1 |
< |
#include <vector> |
2 |
< |
#include <TFile.h> |
3 |
< |
#include <TH1.h> |
4 |
< |
#include <TH2.h> |
5 |
< |
#include <TLatex.h> |
6 |
< |
#include <TCanvas.h> |
7 |
< |
#include <TMath.h> |
8 |
< |
#include <TLegend.h> |
9 |
< |
#include <TObject.h> |
10 |
< |
#include <iostream> |
11 |
< |
#include <sstream> |
12 |
< |
#include <fstream> |
13 |
< |
#include <iomanip> |
14 |
< |
#include <map> |
1 |
> |
#include "ikstest.h" |
2 |
> |
|
3 |
> |
//================================= |
4 |
> |
// Program to run IKS test |
5 |
> |
// * Input directories: |
6 |
> |
// * Data: skimmed_Data_x.xxpb-1 |
7 |
> |
// => default selection : Data_<suffix>.root |
8 |
> |
// => n-1 selection : Data_<suffix>_<invName>.root |
9 |
> |
// * MC : skimmed_MC {QCD,WJets,TTbar...} |
10 |
> |
// => default selection : QCD_<suffix>.root |
11 |
> |
// => n-1 selection : Data_<suffix>_<invName>.root |
12 |
> |
// * Upmost output dir specified by <desDir> |
13 |
> |
// subdirectory created according to <useInv> and <realData> |
14 |
> |
// => <desDir'><xyz><suffix>.pdf (.txt) |
15 |
> |
// * e.g. to do KS test on data with MC QCD shape in signal region: |
16 |
> |
// useInv=false; realData=true |
17 |
> |
//================================= |
18 |
|
|
19 |
|
using namespace std; |
20 |
|
|
21 |
< |
// User defined parameters |
22 |
< |
bool useInv = false; // whether to use n-1 QCD template |
23 |
< |
bool realData = false; |
24 |
< |
const double stepsize = 0.001; |
22 |
< |
|
23 |
< |
//define the constants: 2.78/pb |
24 |
< |
const double weight_[3] = {0.0506107, //QCD |
25 |
< |
0.0088222, //WJets |
26 |
< |
0.000295 //TTbar |
21 |
> |
//define the constants: 2.88/pb |
22 |
> |
const double weight_[3] = {0.0524313, //QCD |
23 |
> |
0.0091395, //WJets |
24 |
> |
0.000306 //TTbar |
25 |
|
}; |
26 |
|
const Double_t procQCD = 1.46; |
27 |
|
const Double_t procWjets = 1.03; |
28 |
|
const Double_t procttjets = 1.0; |
29 |
|
|
30 |
< |
struct testMC { |
31 |
< |
testMC(Double_t p = 0., Double_t sb = 0., Double_t ss = 0.){prob=p; scaleF_backg = sb; scaleF_sample = ss;} |
32 |
< |
Double_t prob; |
33 |
< |
Double_t scaleF_backg; |
34 |
< |
Double_t scaleF_sample; |
35 |
< |
}; |
36 |
< |
|
37 |
< |
//function for doing KS test |
38 |
< |
vector<testMC> doKStest(Double_t NsS, Double_t Ns1, Double_t Ns2, TH1F* mixS, TH1F* s1, TH1F* s2) { |
41 |
< |
vector<testMC> output; |
42 |
< |
//define the scale factors |
43 |
< |
Double_t sf1 = 0.0; // QCD |
44 |
< |
Double_t sf2 = 0.0; // Wjets |
45 |
< |
//KS test |
46 |
< |
do { |
47 |
< |
sf1 = (NsS - Ns2*sf2)/Ns1; |
48 |
< |
if (sf1 < 0) break; |
49 |
< |
//cout << "..........sf1 = " << sf1 << endl; |
50 |
< |
int nbins = mixS->GetNbinsX(); |
51 |
< |
double xmin = mixS->GetXaxis()->GetBinLowEdge(1); |
52 |
< |
double xmax = mixS->GetXaxis()->GetBinUpEdge(nbins); |
53 |
< |
TH1F *test = new TH1F("test", "", nbins, xmin, xmax); |
54 |
< |
test -> Sumw2(); |
55 |
< |
test -> Add(s1,s2,sf1,sf2); |
56 |
< |
//test->Scale(1./(1.*test->Integral())); |
57 |
< |
Double_t probability = mixS -> KolmogorovTest(test,""); |
58 |
< |
testMC temp = testMC(probability,sf1,sf2); |
59 |
< |
output.push_back(temp); |
60 |
< |
// cout << "probability = " << setw(15) << temp.prob |
61 |
< |
// << "; sfQCD = " << setw(10) << temp.scaleF_backg |
62 |
< |
// << "; sfWjets = " << setw(6) << temp.scaleF_sample << endl; |
63 |
< |
delete test; |
64 |
< |
sf2 = sf2 + stepsize; |
65 |
< |
} while(sf1 > 0 && sf2 <= 2.0); |
66 |
< |
return output; |
67 |
< |
} |
68 |
< |
|
69 |
< |
//get the maximum KS test result |
70 |
< |
testMC getMax(vector<testMC> vec) { |
71 |
< |
testMC maxKSRes; |
72 |
< |
Double_t maximum = 0.0; |
73 |
< |
for (size_t i = 0; i < vec.size(); i++) { |
74 |
< |
if (maximum < vec.at(i).prob) { |
75 |
< |
maximum = vec.at(i).prob; |
76 |
< |
maxKSRes = vec.at(i); |
77 |
< |
} |
78 |
< |
} |
79 |
< |
cout << "for maximum: " << setw(12) << maxKSRes.prob |
80 |
< |
<< "; sb = " << setw(10) << maxKSRes.scaleF_backg |
81 |
< |
<< "; ss = " << setw(5) << maxKSRes.scaleF_sample << endl; |
82 |
< |
return maxKSRes; |
83 |
< |
} |
84 |
< |
|
30 |
> |
// Output directory |
31 |
> |
TString desDir = "Results_2.88pb-1/"; |
32 |
> |
// User defined parameters |
33 |
> |
bool useInv = false; // whether to use n-1 QCD template |
34 |
> |
bool realData = false; |
35 |
> |
// Ntuples to use |
36 |
> |
TString suffix = "Sel0"; // Suffix of selection |
37 |
> |
TString invNames[2] = {"RelIsogt0p1","D0gt0p02"}; |
38 |
> |
map<TString,TCanvas*> cvs; // map of usual histogram |
39 |
|
|
40 |
|
//================================= |
41 |
|
// Main program |
42 |
|
//================================= |
43 |
|
void ikstest() { |
44 |
< |
//Style(); |
44 |
> |
gROOT->SetStyle("CMS"); |
45 |
|
TLatex *latex = new TLatex(); |
46 |
|
latex->SetNDC(); |
47 |
< |
|
48 |
< |
ofstream outprint( "ikstest_results_20100901.txt" ); |
49 |
< |
//open the files with histograms |
50 |
< |
map<string,TFile*> mfile; |
51 |
< |
mfile["Data"] = TFile::Open("skimmed_Data_20100901/Data_RefSel_v3.root"); |
52 |
< |
// n-1 cuts |
53 |
< |
if (useInv) { |
54 |
< |
if (realData) |
55 |
< |
// mfile["InvSel"] = TFile::Open("skimmed_Data_20100825/Data_D0ge0p03.root"); |
56 |
< |
mfile["InvSel"] = TFile::Open("skimmed_Data_20100901/Data_RelIsoge0p1_v3.root"); |
103 |
< |
else |
104 |
< |
// mfile["InvSel"] = TFile::Open("skimmed_MC/QCD_D0ge0p03.root"); |
105 |
< |
mfile["InvSel"] = TFile::Open("skimmed_MC/QCD_RelIsoge0p1_v3.root"); |
106 |
< |
} |
107 |
< |
|
108 |
< |
// RefSel MC |
109 |
< |
mfile["0"] = TFile::Open("skimmed_MC/QCD_RefSel_v3.root"); |
110 |
< |
mfile["1"] = TFile::Open("skimmed_MC/WJets_RefSel_v3.root"); |
111 |
< |
mfile["2"] = TFile::Open("skimmed_MC/TTbar_RefSel_v3.root"); |
112 |
< |
|
113 |
< |
//define histograms and related parameters |
114 |
< |
string histoName[3] = {"h_mu_pt_calo","h_met_calo","h_mt_calo"}; |
115 |
< |
string histoLabelX[3] = {"p_{T}^{good Muons}", "E_{T}^{#nu}", "m_{T}^{W}"}; |
116 |
< |
Int_t xbins[3] = {20,20,40}; |
117 |
< |
Double_t xlow[3] = {0.,0.,0.}; |
118 |
< |
Double_t xhigh[3] = {100.,100.,200.}; |
119 |
< |
string sample[3] = {"QCD","Wjets","ttjets"}; |
120 |
< |
|
121 |
< |
TH1F* h_[9]; |
122 |
< |
TH1F* mixh_[3]; |
123 |
< |
TH1F* hQCD_NEW[3]; |
124 |
< |
TH1F* hKSres_[3]; |
125 |
< |
TH1F* hKSvalues_[3]; |
126 |
< |
|
127 |
< |
//load the histograms from the root files |
128 |
< |
for (int i = 0; i < 3; i++) {// 3 variables |
129 |
< |
//cout << "file[" << i << "] : " << endl; |
130 |
< |
string nameNewHisto = "mix_"+histoName[i]; |
131 |
< |
string nameNewHistoSFKS = "finalSF_"+histoName[i]; |
132 |
< |
string nameNewHistoKSvalues = "KSvalues_"+histoLabelX[i]; |
133 |
< |
|
134 |
< |
mixh_[i] = new TH1F(nameNewHisto.c_str(),"",xbins[i],xlow[i],xhigh[i]); |
135 |
< |
hKSres_[i] = new TH1F(nameNewHistoSFKS.c_str(),"",xbins[i],xlow[i],xhigh[i]); |
136 |
< |
hKSvalues_[i] = new TH1F(nameNewHistoKSvalues.c_str(),"",2./stepsize, stepsize, 2.+stepsize); |
137 |
< |
|
138 |
< |
if (!useInv) {//use QCD MC sample |
139 |
< |
hQCD_NEW[i] = (TH1F*) mfile["0"]->Get(TString(histoName[i]))->Clone(); |
140 |
< |
hQCD_NEW[i] -> Scale(weight_[0]); |
141 |
< |
hQCD_NEW[i] -> SetName((histoName[i]).c_str()); |
47 |
> |
TString invName; |
48 |
> |
int size_ninv = (useInv ? 2 : 1); |
49 |
> |
for (int ninv = 0;ninv < size_ninv; ++ninv) { |
50 |
> |
invName = invNames[ninv]; |
51 |
> |
if (!useInv) { |
52 |
> |
if (!realData) desDir += "MC/"; |
53 |
> |
else desDir += "Data_MC/"; |
54 |
> |
} else { |
55 |
> |
if (!realData) desDir += "MC_"+invName+"/"; |
56 |
> |
else desDir += "Data_"+invName+"/"; |
57 |
|
} |
58 |
< |
else { |
59 |
< |
hQCD_NEW[i] = (TH1F*) mfile["InvSel"]->Get(TString(histoName[i])); |
60 |
< |
if (!realData) hQCD_NEW[i] -> Scale(weight_[0]); |
61 |
< |
hQCD_NEW[i] -> SetName((histoName[i]).c_str()); |
58 |
> |
struct stat stDir; |
59 |
> |
if (!stat(desDir,&stDir)){ |
60 |
> |
cout << "Output folder exists! Continues? (enter to continue; 'q' for quit)" << endl; |
61 |
> |
char incmd; |
62 |
> |
cin.get(incmd); |
63 |
> |
if (incmd == 'q') return; |
64 |
> |
} else { |
65 |
> |
cout << "Creating folder : " << desDir << endl; |
66 |
> |
if (mkdir(desDir,0755) == -1){ |
67 |
> |
std::cerr << "Error creating folder" << endl; |
68 |
> |
return; |
69 |
> |
} |
70 |
|
} |
71 |
|
|
72 |
< |
mixh_[i] -> Sumw2(); |
73 |
< |
hKSres_[i] -> Sumw2(); |
74 |
< |
hKSvalues_[i] -> Sumw2(); |
75 |
< |
} |
72 |
> |
ofstream outprint(TString(desDir+"Results_"+suffix+".txt")); |
73 |
> |
//open the files with histograms |
74 |
> |
map<string,TFile*> mfile; |
75 |
> |
mfile["Data"] = TFile::Open(TString("skimmed_Data_2.88pb-1/Data_"+suffix+".root")); |
76 |
> |
// n-1 cuts |
77 |
> |
if (useInv) { |
78 |
> |
if (realData) |
79 |
> |
mfile["InvSel"] = TFile::Open(TString("skimmed_Data_2.88pb-1/Data_"+suffix+"_"+invName+".root")); |
80 |
> |
else |
81 |
> |
mfile["InvSel"] = TFile::Open(TString("skimmed_MC/v5/QCD_"+suffix+"_"+invName+".root")); |
82 |
> |
} |
83 |
> |
// RefSel MC |
84 |
> |
mfile["0"] = TFile::Open(TString("skimmed_MC/v5/QCD_"+suffix+".root")); |
85 |
> |
mfile["1"] = TFile::Open(TString("skimmed_MC/v5/WJets_"+suffix+".root")); |
86 |
> |
mfile["2"] = TFile::Open(TString("skimmed_MC/v5/TTbar_"+suffix+".root")); |
87 |
> |
|
88 |
> |
//define histograms and related parameters |
89 |
> |
string histoName[3] = {"h_mu_pt_calo","h_met_calo","h_mt_calo"}; |
90 |
> |
string histoLabelX[3] = {"p_{T}^{#mu} [GeV/c]", "#slash{E}_{T} [GeV/c]", "M_{T}^{W} [GeV/c^{2}]"}; |
91 |
> |
Int_t xbins[3] = {20,20,40}; |
92 |
> |
Double_t xlow[3] = {0.,0.,0.}; |
93 |
> |
Double_t xhigh[3] = {100.,100.,200.}; |
94 |
> |
string sample[3] = {"QCD","Wjets","ttjets"}; |
95 |
> |
|
96 |
> |
TH1F* h_[9]; |
97 |
> |
TH1F* mixh_[3]; |
98 |
> |
TH1F* hQCD_NEW[3]; |
99 |
> |
TH1F* hKSres_[3]; |
100 |
> |
TH1F* hKSvalues_[3]; |
101 |
> |
|
102 |
> |
//load the histograms from the root files |
103 |
> |
for (int i = 0; i < 3; i++) {// 3 variables |
104 |
> |
//cout << "file[" << i << "] : " << endl; |
105 |
> |
string nameNewHisto = "mix_"+histoName[i]; |
106 |
> |
string nameNewHistoSFKS = "finalSF_"+histoName[i]; |
107 |
> |
string nameNewHistoKSvalues = "KSvalues_"+histoLabelX[i]; |
108 |
> |
|
109 |
> |
mixh_[i] = new TH1F(nameNewHisto.c_str(),"",xbins[i],xlow[i],xhigh[i]); |
110 |
> |
hKSres_[i] = new TH1F(nameNewHistoSFKS.c_str(),"",xbins[i],xlow[i],xhigh[i]); |
111 |
> |
hKSvalues_[i] = new TH1F(nameNewHistoKSvalues.c_str(),"",2./stepsize, stepsize, 2.+stepsize); |
112 |
> |
|
113 |
> |
if (!useInv) {//use QCD MC sample |
114 |
> |
hQCD_NEW[i] = (TH1F*) mfile["0"]->Get(TString(histoName[i]))->Clone(); |
115 |
> |
hQCD_NEW[i] -> Scale(weight_[0]); |
116 |
> |
hQCD_NEW[i] -> SetName((histoName[i]).c_str()); |
117 |
> |
} |
118 |
> |
else { |
119 |
> |
hQCD_NEW[i] = (TH1F*) mfile["InvSel"]->Get(TString(histoName[i])); |
120 |
> |
if (!realData) hQCD_NEW[i] -> Scale(weight_[0]); |
121 |
> |
hQCD_NEW[i] -> SetName((histoName[i]).c_str()); |
122 |
> |
} |
123 |
> |
|
124 |
> |
mixh_[i] -> Sumw2(); |
125 |
> |
hKSres_[i] -> Sumw2(); |
126 |
> |
hKSvalues_[i] -> Sumw2(); |
127 |
> |
} |
128 |
|
|
129 |
< |
for (int n = 0; n < 3; ++n) {// 3 MC samples |
130 |
< |
for (int ihisto = 0; ihisto < 3; ihisto++) {// 3 variables |
131 |
< |
//cout << "Variable[" << ihisto << "]" << endl; |
132 |
< |
string histo_name = histoName[ihisto]+sample[n]; |
133 |
< |
ostringstream ss; |
134 |
< |
ss << n; |
135 |
< |
h_[n*3+ihisto] = (TH1F*) mfile[ss.str()]->Get(TString(histoName[ihisto]))->Clone(); |
136 |
< |
h_[n*3+ihisto] -> Scale(weight_[n]); |
137 |
< |
h_[n*3+ihisto] -> SetName(histo_name.c_str()); |
129 |
> |
for (int n = 0; n < 3; ++n) {// 3 MC samples |
130 |
> |
for (int ihisto = 0; ihisto < 3; ihisto++) {// 3 variables |
131 |
> |
//cout << "Variable[" << ihisto << "]" << endl; |
132 |
> |
string histo_name = histoName[ihisto]+sample[n]; |
133 |
> |
ostringstream ss; |
134 |
> |
ss << n; |
135 |
> |
h_[n*3+ihisto] = (TH1F*) mfile[ss.str()]->Get(TString(histoName[ihisto]))->Clone(); |
136 |
> |
h_[n*3+ihisto] -> Scale(weight_[n]); |
137 |
> |
h_[n*3+ihisto] -> SetName(histo_name.c_str()); |
138 |
> |
} |
139 |
|
} |
164 |
– |
} |
140 |
|
|
141 |
< |
//create the mixed samples = "data" |
142 |
< |
TCanvas *canvas0 = new TCanvas("Data","Data distributions"); |
143 |
< |
canvas0->Divide(3,1); |
144 |
< |
for (int i = 0; i < 3; i++) { |
145 |
< |
canvas0->cd(i+1); |
171 |
< |
if (!realData) { |
172 |
< |
mixh_[i] -> Add(h_[i],h_[i+3], procQCD,procWjets); |
173 |
< |
//mixh_[i] -> Add(mixh_[i],h_[i+6], 1,procttjets); |
174 |
< |
//cout << "histo_name: " << mixh_[0]->GetNbinsX() << endl; |
141 |
> |
//create the mixed samples = "data" |
142 |
> |
TString cvsName0 = "Data"; |
143 |
> |
if (useInv) { |
144 |
> |
cvsName0 += "_"; |
145 |
> |
cvsName0 += invName; |
146 |
|
} |
147 |
< |
else { |
148 |
< |
TH1F *htmp = (TH1F*) mfile["Data"]->Get(TString(histoName[i])); |
149 |
< |
mixh_[i] -> Add(htmp,1.); |
147 |
> |
cvs[cvsName0] = new TCanvas(cvsName0,"Data distributions",600,700); |
148 |
> |
cvs[cvsName0]->Divide(3,1); |
149 |
> |
for (int i = 0; i < 3; i++) { |
150 |
> |
cvs[cvsName0]->cd(i+1); |
151 |
> |
if (!realData) { |
152 |
> |
mixh_[i] -> Add(h_[i],h_[i+3], procQCD,procWjets); |
153 |
> |
//mixh_[i] -> Add(mixh_[i],h_[i+6], 1,procttjets); |
154 |
> |
//cout << "histo_name: " << mixh_[0]->GetNbinsX() << endl; |
155 |
> |
} |
156 |
> |
else { |
157 |
> |
TH1F *htmp = (TH1F*) mfile["Data"]->Get(TString(histoName[i])); |
158 |
> |
mixh_[i] -> Add(htmp,1.); |
159 |
> |
} |
160 |
> |
mixh_[i]->GetXaxis()->SetTitle(histoLabelX[i].c_str()); |
161 |
> |
mixh_[i]->GetYaxis()->SetTitle("Entries"); |
162 |
> |
mixh_[i]->DrawClone(); |
163 |
|
} |
164 |
< |
mixh_[i]->DrawClone(); |
181 |
< |
} |
182 |
< |
canvas0->SaveAs("Data_distributions.pdf"); |
164 |
> |
cvs[cvsName0]->SaveAs(TString(desDir+"Data_distributions.pdf")); |
165 |
|
|
166 |
< |
//define the weight corrections for each sample |
167 |
< |
double NevData = mixh_[2]->Integral(); |
168 |
< |
double corr_NevQCD = h_[2]->Integral(); |
169 |
< |
double corr_NevQCD_NEW = hQCD_NEW[2]->Integral(); |
170 |
< |
double corr_NevWjets = h_[5]->Integral(); |
171 |
< |
double corr_Nevttjets = h_[8]->Integral(); |
172 |
< |
double corr_Nevmix = procQCD*corr_NevQCD+procWjets*corr_NevWjets; |
173 |
< |
//double corr_Nevmix = procQCD*corr_NevQCD+procWjets*corr_NevWjets+procttjets*corr_Nevttjets; |
174 |
< |
if (!realData) |
175 |
< |
outprint << "Events mix sample = " << corr_Nevmix << endl; |
176 |
< |
else |
177 |
< |
outprint << "Events in Data = " << NevData << endl; |
178 |
< |
outprint << "Events QCD sample = " << corr_NevQCD << endl; |
179 |
< |
outprint << "Events Wjets sample = " << corr_NevWjets << endl; |
180 |
< |
outprint << "Events InvSel sample = " << corr_NevQCD_NEW << endl; |
181 |
< |
|
182 |
< |
//define the containers for chosen numbers (coressponding to the max KStest result) |
183 |
< |
testMC maxProb[3]; |
184 |
< |
|
185 |
< |
//define the scale factors calculated using information obtained from all parameters |
186 |
< |
Double_t SFbackg = 0.0; |
187 |
< |
Double_t sumSFbackg = 0.0; |
188 |
< |
Double_t SFsample = 0.0; |
189 |
< |
Double_t sumSFsample = 0.0; |
190 |
< |
Double_t allKS = 0.0; |
191 |
< |
|
192 |
< |
//do the KS test by varying the scale factors |
193 |
< |
for (int i = 0; i < 3; i++) { // 3 variables |
194 |
< |
TH1F *data = (TH1F*)mixh_[i]->Clone(); |
195 |
< |
data -> SetName("dataClone"); |
196 |
< |
//data -> Scale(1./data->Integral()); |
197 |
< |
vector<testMC> resultsKS = doKStest((realData ? NevData : corr_Nevmix), |
198 |
< |
(useInv ? corr_NevQCD_NEW : corr_NevQCD), |
199 |
< |
corr_NevWjets, |
200 |
< |
data, hQCD_NEW[i], h_[i+3]); |
201 |
< |
testMC tksmax = getMax(resultsKS); |
202 |
< |
maxProb[i] = tksmax; |
203 |
< |
outprint << "\nFor the plot " << histoLabelX[i] << " the results are:"<< endl; |
204 |
< |
outprint << "\tmax Probability = " << maxProb[i].prob << endl; |
205 |
< |
outprint << "\tproc_background = " << maxProb[i].scaleF_backg << endl; |
206 |
< |
outprint << "\tproc_sample = " << maxProb[i].scaleF_sample << endl; |
207 |
< |
|
208 |
< |
outprint << "\n\tpercent_B of Data = " |
209 |
< |
<< maxProb[i].scaleF_backg*corr_NevQCD_NEW*100/(realData ? NevData : corr_Nevmix) << endl; |
210 |
< |
outprint << "\tpercent_S of Data = " |
211 |
< |
<< maxProb[i].scaleF_sample*corr_NevWjets*100/(realData ? NevData : corr_Nevmix) << endl; |
212 |
< |
outprint << "---------------------------" << endl; |
213 |
< |
|
214 |
< |
//create the mixed samples with KS test results |
215 |
< |
sumSFbackg += maxProb[i].prob*maxProb[i].scaleF_backg; |
216 |
< |
sumSFsample += maxProb[i].prob*maxProb[i].scaleF_sample; |
217 |
< |
allKS += maxProb[i].prob; |
218 |
< |
|
219 |
< |
//fill a histogram with the results from the KS test for each variable |
220 |
< |
for (int jiter = 0; jiter < resultsKS.size(); jiter++) { |
221 |
< |
if (resultsKS.at(jiter).prob == 1.) |
222 |
< |
cout << "variable [" << i << "]: prob[" << jiter << "]= " << resultsKS.at(jiter).prob << endl; |
223 |
< |
hKSvalues_[i]->SetBinContent(jiter,resultsKS.at(jiter).prob); |
166 |
> |
//define the weight corrections for each sample |
167 |
> |
double NevData = mixh_[2]->Integral(); |
168 |
> |
double corr_NevQCD = h_[2]->Integral(); |
169 |
> |
double corr_NevQCD_NEW = hQCD_NEW[2]->Integral(); |
170 |
> |
double corr_NevWjets = h_[5]->Integral(); |
171 |
> |
double corr_Nevttjets = h_[8]->Integral(); |
172 |
> |
double corr_Nevmix = procQCD*corr_NevQCD+procWjets*corr_NevWjets; |
173 |
> |
//double corr_Nevmix = procQCD*corr_NevQCD+procWjets*corr_NevWjets+procttjets*corr_Nevttjets; |
174 |
> |
if (!realData) |
175 |
> |
outprint << "Events mix sample = " << corr_Nevmix << endl; |
176 |
> |
else |
177 |
> |
outprint << "Events in Data = " << NevData << endl; |
178 |
> |
outprint << "Events QCD sample = " << corr_NevQCD << endl; |
179 |
> |
outprint << "Events Wjets sample = " << corr_NevWjets << endl; |
180 |
> |
outprint << "Events InvSel sample = " << corr_NevQCD_NEW << endl; |
181 |
> |
|
182 |
> |
//define the containers for chosen numbers (coressponding to the max KStest result) |
183 |
> |
testMC maxProb[3]; |
184 |
> |
|
185 |
> |
//define the scale factors calculated using information obtained from all parameters |
186 |
> |
Double_t SFbackg = 0.0; |
187 |
> |
Double_t sumSFbackg = 0.0; |
188 |
> |
Double_t SFsample = 0.0; |
189 |
> |
Double_t sumSFsample = 0.0; |
190 |
> |
Double_t allKS = 0.0; |
191 |
> |
|
192 |
> |
//do the KS test by varying the scale factors |
193 |
> |
for (int i = 0; i < 3; i++) { // 3 variables |
194 |
> |
TH1F *data = (TH1F*)mixh_[i]->Clone(); |
195 |
> |
data -> SetName("dataClone"); |
196 |
> |
//data -> Scale(1./data->Integral()); |
197 |
> |
vector<testMC> resultsKS = doKStest((realData ? NevData : corr_Nevmix), |
198 |
> |
(useInv ? corr_NevQCD_NEW : corr_NevQCD), |
199 |
> |
corr_NevWjets, |
200 |
> |
data, hQCD_NEW[i], h_[i+3]); |
201 |
> |
testMC tksmax = getMax(resultsKS); |
202 |
> |
maxProb[i] = tksmax; |
203 |
> |
outprint << "\nFor the plot " << histoLabelX[i] << " the results are:"<< endl; |
204 |
> |
outprint << "\tmax Probability = " << maxProb[i].prob << endl; |
205 |
> |
outprint << "\tproc_background = " << maxProb[i].scaleF_backg << endl; |
206 |
> |
outprint << "\tproc_sample = " << maxProb[i].scaleF_sample << endl; |
207 |
> |
|
208 |
> |
outprint << "\n\tpercent_B of Data = " |
209 |
> |
<< maxProb[i].scaleF_backg*corr_NevQCD_NEW*100/(realData ? NevData : corr_Nevmix) << endl; |
210 |
> |
outprint << "\tpercent_S of Data = " |
211 |
> |
<< maxProb[i].scaleF_sample*corr_NevWjets*100/(realData ? NevData : corr_Nevmix) << endl; |
212 |
> |
outprint << "---------------------------" << endl; |
213 |
> |
|
214 |
> |
//create the mixed samples with KS test results |
215 |
> |
sumSFbackg += maxProb[i].prob*maxProb[i].scaleF_backg; |
216 |
> |
sumSFsample += maxProb[i].prob*maxProb[i].scaleF_sample; |
217 |
> |
allKS += maxProb[i].prob; |
218 |
> |
|
219 |
> |
//fill a histogram with the results from the KS test for each variable |
220 |
> |
for (int jiter = 0; jiter < resultsKS.size(); jiter++) { |
221 |
> |
if (resultsKS.at(jiter).prob == 1.) |
222 |
> |
cout << "variable [" << i << "]: prob[" << jiter << "]= " << resultsKS.at(jiter).prob << endl; |
223 |
> |
hKSvalues_[i]->SetBinContent(jiter,resultsKS.at(jiter).prob); |
224 |
> |
} |
225 |
> |
delete data; |
226 |
|
} |
243 |
– |
delete data; |
244 |
– |
} |
245 |
– |
|
246 |
– |
//calculate the final scale factors |
247 |
– |
SFbackg = sumSFbackg/allKS; |
248 |
– |
SFsample = sumSFsample/allKS; |
249 |
– |
outprint << "allKS = " << allKS << "\tbackground = " << SFbackg << "\tsample = " << SFsample << endl; |
250 |
– |
outprint << "==> Scale Factor for QCD MC = " << SFbackg*corr_NevQCD_NEW/corr_NevQCD << endl; |
251 |
– |
outprint << "\tcombined percent_B of Data = " |
252 |
– |
<< SFbackg*corr_NevQCD_NEW*100/(realData ? NevData : corr_Nevmix) << endl; |
253 |
– |
outprint << "\tcombined percent_S of Data = " |
254 |
– |
<< SFsample*corr_NevWjets*100/(realData ? NevData : corr_Nevmix) << endl; |
255 |
– |
outprint << "\n" << endl; |
256 |
– |
outprint << "=================================" << endl; |
257 |
– |
outprint << "\n" << endl; |
258 |
– |
|
259 |
– |
|
260 |
– |
//================================= |
261 |
– |
// Plots |
262 |
– |
//================================= |
263 |
– |
for (int i = 0; i < 3; i++) {// 3 variables |
264 |
– |
hKSres_[i] -> Add(hQCD_NEW[i],h_[i+3],SFbackg,SFsample); |
265 |
– |
outprint << "hKSres->Integral() = " << hKSres_[i]->Integral() << endl; |
266 |
– |
outprint << "Data->Integral() = " << mixh_[i]->Integral() << endl; |
267 |
– |
|
268 |
– |
mixh_[i]->Rebin(2); |
269 |
– |
hQCD_NEW[i]->Rebin(2); |
270 |
– |
h_[i]->Rebin(2); |
271 |
– |
h_[i+3]->Rebin(2); |
272 |
– |
hKSres_[i]->Rebin(2); |
273 |
– |
//hKSvalues_[i]->Rebin(2); |
274 |
– |
|
275 |
– |
mixh_[i] ->SetLineColor(1); |
276 |
– |
hQCD_NEW[i] ->SetLineColor(3); |
277 |
– |
h_[i] ->SetLineColor(6); |
278 |
– |
h_[i+3] ->SetLineColor(4); |
279 |
– |
hKSres_[i] ->SetLineColor(2); |
280 |
– |
hKSvalues_[i]->SetLineColor(i+1); |
281 |
– |
|
282 |
– |
mixh_[i] ->SetMarkerColor(1); |
283 |
– |
hQCD_NEW[i] ->SetMarkerColor(3); |
284 |
– |
h_[i] ->SetMarkerColor(6); |
285 |
– |
h_[i+3] ->SetMarkerColor(4); |
286 |
– |
hKSres_[i] ->SetMarkerColor(2); |
287 |
– |
hKSvalues_[i]->SetMarkerColor(i+1); |
288 |
– |
|
289 |
– |
mixh_[i] ->SetMarkerStyle(24); |
290 |
– |
hQCD_NEW[i] ->SetMarkerStyle(20); |
291 |
– |
h_[i] ->SetMarkerStyle(20); |
292 |
– |
h_[i+3] ->SetMarkerStyle(20); |
293 |
– |
hKSres_[i] ->SetMarkerStyle(20); |
294 |
– |
hKSvalues_[i]->SetMarkerStyle(20); |
295 |
– |
|
296 |
– |
mixh_[i] ->SetMarkerSize(1.4); |
297 |
– |
hQCD_NEW[i] ->SetMarkerSize(1.1); |
298 |
– |
h_[i] ->SetMarkerSize(1.1); |
299 |
– |
h_[i+3] ->SetMarkerSize(1.1); |
300 |
– |
hKSres_[i] ->SetMarkerSize(0.9); |
301 |
– |
hKSvalues_[i]->SetMarkerSize(1.1); |
302 |
– |
|
303 |
– |
mixh_[i] ->SetStats(0); |
304 |
– |
hQCD_NEW[i] ->SetStats(0); |
305 |
– |
h_[i] ->SetStats(0); |
306 |
– |
h_[i+3] ->SetStats(0); |
307 |
– |
hKSres_[i] ->SetStats(0); |
308 |
– |
hKSvalues_[i]->SetStats(0); |
309 |
– |
|
310 |
– |
mixh_[i]->GetXaxis()->SetTitle(histoLabelX[i].c_str()); |
311 |
– |
mixh_[i]->GetYaxis()->SetTitle("Entries"); |
312 |
– |
hKSres_[i]->GetXaxis()->SetTitle(histoLabelX[i].c_str()); |
313 |
– |
hKSres_[i]->GetYaxis()->SetTitle("Entries"); |
314 |
– |
hKSvalues_[i]->GetXaxis()->SetTitle("iteration #"); |
315 |
– |
hKSvalues_[i]->GetYaxis()->SetTitle("KS test values"); |
316 |
– |
|
317 |
– |
string nameCanvas1 = histoName[i]+"_QCD.pdf"; |
318 |
– |
TCanvas *canvas1 = new TCanvas(nameCanvas1.c_str(), ""); |
319 |
– |
hQCD_NEW[i] -> Scale(1./hQCD_NEW[i]->Integral()); |
320 |
– |
h_[i] -> Scale(1./h_[i]->Integral()); |
321 |
– |
h_[i+3] -> Scale(1./h_[i+3]->Integral()); |
322 |
– |
outprint << "For " << histoName[i] << " , the KStest result btw MC_QCD/InvSel is = " |
323 |
– |
<< h_[i] -> KolmogorovTest(hQCD_NEW[i],"") << endl; |
324 |
– |
hQCD_NEW[i]->Draw("P"); |
325 |
– |
h_[i]->Draw("sameP"); |
326 |
– |
h_[i+3]->Draw("sameP"); |
327 |
– |
TLegend *legend1 = new TLegend(0.7, 0.70, 0.9, 0.85); |
328 |
– |
legend1->AddEntry(h_[i], "default"); |
329 |
– |
legend1->AddEntry(h_[i+3], "W+jets"); |
330 |
– |
legend1->AddEntry(hQCD_NEW[i], "new"); |
331 |
– |
legend1->Draw(); |
332 |
– |
legend1->SetFillColor(kWhite); |
333 |
– |
latex->DrawLatex(0.22,0.91,histoName[i].c_str()); |
334 |
– |
canvas1->SetLogy(); |
335 |
– |
canvas1->SaveAs(nameCanvas1.c_str()); |
336 |
– |
|
337 |
– |
string nameCanvas2 = histoName[i]+"_dataKS.pdf"; |
338 |
– |
TCanvas *canvas2 = new TCanvas(nameCanvas2.c_str(), ""); |
339 |
– |
hKSres_[i]->Draw("P"); |
340 |
– |
mixh_[i]->Draw("sameP"); |
341 |
– |
TLegend *legend2 = new TLegend(0.7, 0.70, 0.9, 0.85); |
342 |
– |
legend2->AddEntry(mixh_[i], "Data"); |
343 |
– |
legend2->AddEntry(hKSres_[i], "KS result"); |
344 |
– |
legend2->Draw(); |
345 |
– |
legend2->SetFillColor(kWhite); |
346 |
– |
latex->DrawLatex(0.22,0.91,histoName[i].c_str()); |
347 |
– |
canvas2->SetLogy(); |
348 |
– |
canvas2->SaveAs(nameCanvas2.c_str()); |
227 |
|
|
228 |
< |
} |
228 |
> |
//calculate the final scale factors |
229 |
> |
SFbackg = sumSFbackg/allKS; |
230 |
> |
SFsample = sumSFsample/allKS; |
231 |
> |
outprint << "allKS = " << allKS << "\tbackground = " << SFbackg << "\tsample = " << SFsample << endl; |
232 |
> |
outprint << "==> Scale Factor for QCD MC = " << SFbackg*corr_NevQCD_NEW/corr_NevQCD << endl; |
233 |
> |
outprint << "\tcombined percent_B of Data = " |
234 |
> |
<< SFbackg*corr_NevQCD_NEW*100/(realData ? NevData : corr_Nevmix) << endl; |
235 |
> |
outprint << "\tcombined percent_S of Data = " |
236 |
> |
<< SFsample*corr_NevWjets*100/(realData ? NevData : corr_Nevmix) << endl; |
237 |
> |
outprint << "\n" << endl; |
238 |
> |
outprint << "=================================" << endl; |
239 |
> |
outprint << "\n" << endl; |
240 |
> |
|
241 |
> |
|
242 |
> |
//================================= |
243 |
> |
// Plots |
244 |
> |
//================================= |
245 |
> |
for (int i = 0; i < 3; i++) {// 3 variables |
246 |
> |
hKSres_[i] -> Add(hQCD_NEW[i],h_[i+3],SFbackg,SFsample); |
247 |
> |
outprint << "hKSres->Integral() = " << hKSres_[i]->Integral() << endl; |
248 |
> |
outprint << "Data->Integral() = " << mixh_[i]->Integral() << endl; |
249 |
> |
|
250 |
> |
mixh_[i]->Rebin(2); |
251 |
> |
hQCD_NEW[i]->Rebin(2); |
252 |
> |
h_[i]->Rebin(2); |
253 |
> |
h_[i+3]->Rebin(2); |
254 |
> |
hKSres_[i]->Rebin(2); |
255 |
> |
//hKSvalues_[i]->Rebin(2); |
256 |
> |
|
257 |
> |
mixh_[i] ->SetLineColor(1); |
258 |
> |
hQCD_NEW[i] ->SetLineColor(2); |
259 |
> |
h_[i] ->SetLineColor(4); |
260 |
> |
h_[i+3] ->SetLineColor(3); |
261 |
> |
hKSres_[i] ->SetLineColor(2); |
262 |
> |
hKSvalues_[i]->SetLineColor(i+1); |
263 |
> |
|
264 |
> |
mixh_[i] ->SetMarkerColor(1); |
265 |
> |
hQCD_NEW[i] ->SetMarkerColor(2); |
266 |
> |
h_[i] ->SetMarkerColor(4); |
267 |
> |
h_[i+3] ->SetMarkerColor(3); |
268 |
> |
hKSres_[i] ->SetMarkerColor(2); |
269 |
> |
hKSvalues_[i]->SetMarkerColor(i+1); |
270 |
> |
|
271 |
> |
mixh_[i] ->SetMarkerStyle(24); |
272 |
> |
hQCD_NEW[i] ->SetMarkerStyle(20); |
273 |
> |
h_[i] ->SetMarkerStyle(20); |
274 |
> |
h_[i+3] ->SetMarkerStyle(20); |
275 |
> |
hKSres_[i] ->SetMarkerStyle(20); |
276 |
> |
hKSvalues_[i]->SetMarkerStyle(20); |
277 |
> |
|
278 |
> |
mixh_[i] ->SetMarkerSize(1.4); |
279 |
> |
hQCD_NEW[i] ->SetMarkerSize(1.1); |
280 |
> |
h_[i] ->SetMarkerSize(1.1); |
281 |
> |
h_[i+3] ->SetMarkerSize(1.1); |
282 |
> |
hKSres_[i] ->SetMarkerSize(0.9); |
283 |
> |
hKSvalues_[i]->SetMarkerSize(1.1); |
284 |
> |
|
285 |
> |
mixh_[i] ->SetStats(0); |
286 |
> |
hQCD_NEW[i] ->SetStats(0); |
287 |
> |
h_[i] ->SetStats(0); |
288 |
> |
h_[i+3] ->SetStats(0); |
289 |
> |
hKSres_[i] ->SetStats(0); |
290 |
> |
hKSvalues_[i]->SetStats(0); |
291 |
> |
|
292 |
> |
hKSres_[i]->GetXaxis()->SetTitle(histoLabelX[i].c_str()); |
293 |
> |
hKSres_[i]->GetYaxis()->SetTitle("Entries"); |
294 |
> |
hKSvalues_[i]->GetXaxis()->SetTitle("iteration #"); |
295 |
> |
hKSvalues_[i]->GetYaxis()->SetTitle("KS test values"); |
296 |
> |
h_[i]->GetXaxis()->SetTitle(histoLabelX[i].c_str()); |
297 |
> |
h_[i]->GetYaxis()->SetTitle("A.U."); |
298 |
> |
|
299 |
> |
TString nameCanvas1 = desDir+histoName[i]+"_QCD_"+suffix+".pdf"; |
300 |
> |
TString cvsName1 = histoName[i]+"_QCD"; |
301 |
> |
if(useInv) cvsName1 = cvsName1 + "_" + invName; |
302 |
> |
cvs[cvsName1] = new TCanvas(cvsName1,"",600,700); |
303 |
> |
hQCD_NEW[i] -> Scale(1./hQCD_NEW[i]->Integral()); |
304 |
> |
h_[i] -> Scale(1./h_[i]->Integral()); |
305 |
> |
h_[i+3] -> Scale(1./h_[i+3]->Integral()); |
306 |
> |
outprint << "For " << histoName[i] << " , the KStest result btw MC_QCD/InvSel is = " |
307 |
> |
<< h_[i] -> KolmogorovTest(hQCD_NEW[i],"") << endl; |
308 |
> |
h_[i]->Draw("P"); |
309 |
> |
if (useInv) |
310 |
> |
hQCD_NEW[i]->Draw("sameP"); |
311 |
> |
h_[i+3]->Draw("sameP"); |
312 |
> |
TLegend *legend1 = new TLegend(0.7, 0.70, 0.9, 0.85); |
313 |
> |
legend1->AddEntry(h_[i], "QCD"); |
314 |
> |
if (useInv) |
315 |
> |
legend1->AddEntry(hQCD_NEW[i], "QCD - InvSel"); |
316 |
> |
legend1->AddEntry(h_[i+3], "W+jets"); |
317 |
> |
legend1->Draw(); |
318 |
> |
legend1->SetFillColor(kWhite); |
319 |
> |
//latex->DrawLatex(0.22,0.91,histoName[i].c_str()); |
320 |
> |
//cvs[cvsName1]->SetLogy(); |
321 |
> |
cvs[cvsName1]->SaveAs(nameCanvas1); |
322 |
> |
|
323 |
> |
TString nameCanvas2 = desDir+histoName[i]+"_dataKS_"+suffix+".pdf"; |
324 |
> |
TString cvsName2 = histoName[i]+"_dataKS"; |
325 |
> |
if(useInv) cvsName2 = cvsName2 + "_" + invName; |
326 |
> |
cvs[cvsName2] = new TCanvas(cvsName2,"",600,700); |
327 |
> |
hKSres_[i]->Draw("P"); |
328 |
> |
mixh_[i]->Draw("sameP"); |
329 |
> |
TLegend *legend2 = new TLegend(0.7, 0.70, 0.9, 0.85); |
330 |
> |
legend2->AddEntry(mixh_[i], "Data"); |
331 |
> |
legend2->AddEntry(hKSres_[i], "KS result"); |
332 |
> |
legend2->Draw(); |
333 |
> |
legend2->SetFillColor(kWhite); |
334 |
> |
//latex->DrawLatex(0.22,0.91,histoName[i].c_str()); |
335 |
> |
//cvs[cvsName2]->SetLogy(); |
336 |
> |
cvs[cvsName2]->SaveAs(nameCanvas2); |
337 |
|
|
338 |
+ |
} |
339 |
|
|
353 |
– |
TCanvas *canvas3 = new TCanvas("KStestValues", ""); |
354 |
– |
//hKSvalues_[0]->GetXaxis()->SetRangeUser(0.9,1.1); |
355 |
– |
//hKSvalues_[0]->GetYaxis()->SetRangeUser(1e-3,1.1); |
356 |
– |
hKSvalues_[0]->Draw(); |
357 |
– |
hKSvalues_[1]->SetLineColor(2); |
358 |
– |
hKSvalues_[1]->Draw("same"); |
359 |
– |
hKSvalues_[2]->SetLineColor(4); |
360 |
– |
hKSvalues_[2]->Draw("same"); |
361 |
– |
TLegend *legend3 = new TLegend(0.7, 0.70, 0.9, 0.85); |
362 |
– |
legend3->AddEntry(hKSvalues_[0], "muon_pT"); |
363 |
– |
legend3->AddEntry(hKSvalues_[1], "MET"); |
364 |
– |
legend3->AddEntry(hKSvalues_[2], "W_mT"); |
365 |
– |
legend3->Draw(); |
366 |
– |
legend3->SetFillColor(kWhite); |
367 |
– |
latex->DrawLatex(0.22,0.91,"KS test values"); |
368 |
– |
canvas3->SetLogy(); |
369 |
– |
string nameCanvas3 = "KStestValues_newQCD.pdf"; |
370 |
– |
canvas3->SaveAs(nameCanvas3.c_str()); |
340 |
|
|
341 |
+ |
TString cvsName3 = "KStestValues"; |
342 |
+ |
if(useInv) cvsName3 = cvsName3 + "_" + invName; |
343 |
+ |
cvs[cvsName3] = new TCanvas(cvsName3,"",600,700); |
344 |
+ |
//hKSvalues_[0]->GetXaxis()->SetRangeUser(0.9,1.2); |
345 |
+ |
hKSvalues_[0]->GetYaxis()->SetRangeUser(1e-36,1.2); |
346 |
+ |
hKSvalues_[0]->Draw(); |
347 |
+ |
hKSvalues_[1]->Draw("same"); |
348 |
+ |
hKSvalues_[2]->Draw("same"); |
349 |
+ |
TLegend *legend3 = new TLegend(0.7, 0.70, 0.9, 0.85); |
350 |
+ |
legend3->AddEntry(hKSvalues_[0], "muon_pT"); |
351 |
+ |
legend3->AddEntry(hKSvalues_[1], "MET"); |
352 |
+ |
legend3->AddEntry(hKSvalues_[2], "W_mT"); |
353 |
+ |
legend3->Draw(); |
354 |
+ |
legend3->SetFillColor(kWhite); |
355 |
+ |
//latex->DrawLatex(0.22,0.91,"KS test values"); |
356 |
+ |
cvs[cvsName3]->SetLogy(); |
357 |
+ |
TString nameCanvas3 = desDir+"KStestValues_newQCD"+suffix+".pdf"; |
358 |
+ |
cvs[cvsName3]->SaveAs(nameCanvas3); |
359 |
+ |
} |
360 |
|
} |