithm>
|
8 |
|
|
|
9 |
|
|
TwoBodyDecayDerivatives::TwoBodyDecayDerivatives( double mPrimary, double mSecondary ) :
|
10 |
|
|
thePrimaryMass( mPrimary ), theSecondaryMass( mSecondary ) {}
|
11 |
|
|
|
12 |
|
|
|
13 |
|
|
TwoBodyDecayDerivatives::~TwoBodyDecayDerivatives() {}
|
14 |
|
|
|
15 |
|
|
|
16 |
|
|
const std::pair< AlgebraicMatrix, AlgebraicMatrix >
|
17 |
|
|
TwoBodyDecayDerivatives::derivatives( const TwoBodyDecay & tbd ) const
|
18 |
|
|
{
|
19 |
|
|
return derivatives( tbd.decayParameters() );
|
20 |
|
|
}
|
21 |
|
|
|
22 |
|
|
const std::pair< AlgebraicMatrix, AlgebraicMatrix >
|
23 |
|
|
TwoBodyDecayDerivatives::derivatives( const TwoBodyDecayParameters & param ) const
|
24 |
|
|
{
|
25 |
|
|
// get the derivatives with respect to all parameters
|
26 |
|
|
std::pair< AlgebraicMatrix, AlgebraicMatrix > dqsdpx = this->dqsdpx( param );
|
27 |
|
|
std::pair< AlgebraicMatrix, AlgebraicMatrix > dqsdpy = this->dqsdpy( param );
|
28 |
|
|
std::pair< AlgebraicMatrix, AlgebraicMatrix > dqsdpz = this->dqsdpz( param );
|
29 |
|
|
std::pair< AlgebraicMatrix, AlgebraicMatrix > dqsdtheta = this->dqsdtheta( param );
|
30 |
|
|
std::pair< AlgebraicMatrix, AlgebraicMatrix > dqsdphi = this->dqsdphi( param );
|
31 |
|
|
std::pair< AlgebraicMatrix, AlgebraicMatrix > dqsdm = this->dqsdm( param );
|
32 |
|
|
|
33 |
|
|
AlgebraicMatrix dqplusdz( 3, dimension );
|
34 |
|
|
dqplusdz.sub( 1, px, dqsdpx.first );
|
35 |
|
|
dqplusdz.sub( 1, py, dqsdpy.first );
|
36 |
|
|
dqplusdz.sub( 1, pz, dqsdpz.first );
|
37 |
|
|
dqplusdz.sub( 1, theta, dqsdtheta.first );
|
38 |
|
|
dqplusdz.sub( 1, phi, dqsdphi.first );
|
39 |
|
|
dqplusdz.sub( 1, mass, dqsdm.first );
|
40 |
|
|
|
41 |
|
|
AlgebraicMatrix dqminusdz( 3, dimension );
|
42 |
|
|
dqminusdz.sub( 1, px, dqsdpx.second );
|
43 |
|
|
dqminusdz.sub( 1, py, dqsdpy.second );
|
44 |
|
|
dqminusdz.sub( 1, pz, dqsdpz.second );
|
45 |
|
|
dqminusdz.sub( 1, theta, dqsdtheta.second );
|
46 |
|
|
dqminusdz.sub( 1, phi, dqsdphi.second );
|
47 |
|
|
dqminusdz.sub( 1, mass, dqsdm.second );
|
48 |
|
|
|
49 |
|
|
return std::make_pair( dqplusdz, dqminusdz );
|
50 |
|
|
}
|
51 |
|
|
|
52 |
|
|
|
53 |
|
|
const std::pair< AlgebraicMatrix, AlgebraicMatrix >
|
54 |
|
|
TwoBodyDecayDerivatives::selectedDerivatives( const TwoBodyDecay & tbd, const std::vector< bool > & selector ) const
|
55 |
|
|
{
|
56 |
|
|
return selectedDerivatives( tbd.decayParameters(), selector );
|
57 |
|
|
}
|
58 |
|
|
|
59 |
|
|
|
60 |
|
|
const std::pair< AlgebraicMatrix, AlgebraicMatrix >
|
61 |
|
|
TwoBodyDecayDerivatives::selectedDerivatives( const TwoBodyDecayParameters & param, const std::vector< bool > & selector ) const
|
62 |
|
|
{
|
63 |
|
|
if ( selector.size() != dimension )
|
64 |
|
|
{
|
65 |
|
|
throw cms::Exception( "BadConfig" ) << "@SUB=TwoBodyDecayDerivatives::selectedDerivatives"
|
66 |
|
|
<< "selector has bad dimension (size=" << selector.size() << ").";
|
67 |
|
|
}
|
68 |
|
|
|
69 |
|
|
int nSelected = std::count( selector.begin(), selector.end(), true );
|
70 |
|
|
int iSelected = 1;
|
71 |
|
|
|
72 |
|
|
AlgebraicMatrix dqplusdz( 3, nSelected );
|
73 |
|
|
AlgebraicMatrix dqminusdz( 3, nSelected );
|
74 |
|
|
std::pair< AlgebraicMatrix, AlgebraicMatrix > dqsdzi;
|
75 |
|
|
|
76 |
|
|
for ( unsigned int i = 1; i <= dimension; i++ )
|
77 |
|
|
{
|
78 |
|
|
if ( selector[i] )
|
79 |
|
|
{
|
80 |
|
|
dqsdzi = this->dqsdzi( param, DerivativeParameterName(i) );
|
81 |
|
|
dqplusdz.sub( 1, iSelected, dqsdzi.first );
|
82 |
|
|
dqminusdz.sub( 1, iSelected, dqsdzi.second );
|
83 |
|
|
iSelected++;
|
84 |
|
|
}
|
85 |
|
|
}
|
86 |
|
|
|
87 |
|
|
return std::make_pair( dqplusdz, dqminusdz );
|
88 |
|
|
}
|
89 |
|
|
|
90 |
|
|
|
91 |
|
|
const std::pair< AlgebraicMatrix, AlgebraicMatrix > TwoBodyDecayDerivatives::dqsdpx( const TwoBodyDecayParameters & param ) const
|
92 |
|
|
{
|
93 |
|
|
double px = param[TwoBodyDecayParameters::px];
|
94 |
|
|
double py = param[TwoBodyDecayParameters::py];
|
95 |
|
|
double pz = param[TwoBodyDecayParameters::pz];
|
96 |
|
|
double theta = param[TwoBodyDecayParameters::theta];
|
97 |
|
|
double phi = param[TwoBodyDecayParameters::phi];
|
98 |
|
|
|
99 |
|
|
// compute transverse and absolute momentum
|
100 |
|
|
double pT2 = px*px + py*py;
|
101 |
|
|
double p2 = pT2 + pz*pz;
|
102 |
|
|
double pT = sqrt( pT2 );
|
103 |
|
|
double p = sqrt( p2 );
|
104 |
|
|
|
105 |
|
|
double sphi = sin( phi );
|
106 |
|
|
double cphi = cos( phi );
|
107 |
|
|
double stheta = sin( theta );
|
108 |
|
|
double ctheta = cos( theta );
|
109 |
|
|
|
110 |
|
|
// some constants from kinematics
|
111 |
|
|
double c1 = 0.5*thePrimaryMass/theSecondaryMass;
|
112 |
|
|
double c2 = sqrt( c1*c1 - 1. );
|
113 |
|
|
double c3 = 0.5*c2*ctheta/c1;
|
114 |
|
|
double c4 = sqrt( p2 + thePrimaryMass*thePrimaryMass );
|
115 |
|
|
|
116 |
|
|
// momentum of decay particle 1 in the primary's boosted frame
|
117 |
|
|
AlgebraicMatrix pplus( 3, 1 );
|
118 |
|
|
pplus[0][0] = theSecondaryMass*c2*stheta*cphi;
|
119 |
|
|
pplus[1][0] = theSecondaryMass*c2*stheta*sphi;
|
120 |
|
|
pplus[2][0] = 0.5*p + c3*c4;
|
121 |
|
|
|
122 |
|
|
// momentum of decay particle 2 in the primary's boosted frame
|
123 |
|
|
AlgebraicMatrix pminus( 3, 1 );
|
124 |
|
|
pminus[0][0] = -pplus[0][0];
|
125 |
|
|
pminus[1][0] = -pplus[1][0];
|
126 |
|
|
pminus[2][0] = 0.5*p - c3*c4;
|
127 |
|
|
|
128 |
|
|
// derivative of rotation matrix w.r.t. px
|
129 |
|
|
AlgebraicMatrix dRotMatdpx( 3, 3 );
|
130 |
|
|
|
131 |
|
|
dRotMatdpx[0][0] = pz/(pT*p)*(1.-px*px*(1./pT2+1./p2));
|
132 |
|
|
dRotMatdpx[0][1] = px*py/(pT*pT2);
|
133 |
|
|
dRotMatdpx[0][2] = (1.-px*px/p2)/p;
|
134 |
|
|
|
135 |
|
|
dRotMatdpx[1][0] = -px*py*pz/(pT*p)*(1./pT2+1./p2);
|
136 |
|
|
dRotMatdpx[1][1] = (1.-px*px/pT2)/pT;
|
137 |
|
|
dRotMatdpx[1][2] = -px*py/(p*p2);
|
138 |
|
|
|
139 |
|
|
dRotMatdpx[2][0] = -(1./pT-pT/p2)*px/p;
|
140 |
|
|
dRotMatdpx[2][1] = 0.;
|
141 |
|
|
dRotMatdpx[2][2] = -px*pz/(p*p2);
|
142 |
|
|
|
143 |
|
|
// derivative of the momentum of particle 1 in the lab frame w.r.t. px
|
144 |
|
|
double dpplusdpx = px*( 0.5/p + c3/c4 );
|
145 |
|
|
|
146 |
|
|
AlgebraicMatrix dqplusdpx = dRotMatdpx*pplus;
|
147 |
|
|
dqplusdpx[0][0] += px*dpplusdpx/p;
|
148 |
|
|
dqplusdpx[1][0] += py*dpplusdpx/p;
|
149 |
|
|
dqplusdpx[2][0] += pz*dpplusdpx/p;
|
150 |
|
|
|
151 |
|
|
// derivative of the momentum of particle 2 in the lab frame w.r.t. px
|
152 |
|
|
double dpminusdpx = px*( 0.5/p - c3/c4 );
|
153 |
|
|
|
154 |
|
|
AlgebraicMatrix dqminusdpx = dRotMatdpx*pminus;
|
155 |
|
|
dqminusdpx[0][0] += px*dpminusdpx/p;
|
156 |
|
|
dqminusdpx[1][0] += py*dpminusdpx/p;
|
157 |
|
|
dqminusdpx[2][0] += pz*dpminusdpx/p;
|
158 |
|
|
|
159 |
|
|
// return result
|
160 |
|
|
return std::make_pair( dqplusdpx, dqminusdpx );
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
|
164 |
|
|
const std::pair< AlgebraicMatrix, AlgebraicMatrix > TwoBodyDecayDerivatives::dqsdpy( const TwoBodyDecayParameters & param ) const
|
165 |
|
|
{
|
166 |
|
|
double px = param[TwoBodyDecayParameters::px];
|
167 |
|
|
double py = param[TwoBodyDecayParameters::py];
|
168 |
|
|
double pz = param[TwoBodyDecayParameters::pz];
|
169 |
|
|
double theta = param[TwoBodyDecayParameters::theta];
|
170 |
|
|
double phi = param[TwoBodyDecayParameters::phi];
|
171 |
|
|
|
172 |
|
|
// compute transverse and absolute momentum
|
173 |
|
|
double pT2 = px*px + py*py;
|
174 |
|
|
double p2 = pT2 + pz*pz;
|
175 |
|
|
double pT = sqrt( pT2 );
|
176 |
|
|
double p = sqrt( p2 );
|
177 |
|
|
|
178 |
|
|
double sphi = sin( phi );
|
179 |
|
|
double cphi = cos( phi );
|
180 |
|
|
double stheta = sin( theta );
|
181 |
|
|
double ctheta = cos( theta );
|
182 |
|
|
|
183 |
|
|
// some constants from kinematics
|
184 |
|
|
double c1 = 0.5*thePrimaryMass/theSecondaryMass;
|
185 |
|
|
double c2 = sqrt( c1*c1 - 1. );
|
186 |
|
|
double c3 = 0.5*c2*ctheta/c1;
|
187 |
|
|
double c4 = sqrt( p2 + thePrimaryMass*thePrimaryMass );
|
188 |
|
|
|
189 |
|
|
// momentum of decay particle 1 in the rest frame of the primary
|
190 |
|
|
AlgebraicMatrix pplus( 3, 1 );
|
191 |
|
|
pplus[0][0] = theSecondaryMass*c2*stheta*cphi;
|
192 |
|
|
pplus[1][0] = theSecondaryMass*c2*stheta*sphi;
|
193 |
|
|
pplus[2][0] = 0.5*p + c3*c4;
|
194 |
|
|
|
195 |
|
|
// momentum of decay particle 2 in the rest frame of the primary
|
196 |
|
|
AlgebraicMatrix pminus( 3, 1 );
|
197 |
|
|
pminus[0][0] = -pplus[0][0];
|
198 |
|
|
pminus[1][0] = -pplus[1][0];
|
199 |
|
|
pminus[2][0] = 0.5*p - c3*c4;
|
200 |
|
|
|
201 |
|
|
// derivative of rotation matrix w.r.t. py
|
202 |
|
|
AlgebraicMatrix dRotMatdpy( 3, 3 );
|
203 |
|
|
|
204 |
|
|
dRotMatdpy[0][0] = -px*py*pz/(pT*p)*(1./pT2+1./p2);
|
205 |
|
|
dRotMatdpy[0][1] = (py*py/pT2-1.)/pT;
|
206 |
|
|
dRotMatdpy[0][2] = -px*py/(p*p2);
|
207 |
|
|
|
208 |
|
|
dRotMatdpy[1][0] = pz/(pT*p)*(1.-py*py*(1./pT2+1./p2));
|
209 |
|
|
dRotMatdpy[1][1] = -px*py/(pT*pT2);
|
210 |
|
|
dRotMatdpy[1][2] = (1.-py*py/p2)/p;
|
211 |
|
|
|
212 |
|
|
dRotMatdpy[2][0] = -(1./pT-pT/p2)*py/p;
|
213 |
|
|
dRotMatdpy[2][1] = 0.;
|
214 |
|
|
dRotMatdpy[2][2] = -py*pz/(p*p2);
|
215 |
|
|
|
216 |
|
|
// derivative of the momentum of particle 1 in the lab frame w.r.t. py
|
217 |
|
|
double dpplusdpy = py*( 0.5/p + c3/c4 );
|
218 |
|
|
|
219 |
|
|
AlgebraicMatrix dqplusdpy = dRotMatdpy*pplus;
|
220 |
|
|
dqplusdpy[0][0] += px*dpplusdpy/p;
|
221 |
|
|
dqplusdpy[1][0] += py*dpplusdpy/p;
|
222 |
|
|
dqplusdpy[2][0] += pz*dpplusdpy/p;
|
223 |
|
|
|
224 |
|
|
// derivative of the momentum of particle 2 in the lab frame w.r.t. py
|
225 |
|
|
double dpminusdpy = py*( 0.5/p - c3/c4 );
|
226 |
|
|
|
227 |
|
|
AlgebraicMatrix dqminusdpy = dRotMatdpy*pminus;
|
228 |
|
|
dqminusdpy[0][0] += px*dpminusdpy/p;
|
229 |
|
|
dqminusdpy[1][0] += py*dpminusdpy/p;
|
230 |
|
|
dqminusdpy[2][0] += pz*dpminusdpy/p;
|
231 |
|
|
|
232 |
|
|
// return result
|
233 |
|
|
return std::make_pair( dqplusdpy, dqminusdpy );
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
|
237 |
|
|
const std::pair< AlgebraicMatrix, AlgebraicMatrix > TwoBodyDecayDerivatives::dqsdpz( const TwoBodyDecayParameters & param ) const
|
238 |
|
|
{
|
239 |
|
|
double px = param[TwoBodyDecayParameters::px];
|
240 |
|
|
double py = param[TwoBodyDecayParameters::py];
|
241 |
|
|
double pz = param[TwoBodyDecayParameters::pz];
|
242 |
|
|
double theta = param[TwoBodyDecayParameters::theta];
|
243 |
|
|
double phi = param[TwoBodyDecayParameters::phi];
|
244 |
|
|
|
245 |
|
|
// compute transverse and absolute momentum
|
246 |
|
|
double pT2 = px*px + py*py;
|
247 |
|
|
double p2 = pT2 + pz*pz;
|
248 |
|
|
double pT = sqrt( pT2 );
|
249 |
|
|
double p = sqrt( p2 );
|
250 |
|
|
|
251 |
|
|
double sphi = sin( phi );
|
252 |
|
|
double cphi = cos( phi );
|
253 |
|
|
double stheta = sin( theta );
|
254 |
|
|
double ctheta = cos( theta );
|
255 |
|
|
|
256 |
|
|
// some constants from kinematics
|
257 |
|
|
double c1 = 0.5*thePrimaryMass/theSecondaryMass;
|
258 |
|
|
double c2 = sqrt( c1*c1 - 1. );
|
259 |
|
|
double c3 = 0.5*c2*ctheta/c1;
|
260 |
|
|
double c4 = sqrt( p2 + thePrimaryMass*thePrimaryMass );
|
261 |
|
|
|
262 |
|
|
// momentum of decay particle 1 in the rest frame of the primary
|
263 |
|
|
AlgebraicMatrix pplus( 3, 1 );
|
264 |
|
|
pplus[0][0] = theSecondaryMass*c2*stheta*cphi;
|
265 |
|
|
pplus[1][0] = theSecondaryMass*c2*stheta*sphi;
|
266 |
|
|
pplus[2][0] = 0.5*p + c3*c4;
|
267 |
|
|
|
268 |
|
|
// momentum of decay particle 2 in the rest frame of the primary
|
269 |
|
|
AlgebraicMatrix pminus( 3, 1 );
|
270 |
|
|
pminus[0][0] = -pplus[0][0];
|
271 |
|
|
pminus[1][0] = -pplus[1][0];
|
272 |
|
|
pminus[2][0] = 0.5*p - c3*c4;
|
273 |
|
|
|
274 |
|
|
// derivative of rotation matrix w.r.t. py
|
275 |
|
|
AlgebraicMatrix dRotMatdpz( 3, 3 );
|
276 |
|
|
|
277 |
|
|
dRotMatdpz[0][0] = px/(pT*p)*(1.-pz*pz/p2);
|
278 |
|
|
dRotMatdpz[0][1] = 0.;
|
279 |
|
|
dRotMatdpz[0][2] = -px*pz/(p*p2);
|
280 |
|
|
|
281 |
|
|
dRotMatdpz[1][0] = py/(p*pT)*(1.-pz*pz/p2);
|
282 |
|
|
dRotMatdpz[1][1] = 0.;
|
283 |
|
|
dRotMatdpz[1][2] = -py*pz/(p*p2);
|
284 |
|
|
|
285 |
|
|
dRotMatdpz[2][0] = pT*pz/(p*p2);
|
286 |
|
|
dRotMatdpz[2][1] = 0.;
|
287 |
|
|
dRotMatdpz[2][2] = (1.-pz*pz/p2)/p;
|
288 |
|
|
|
289 |
|
|
// derivative of the momentum of particle 1 in the lab frame w.r.t. pz
|
290 |
|
|
double dpplusdpz = pz*( 0.5/p + c3/c4 );
|
291 |
|
|
|
292 |
|
|
AlgebraicMatrix dqplusdpz = dRotMatdpz*pplus;
|
293 |
|
|
dqplusdpz[0][0] += px*dpplusdpz/p;
|
294 |
|
|
dqplusdpz[1][0] += py*dpplusdpz/p;
|
295 |
|
|
dqplusdpz[2][0] += pz*dpplusdpz/p;
|
296 |
|
|
|
297 |
|
|
// derivative of the momentum of particle 2 in the lab frame w.r.t. pz
|
298 |
|
|
double dpminusdpz = pz*( 0.5/p - c3/c4 );
|
299 |
|
|
|
300 |
|
|
AlgebraicMatrix dqminusdpz = dRotMatdpz*pminus;
|
301 |
|
|
dqminusdpz[0][0] += px*dpminusdpz/p;
|
302 |
|
|
dqminusdpz[1][0] += py*dpminusdpz/p;
|
303 |
|
|
dqminusdpz[2][0] += pz*dpminusdpz/p;
|
304 |
|
|
|
305 |
|
|
// return result
|
306 |
|
|
return std::make_pair( dqplusdpz, dqminusdpz );
|
307 |
|
|
}
|
308 |
|
|
|
309 |
|
|
|
310 |
|
|
const std::pair< AlgebraicMatrix, AlgebraicMatrix > TwoBodyDecayDerivatives::dqsdtheta( const TwoBodyDecayParameters & param ) const
|
311 |
|
|
{
|
312 |
|
|
double px = param[TwoBodyDecayParameters::px];
|
313 |
|
|
double py = param[TwoBodyDecayParameters::py];
|
314 |
|
|
double pz = param[TwoBodyDecayParameters::pz];
|
315 |
|
|
double theta = param[TwoBodyDecayParameters::theta];
|
316 |
|
|
double phi = param[TwoBodyDecayParameters::phi];
|
317 |
|
|
|
318 |
|
|
// compute transverse and absolute momentum
|
319 |
|
|
double pT2 = px*px + py*py;
|
320 |
|
|
double p2 = pT2 + pz*pz;
|
321 |
|
|
|
322 |
|
|
double sphi = sin( phi );
|
323 |
|
|
double cphi = cos( phi );
|
324 |
|
|
double stheta = sin( theta );
|
325 |
|
|
double ctheta = cos( theta );
|
326 |
|
|
|
327 |
|
|
// some constants from kinematics
|
328 |
|
|
double c1 = 0.5*thePrimaryMass/theSecondaryMass;
|
329 |
|
|
double c2 = sqrt( c1*c1 - 1. );
|
330 |
|
|
double c3 = -0.5*c2*stheta/c1;
|
331 |
|
|
double c4 = sqrt( p2 + thePrimaryMass*thePrimaryMass );
|
332 |
|
|
|
333 |
|
|
// derivative of the momentum of particle 1 in the primary's rest frame w.r.t. theta
|
334 |
|
|
AlgebraicMatrix dpplusdtheta( 3, 1 );
|
335 |
|
|
dpplusdtheta[0][0] = theSecondaryMass*c2*ctheta*cphi;
|
336 |
|
|
dpplusdtheta[1][0] = theSecondaryMass*c2*ctheta*sphi;
|
337 |
|
|
dpplusdtheta[2][0] = c3*c4;
|
338 |
|
|
|
339 |
|
|
// derivative of the momentum of particle 2 in the primary's rest frame w.r.t. theta
|
340 |
|
|
AlgebraicMatrix dpminusdtheta( 3, 1 );
|
341 |
|
|
dpminusdtheta[0][0] = -theSecondaryMass*c2*ctheta*cphi;
|
342 |
|
|
dpminusdtheta[1][0] = -theSecondaryMass*c2*ctheta*sphi;
|
343 |
|
|
dpminusdtheta[2][0] = -c3*c4;
|
344 |
|
|
|
345 |
|
|
TwoBodyDecayModel decayModel;
|
346 |
|
|
AlgebraicMatrix rotMat = decayModel.rotationMatrix( px, py, pz );
|
347 |
|
|
|
348 |
|
|
AlgebraicMatrix dqplusdtheta = rotMat*dpplusdtheta;
|
349 |
|
|
AlgebraicMatrix dqminusdtheta = rotMat*dpminusdtheta;
|
350 |
|
|
|
351 |
|
|
return std::make_pair( dqplusdtheta, dqminusdtheta );
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
|
355 |
|
|
const std::pair< AlgebraicMatrix, AlgebraicMatrix > TwoBodyDecayDerivatives::dqsdphi( const TwoBodyDecayParameters & param ) const
|
356 |
|
|
{
|
357 |
|
|
double px = param[TwoBodyDecayParameters::px];
|
358 |
|
|
double py = param[TwoBodyDecayParameters::py];
|
359 |
|
|
double pz = param[TwoBodyDecayParameters::pz];
|
360 |
|
|
double theta = param[TwoBodyDecayParameters::theta];
|
361 |
|
|
double phi = param[TwoBodyDecayParameters::phi];
|
362 |
|
|
|
363 |
|
|
double sphi = sin( phi );
|
364 |
|
|
double cphi = cos( phi );
|
365 |
|
|
double stheta = sin( theta );
|
366 |
|
|
|
367 |
|
|
// some constants from kinematics
|
368 |
|
|
double c1 = 0.5*thePrimaryMass/theSecondaryMass;
|
369 |
|
|
double c2 = sqrt( c1*c1 - 1. );
|
370 |
|
|
|
371 |
|
|
// derivative of the momentum of particle 1 in the primary's rest frame w.r.t. phi
|
372 |
|
|
AlgebraicMatrix dpplusdphi( 3, 1 );
|
373 |
|
|
dpplusdphi[0][0] = -theSecondaryMass*c2*stheta*sphi;
|
374 |
|
|
dpplusdphi[1][0] = theSecondaryMass*c2*stheta*cphi;
|
375 |
|
|
dpplusdphi[2][0] = 0.;
|
376 |
|
|
|
377 |
|
|
// derivative of the momentum of particle 2 in the primary's rest frame w.r.t. phi
|
378 |
|
|
AlgebraicMatrix dpminusdphi( 3, 1 );
|
379 |
|
|
dpminusdphi[0][0] = theSecondaryMass*c2*stheta*sphi;
|
380 |
|
|
dpminusdphi[1][0] = -theSecondaryMass*c2*stheta*cphi;
|
381 |
|
|
dpminusdphi[2][0] = 0.;
|
382 |
|
|
|
383 |
|
|
TwoBodyDecayModel decayModel;
|
384 |
|
|
AlgebraicMatrix rotMat = decayModel.rotationMatrix( px, py, pz );
|
385 |
|
|
|
386 |
|
|
AlgebraicMatrix dqplusdphi = rotMat*dpplusdphi;
|
387 |
|
|
AlgebraicMatrix dqminusdphi = rotMat*dpminusdphi;
|
388 |
|
|
|
389 |
|
|
return std::make_pair( dqplusdphi, dqminusdphi );
|
390 |
|
|
}
|
391 |
|
|
|
392 |
|
|
|
393 |
|
|
const std::pair< AlgebraicMatrix, AlgebraicMatrix > TwoBodyDecayDerivatives::dqsdm( const TwoBodyDecayParameters & param ) const
|
394 |
|
|
{
|
395 |
|
|
double px = param[TwoBodyDecayParameters::px];
|
396 |
|
|
double py = param[TwoBodyDecayParameters::py];
|
397 |
|
|
double pz = param[TwoBodyDecayParameters::pz];
|
398 |
|
|
double theta = param[TwoBodyDecayParameters::theta];
|
399 |
|
|
double phi = param[TwoBodyDecayParameters::phi];
|
400 |
|
|
|
401 |
|
|
double pT2 = px*px + py*py;
|
402 |
|
|
double p2 = pT2 + pz*pz;
|
403 |
|
|
|
404 |
|
|
double sphi = sin( phi );
|
405 |
|
|
double cphi = cos( phi );
|
406 |
|
|
double ctheta = cos( theta );
|
407 |
|
|
double stheta = sin( theta );
|
408 |
|
|
|
409 |
|
|
// some constants from kinematics
|
410 |
|
|
double c1 = 0.5*thePrimaryMass/theSecondaryMass;
|
411 |
|
|
double c2 = 1./sqrt( c1*c1 - 1. );
|
412 |
|
|
double m2 = thePrimaryMass*thePrimaryMass;
|
413 |
|
|
|
414 |
|
|
// derivative of the momentum of particle 1 in the primary's rest frame w.r.t. the primary's mass
|
415 |
|
|
AlgebraicMatrix dpplusdm( 3, 1 );
|
416 |
|
|
dpplusdm[0][0] = c2*0.5*c1*stheta*cphi;
|
417 |
|
|
dpplusdm[1][0] = c2*0.5*c1*stheta*sphi;
|
418 |
|
|
dpplusdm[2][0] = c2*theSecondaryMass*( c1*c1 + p2/m2 )/sqrt( p2 + m2 )*ctheta;
|
419 |
|
|
|
420 |
|
|
// derivative of the momentum of particle 2 in the primary's rest frame w.r.t. the primary's mass
|
421 |
|
|
AlgebraicMatrix dpminusdm( 3, 1 );
|
422 |
|
|
dpminusdm[0][0] = -dpplusdm[0][0];
|
423 |
|
|
dpminusdm[1][0] = -dpplusdm[1][0];
|
424 |
|
|
dpminusdm[2][0] = -dpplusdm[2][0];
|
425 |
|
|
|
426 |
|
|
TwoBodyDecayModel decayModel;
|
427 |
|
|
AlgebraicMatrix rotMat = decayModel.rotationMatrix( px, py, pz );
|
428 |
|
|
|
429 |
|
|
AlgebraicMatrix dqplusdm = rotMat*dpplusdm;
|
430 |
|
|
AlgebraicMatrix dqminusdm = rotMat*dpminusdm;
|
431 |
|
|
|
432 |
|
|
return std::make_pair( dqplusdm, dqminusdm );
|
433 |
|
|
}
|
434 |
|
|
|
435 |
|
|
|
436 |
|
|
const std::pair< AlgebraicMatrix, AlgebraicMatrix >
|
437 |
|
|
TwoBodyDecayDerivatives::dqsdzi( const TwoBodyDecayParameters & param, const DerivativeParameterName & i ) const
|
438 |
|
|
{
|
439 |
|
|
switch ( i )
|
440 |
|
|
{
|
441 |
|
|
case TwoBodyDecayDerivatives::px :
|
442 |
|
|
return dqsdpx( param );
|
443 |
|
|
break;
|
444 |
|
|
case TwoBodyDecayDerivatives::py :
|
445 |
|
|
return dqsdpy( param );
|
446 |
|
|
break;
|
447 |
|
|
case TwoBodyDecayDerivatives::pz :
|
448 |
|
|
return dqsdpz( param );
|
449 |
|
|
break;
|
450 |
|
|
case TwoBodyDecayDerivatives::theta :
|
451 |
|
|
return dqsdtheta( param );
|
452 |
|
|
break;
|
453 |
|
|
case TwoBodyDecayDerivatives::phi :
|
454 |
|
|
return dqsdphi( param );
|
455 |
|
|
break;
|
456 |
|
|
case TwoBodyDecayDerivatives::mass :
|
457 |
|
|
return dqsdm( param );
|
458 |
|
|
break;
|
459 |
|
|
default:
|
460 |
|
|
throw cms::Exception( "BadConfig" ) << "@SUB=TwoBodyDecayDerivatives::dqsdzi"
|
461 |
|
|
<< "no decay parameter related to selector (" << i << ").";
|
462 |
|
|
};
|
463 |
|
|
|
464 |
|
|
return std::make_pair( AlgebraicMatrix( 3, 1, 0 ), AlgebraicMatrix( 3, 1, 0 ) );
|
465 |
|
|
}
|