1 |
kukartse |
1.1 |
#ifndef INC_ANGLESUTIL
|
2 |
|
|
#define INC_ANGLESUTIL
|
3 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
4 |
|
|
// File: AnglesUtil.hpp
|
5 |
|
|
//
|
6 |
|
|
// Purpose: Provide useful functions for calculating angles and eta
|
7 |
|
|
//
|
8 |
|
|
// Created: 4-NOV-1998 Serban Protopopescu
|
9 |
|
|
// History: replaced old KinemUtil
|
10 |
|
|
// Modified: 23-July-2000 Add rapidity calculation
|
11 |
|
|
// 14-Aug-2003 converted all functions to double precision
|
12 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
13 |
|
|
// Dependencies (#includes)
|
14 |
|
|
|
15 |
|
|
#include <cmath>
|
16 |
|
|
#include <cstdlib>
|
17 |
|
|
|
18 |
|
|
|
19 |
|
|
namespace kinem{
|
20 |
|
|
const double PI=2.0*acos(0.);
|
21 |
|
|
const double TWOPI=2.0*PI;
|
22 |
|
|
const float ETA_LIMIT=15.0;
|
23 |
|
|
const float EPSILON=1.E-10;
|
24 |
|
|
|
25 |
|
|
// calculate phi from x, y
|
26 |
|
|
inline double phi(double x, double y);
|
27 |
|
|
// calculate phi for a line defined by xy1 and xy2 (xy2-xy1)
|
28 |
|
|
inline double phi(double xy1[2], double xy2[2]);
|
29 |
|
|
inline double phi(float xy1[2], float xy2[2]);
|
30 |
|
|
|
31 |
|
|
// calculate theta from x, y, z
|
32 |
|
|
inline double theta(double x, double y, double z);
|
33 |
|
|
// calculate theta for a line defined by xyz1 and xyz2 (xyz2-xyz1)
|
34 |
|
|
inline double theta(double xyz1[3], double xyz2[3]);
|
35 |
|
|
inline double theta(float xyz1[3], float xyz2[3]);
|
36 |
|
|
// calculate theta from eta
|
37 |
|
|
inline double theta(double etap);
|
38 |
|
|
|
39 |
|
|
// calculate eta from x, y, z (return also theta)
|
40 |
|
|
inline double eta(double x, double y, double z);
|
41 |
|
|
// calculate eta for a line defined by xyz1 and xyz2 (xyz2-xyz1)
|
42 |
|
|
inline double eta(double xyz1[3], double xyz2[3]);
|
43 |
|
|
inline double eta(float xyz1[3], float xyz2[3]);
|
44 |
|
|
// calculate eta from theta
|
45 |
|
|
inline double eta(double th);
|
46 |
|
|
|
47 |
|
|
// calculate rapidity from E, pz
|
48 |
|
|
inline double y(double E, double pz);
|
49 |
|
|
|
50 |
|
|
// calculate phi1-phi2 keeping value between 0 and pi
|
51 |
|
|
inline double delta_phi(double ph11, double phi2);
|
52 |
|
|
// calculate phi1-phi2 keeping value between -pi and pi
|
53 |
|
|
inline double signed_delta_phi(double ph11, double phi2);
|
54 |
|
|
// calculate deltaR
|
55 |
|
|
inline double delta_R(double eta1, double phi1, double eta2, double phi2);
|
56 |
|
|
|
57 |
|
|
// calculate unit vectors given two points
|
58 |
|
|
inline void uvectors(double u[3], double xyz1[3], double xyz2[3]);
|
59 |
|
|
inline void uvectors(float u[3], float xyz1[3], float xyz2[3]);
|
60 |
|
|
|
61 |
|
|
inline double tanl_from_theta(double theta);
|
62 |
|
|
inline double theta_from_tanl(double tanl);
|
63 |
|
|
}
|
64 |
|
|
|
65 |
|
|
inline
|
66 |
|
|
double kinem::phi(double x, double y)
|
67 |
|
|
{
|
68 |
|
|
double PHI=atan2(y, x);
|
69 |
|
|
return (PHI>=0)? PHI : kinem::TWOPI+PHI;
|
70 |
|
|
}
|
71 |
|
|
|
72 |
|
|
inline
|
73 |
|
|
double kinem::phi(float xy1[2], float xy2[2]){
|
74 |
|
|
double dxy1[2]={xy1[0],xy1[1]};
|
75 |
|
|
double dxy2[2]={xy2[0],xy2[1]};
|
76 |
|
|
return phi(dxy1,dxy2);
|
77 |
|
|
}
|
78 |
|
|
|
79 |
|
|
inline
|
80 |
|
|
double kinem::phi(double xy1[2], double xy2[2])
|
81 |
|
|
{
|
82 |
|
|
double x=xy2[0]-xy1[0];
|
83 |
|
|
double y=xy2[1]-xy1[1];
|
84 |
|
|
return phi(x, y);
|
85 |
|
|
}
|
86 |
|
|
|
87 |
|
|
inline
|
88 |
|
|
double kinem::delta_phi(double phi1, double phi2)
|
89 |
|
|
{
|
90 |
|
|
double PHI=fabs(phi1-phi2);
|
91 |
|
|
return (PHI<=PI)? PHI : kinem::TWOPI-PHI;
|
92 |
|
|
}
|
93 |
|
|
|
94 |
|
|
inline
|
95 |
|
|
double kinem::signed_delta_phi(double phi1, double phi2)
|
96 |
|
|
{
|
97 |
|
|
double phia=phi1;
|
98 |
|
|
if(phi1>PI) phia=phi1-kinem::TWOPI;
|
99 |
|
|
double phib=phi2;
|
100 |
|
|
if(phi2>PI) phib=phi2-kinem::TWOPI;
|
101 |
|
|
double dphi=phia-phib;
|
102 |
|
|
if(dphi>PI) dphi-=kinem::TWOPI;
|
103 |
|
|
if(dphi<-PI) dphi+=kinem::TWOPI;
|
104 |
|
|
return dphi;
|
105 |
|
|
}
|
106 |
|
|
|
107 |
|
|
inline double kinem::delta_R(double eta1, double phi1, double eta2, double phi2)
|
108 |
|
|
{
|
109 |
|
|
double deta = eta1-eta2;
|
110 |
|
|
double dphi = kinem::delta_phi(phi1,phi2);
|
111 |
|
|
return sqrt(deta*deta + dphi*dphi);
|
112 |
|
|
}
|
113 |
|
|
|
114 |
|
|
inline
|
115 |
|
|
double kinem::theta(double xyz1[3], double xyz2[3])
|
116 |
|
|
{
|
117 |
|
|
double x=xyz2[0]-xyz1[0];
|
118 |
|
|
double y=xyz2[1]-xyz1[1];
|
119 |
|
|
double z=xyz2[2]-xyz1[2];
|
120 |
|
|
return theta(x, y, z);
|
121 |
|
|
}
|
122 |
|
|
|
123 |
|
|
inline
|
124 |
|
|
double kinem::theta(float xyz1[3], float xyz2[3]){
|
125 |
|
|
double dxyz1[3]={xyz1[0],xyz1[1],xyz1[2]};
|
126 |
|
|
double dxyz2[3]={xyz2[0],xyz2[1],xyz2[2]};
|
127 |
|
|
return theta(dxyz1,dxyz2);
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
inline
|
131 |
|
|
double kinem::theta(double x, double y, double z)
|
132 |
|
|
{
|
133 |
|
|
return atan2(sqrt(x*x + y*y), z);
|
134 |
|
|
}
|
135 |
|
|
|
136 |
|
|
inline
|
137 |
|
|
double kinem::theta(double etap)
|
138 |
|
|
{
|
139 |
|
|
return 2.0*atan(exp(-etap));
|
140 |
|
|
}
|
141 |
|
|
|
142 |
|
|
inline
|
143 |
|
|
double kinem::eta(double xyz1[3], double xyz2[3])
|
144 |
|
|
{
|
145 |
|
|
double x=xyz2[0]-xyz1[0];
|
146 |
|
|
double y=xyz2[1]-xyz1[1];
|
147 |
|
|
double z=xyz2[2]-xyz1[2];
|
148 |
|
|
return eta(x, y, z);
|
149 |
|
|
}
|
150 |
|
|
|
151 |
|
|
inline
|
152 |
|
|
double kinem::eta(float xyz1[3], float xyz2[3]){
|
153 |
|
|
double dxyz1[3]={xyz1[0],xyz1[1],xyz1[2]};
|
154 |
|
|
double dxyz2[3]={xyz2[0],xyz2[1],xyz2[2]};
|
155 |
|
|
return eta(dxyz1,dxyz2);
|
156 |
|
|
}
|
157 |
|
|
|
158 |
|
|
inline
|
159 |
|
|
double kinem::eta(double x, double y, double z)
|
160 |
|
|
{
|
161 |
|
|
return 0.5*log((sqrt(x*x + y*y + z*z) + z + EPSILON) /
|
162 |
|
|
(sqrt(x*x + y*y + z*z) - z + EPSILON));
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
inline
|
166 |
|
|
double kinem::eta(double th)
|
167 |
|
|
{
|
168 |
|
|
if(th == 0) return ETA_LIMIT;
|
169 |
|
|
if(th >= PI-0.0001) return -ETA_LIMIT;
|
170 |
|
|
return -log(tan(th/2.0));
|
171 |
|
|
}
|
172 |
|
|
|
173 |
|
|
inline
|
174 |
|
|
double kinem::y(double E, double pz)
|
175 |
|
|
{
|
176 |
|
|
return 0.5 * log ((E+pz+EPSILON)/(E-pz+EPSILON));
|
177 |
|
|
}
|
178 |
|
|
|
179 |
|
|
inline
|
180 |
|
|
void kinem::uvectors(double u[3], double xyz1[3], double xyz2[3]){
|
181 |
|
|
double xdiff=xyz2[0]-xyz1[0];
|
182 |
|
|
double ydiff=xyz2[1]-xyz1[1];
|
183 |
|
|
double zdiff=xyz2[2]-xyz1[2];
|
184 |
|
|
double s=sqrt(xdiff*xdiff+ydiff*ydiff+zdiff*zdiff);
|
185 |
|
|
if(s > 0) {
|
186 |
|
|
u[0]=xdiff/s;
|
187 |
|
|
u[1]=ydiff/s;
|
188 |
|
|
u[2]=zdiff/s;
|
189 |
|
|
}else{
|
190 |
|
|
u[0]=0;
|
191 |
|
|
u[1]=0;
|
192 |
|
|
u[2]=0;
|
193 |
|
|
}
|
194 |
|
|
}
|
195 |
|
|
|
196 |
|
|
inline
|
197 |
|
|
void kinem::uvectors(float u[3], float xyz1[3], float xyz2[3]){
|
198 |
|
|
double du[3];
|
199 |
|
|
double dxyz1[3]={xyz1[0],xyz1[1],xyz1[2]};
|
200 |
|
|
double dxyz2[3]={xyz2[0],xyz2[1],xyz2[2]};
|
201 |
|
|
uvectors(du,dxyz1,dxyz2);
|
202 |
|
|
u[0]=du[0];
|
203 |
|
|
u[1]=du[1];
|
204 |
|
|
u[2]=du[2];
|
205 |
|
|
}
|
206 |
|
|
|
207 |
|
|
inline
|
208 |
|
|
double kinem::tanl_from_theta(double theta){
|
209 |
|
|
return tan(PI/2.0 - theta);
|
210 |
|
|
}
|
211 |
|
|
|
212 |
|
|
inline
|
213 |
|
|
double kinem::theta_from_tanl(double tanl){
|
214 |
|
|
return PI/2.0 - atan(tanl);
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
#endif // INC_ANGLESUTIL
|