1 |
econte |
1.1 |
#include "TrackingTools/PatternTools/interface/CollinearFitAtTM.h"
|
2 |
|
|
#include "FWCore/MessageLogger/interface/MessageLogger.h"
|
3 |
|
|
|
4 |
|
|
CollinearFitAtTM2::CollinearFitAtTM2 (const TrajectoryMeasurement& tm) :
|
5 |
|
|
valid_(false),chi2_(-1),ndof_(-1) {
|
6 |
|
|
//
|
7 |
|
|
// check input
|
8 |
|
|
//
|
9 |
|
|
if ( !tm.forwardPredictedState().isValid() ||
|
10 |
|
|
!tm.backwardPredictedState().isValid() ||
|
11 |
|
|
!tm.updatedState().isValid() ) {
|
12 |
|
|
edm::LogWarning("CollinearFitAtTM2") << "Invalid state in TrajectoryMeasurement";
|
13 |
|
|
return;
|
14 |
|
|
}
|
15 |
|
|
//
|
16 |
|
|
// prepare fit
|
17 |
|
|
//
|
18 |
|
|
initJacobian();
|
19 |
|
|
AlgebraicVector5 fwdPar = tm.forwardPredictedState().localParameters().vector();
|
20 |
|
|
AlgebraicSymMatrix55 fwdCov = tm.forwardPredictedState().localError().matrix();
|
21 |
|
|
AlgebraicVector5 bwdPar = tm.backwardPredictedState().localParameters().vector();
|
22 |
|
|
AlgebraicSymMatrix55 bwdCov = tm.backwardPredictedState().localError().matrix();
|
23 |
|
|
|
24 |
|
|
LocalPoint hitPos(0.,0.,0.);
|
25 |
|
|
LocalError hitErr(-1.,-1.,-1.);
|
26 |
|
|
if ( tm.recHit()->isValid() ) {
|
27 |
|
|
hitPos = tm.recHit()->localPosition();
|
28 |
|
|
hitErr = tm.recHit()->localPositionError();
|
29 |
|
|
}
|
30 |
|
|
|
31 |
|
|
fit(fwdPar,fwdCov,bwdPar,bwdCov,hitPos,hitErr);
|
32 |
|
|
}
|
33 |
|
|
|
34 |
|
|
CollinearFitAtTM2::CollinearFitAtTM2 (const AlgebraicVector5& fwdParameters,
|
35 |
|
|
const AlgebraicSymMatrix55& fwdCovariance,
|
36 |
|
|
const AlgebraicVector5& bwdParameters,
|
37 |
|
|
const AlgebraicSymMatrix55& bwdCovariance,
|
38 |
|
|
const LocalPoint& hitPosition,
|
39 |
|
|
const LocalError& hitErrors) :
|
40 |
|
|
valid_(false),chi2_(-1),ndof_(-1) {
|
41 |
|
|
//
|
42 |
|
|
// prepare fit
|
43 |
|
|
//
|
44 |
|
|
initJacobian();
|
45 |
|
|
|
46 |
|
|
fit(fwdParameters,fwdCovariance,bwdParameters,bwdCovariance,hitPosition,hitErrors);
|
47 |
|
|
}
|
48 |
|
|
|
49 |
|
|
void
|
50 |
|
|
CollinearFitAtTM2::initJacobian ()
|
51 |
|
|
{
|
52 |
|
|
//
|
53 |
|
|
// Jacobian
|
54 |
|
|
//
|
55 |
|
|
for ( int i=0; i<12; ++i ) {
|
56 |
|
|
for ( int j=0; j<6; ++j ) jacobian_(i,j) = 0;
|
57 |
|
|
}
|
58 |
|
|
for ( int i=1; i<5; ++i ) {
|
59 |
|
|
jacobian_(i,ParQpOut+i) = jacobian_(i+5,ParQpOut+i) = 1;
|
60 |
|
|
}
|
61 |
|
|
jacobian_(0,ParQpIn) = 1.;
|
62 |
|
|
jacobian_(5,ParQpOut) = 1.;
|
63 |
|
|
}
|
64 |
|
|
|
65 |
|
|
bool
|
66 |
|
|
CollinearFitAtTM2::fit (const AlgebraicVector5& fwdParameters,
|
67 |
|
|
const AlgebraicSymMatrix55& fwdCovariance,
|
68 |
|
|
const AlgebraicVector5& bwdParameters,
|
69 |
|
|
const AlgebraicSymMatrix55& bwdCovariance,
|
70 |
|
|
const LocalPoint& hitPos, const LocalError& hitErr)
|
71 |
|
|
{
|
72 |
|
|
|
73 |
|
|
if ( hitErr.xx()>0 )
|
74 |
|
|
jacobian_(10,ParX) = jacobian_(11,ParY) = 1;
|
75 |
|
|
else
|
76 |
|
|
jacobian_(10,ParX) = jacobian_(11,ParY) = 0;
|
77 |
|
|
|
78 |
|
|
for ( int i=0; i<12; ++i ) {
|
79 |
|
|
for ( int j=0; j<12; ++j ) weightMatrix_(i,j) = 0;
|
80 |
|
|
}
|
81 |
|
|
|
82 |
|
|
for ( int i=0; i<5; ++i ) measurements_(i) = fwdParameters(i);
|
83 |
|
|
weightMatrix_.Place_at(fwdCovariance,0,0);
|
84 |
|
|
for ( int i=0; i<5; ++i ) measurements_(i+5) = bwdParameters(i);
|
85 |
|
|
weightMatrix_.Place_at(bwdCovariance,5,5);
|
86 |
|
|
if ( hitErr.xx()>0 ) {
|
87 |
|
|
measurements_(10) = hitPos.x();
|
88 |
|
|
measurements_(11) = hitPos.y();
|
89 |
|
|
weightMatrix_(10,10) = hitErr.xx();
|
90 |
|
|
weightMatrix_(10,11) = weightMatrix_(11,10) = hitErr.xy();
|
91 |
|
|
weightMatrix_(11,11) = hitErr.yy();
|
92 |
|
|
}
|
93 |
|
|
else {
|
94 |
|
|
measurements_(10) = measurements_(11) = 0.;
|
95 |
|
|
weightMatrix_(10,10) = weightMatrix_(11,11) = 1.;
|
96 |
|
|
weightMatrix_(10,11) = weightMatrix_(11,10) = 0.;
|
97 |
|
|
}
|
98 |
|
|
//
|
99 |
|
|
// invert covariance matrix
|
100 |
|
|
//
|
101 |
|
|
if ( !weightMatrix_.Invert() ) {
|
102 |
|
|
edm::LogWarning("CollinearFitAtTM2") << "Inversion of input covariance matrix failed";
|
103 |
|
|
return false;
|
104 |
|
|
}
|
105 |
|
|
|
106 |
|
|
//
|
107 |
|
|
projectedMeasurements_ = ROOT::Math::Transpose(jacobian_)*(weightMatrix_*measurements_);
|
108 |
|
|
//
|
109 |
|
|
// Fitted parameters and covariance matrix
|
110 |
|
|
//
|
111 |
|
|
covariance_ = ROOT::Math::SimilarityT(jacobian_,weightMatrix_);
|
112 |
|
|
if ( !covariance_.Invert() ) {
|
113 |
|
|
edm::LogWarning("CollinearFitAtTM2") << "Inversion of resulting weight matrix failed";
|
114 |
|
|
return false;
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
parameters_ = covariance_*projectedMeasurements_;
|
118 |
|
|
|
119 |
|
|
//
|
120 |
|
|
// chi2
|
121 |
|
|
//
|
122 |
|
|
chi2_ = ROOT::Math::Similarity(measurements_,weightMatrix_) -
|
123 |
|
|
ROOT::Math::Similarity(projectedMeasurements_,covariance_);
|
124 |
|
|
ndof_ = hitErr.xx()>0 ? 6 : 4;
|
125 |
|
|
|
126 |
|
|
valid_ = true;
|
127 |
|
|
return true;
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
Measurement1D
|
131 |
|
|
CollinearFitAtTM2::deltaP () const {
|
132 |
|
|
//
|
133 |
|
|
// check validity
|
134 |
|
|
//
|
135 |
|
|
if ( !valid_ ) return Measurement1D();
|
136 |
|
|
//
|
137 |
|
|
// deltaP = 1/qpout - 1/qpin ; uncertainty from linear error propagation
|
138 |
|
|
//
|
139 |
|
|
double qpIn = parameters_(0);
|
140 |
|
|
double sig2In = covariance_(0,0);
|
141 |
|
|
double qpOut = parameters_(1);
|
142 |
|
|
double sig2Out = covariance_(1,1);
|
143 |
|
|
double corrInOut = covariance_(0,1);
|
144 |
|
|
double pIn = 1./fabs(qpIn);
|
145 |
|
|
double pOut = 1./fabs(qpOut);
|
146 |
|
|
double sig2DeltaP = pIn/qpIn*pIn/qpIn*sig2In - 2*pIn/qpIn*pOut/qpOut*corrInOut +
|
147 |
|
|
pOut/qpOut*pOut/qpOut*sig2Out;
|
148 |
|
|
|
149 |
|
|
return Measurement1D(pOut-pIn,sig2DeltaP?sqrt(sig2DeltaP):0.);
|
150 |
|
|
}
|
151 |
|
|
|