1 |
#include "tmvaglob.C"
|
2 |
|
3 |
// this macro prints out a neural network generated by MethodMLP graphically
|
4 |
// @author: Matt Jachowski, jachowski@stanford.edu
|
5 |
|
6 |
// input: - Input file (result from TMVA),
|
7 |
// - use of TMVA plotting TStyle
|
8 |
void network( TString fin = "TMVA.root", Bool_t useTMVAStyle = kTRUE )
|
9 |
{
|
10 |
// set style and remove existing canvas'
|
11 |
TMVAGlob::Initialize( useTMVAStyle );
|
12 |
|
13 |
// checks if file with name "fin" is already open, and if not opens one
|
14 |
TFile* file = TMVAGlob::OpenFile( fin );
|
15 |
|
16 |
TKey * mkey = TMVAGlob::FindMethod("MLP"); //(TDirectory*)gDirectory->Get("Method_MLP");
|
17 |
if (mkey==0) {
|
18 |
cout << "Could not locate directory MLP in file " << fin << endl;
|
19 |
return;
|
20 |
}
|
21 |
TDirectory *dir = (TDirectory *)mkey->ReadObj();
|
22 |
dir->cd();
|
23 |
TList titles;
|
24 |
UInt_t ni = TMVAGlob::GetListOfTitles( dir, titles );
|
25 |
if (ni==0) {
|
26 |
cout << "No titles found for Method_MLP" << endl;
|
27 |
return;
|
28 |
}
|
29 |
TIter nextTitle(&titles);
|
30 |
TKey *titkey;
|
31 |
TDirectory *titDir;
|
32 |
while ((titkey = TMVAGlob::NextKey(nextTitle,"TDirectory"))) {
|
33 |
titDir = (TDirectory *)titkey->ReadObj();
|
34 |
cout << "Drawing title: " << titDir->GetName() << endl;
|
35 |
draw_network(titDir);
|
36 |
}
|
37 |
}
|
38 |
|
39 |
void draw_network(TDirectory* d)
|
40 |
{
|
41 |
Bool_t __PRINT_LOGO__ = kTRUE;
|
42 |
|
43 |
// create canvas
|
44 |
TStyle *TMVAStyle = gROOT->GetStyle("Plain"); // our style is based on Plain
|
45 |
TMVAStyle->SetCanvasColor(37 + 100);
|
46 |
|
47 |
TCanvas* c = new TCanvas( "c", "Neural Network Layout", 100, 0, 1000, 650 );
|
48 |
|
49 |
TIter next = d->GetListOfKeys();
|
50 |
TKey *key;
|
51 |
TString hName = "weights_hist";
|
52 |
Int_t numHists = 0;
|
53 |
|
54 |
// loop over all histograms with hName in name
|
55 |
while (key = (TKey*)next()) {
|
56 |
TClass *cl = gROOT->GetClass(key->GetClassName());
|
57 |
if (!cl->InheritsFrom("TH2F")) continue;
|
58 |
TH2F *h = (TH2F*)key->ReadObj();
|
59 |
if (TString(h->GetName()).Contains( hName ))
|
60 |
numHists++;
|
61 |
}
|
62 |
|
63 |
// loop over all histograms with hName in name again
|
64 |
next.Reset();
|
65 |
Double_t maxWeight = 0;
|
66 |
|
67 |
// find max weight
|
68 |
while (key = (TKey*)next()) {
|
69 |
|
70 |
//cout << "Title: " << key->GetTitle() << endl;
|
71 |
TClass *cl = gROOT->GetClass(key->GetClassName());
|
72 |
if (!cl->InheritsFrom("TH2F")) continue;
|
73 |
|
74 |
TH2F* h = (TH2F*)key->ReadObj();
|
75 |
if (TString(h->GetName()).Contains( hName )){
|
76 |
|
77 |
Int_t n1 = h->GetNbinsX();
|
78 |
Int_t n2 = h->GetNbinsY();
|
79 |
for (Int_t i = 0; i < n1; i++) {
|
80 |
for (Int_t j = 0; j < n2; j++) {
|
81 |
Double_t weight = TMath::Abs(h->GetBinContent(i+1, j+1));
|
82 |
if (maxWeight < weight) maxWeight = weight;
|
83 |
}
|
84 |
}
|
85 |
}
|
86 |
}
|
87 |
|
88 |
// draw network
|
89 |
next.Reset();
|
90 |
Int_t count = 0;
|
91 |
while (key = (TKey*)next()) {
|
92 |
|
93 |
TClass *cl = gROOT->GetClass(key->GetClassName());
|
94 |
if (!cl->InheritsFrom("TH2F")) continue;
|
95 |
|
96 |
TH2F* h = (TH2F*)key->ReadObj();
|
97 |
if (TString(h->GetName()).Contains( hName )){
|
98 |
draw_layer(c, h, count++, numHists+1, maxWeight);
|
99 |
}
|
100 |
}
|
101 |
|
102 |
draw_layer_labels(numHists+1);
|
103 |
|
104 |
// ============================================================
|
105 |
if (__PRINT_LOGO__) TMVAGlob::plot_logo();
|
106 |
// ============================================================
|
107 |
|
108 |
c->Update();
|
109 |
|
110 |
TString fname = "plots/network";
|
111 |
TMVAGlob::imgconv( c, fname );
|
112 |
}
|
113 |
|
114 |
void draw_layer_labels(Int_t nLayers)
|
115 |
{
|
116 |
const Double_t LABEL_HEIGHT = 0.03;
|
117 |
const Double_t LABEL_WIDTH = 0.20;
|
118 |
Double_t effWidth = 0.8*(1.0-LABEL_WIDTH)/nLayers;
|
119 |
Double_t height = 0.8*LABEL_HEIGHT;
|
120 |
Double_t margY = LABEL_HEIGHT - height;
|
121 |
|
122 |
for (Int_t i = 0; i < nLayers; i++) {
|
123 |
TString label = Form("Layer %i", i);
|
124 |
Double_t cx = i*(1.0-LABEL_WIDTH)/nLayers+1.0/(2.0*nLayers)+LABEL_WIDTH;
|
125 |
Double_t x1 = cx-0.8*effWidth/2.0;
|
126 |
Double_t x2 = cx+0.8*effWidth/2.0;
|
127 |
Double_t y1 = margY;
|
128 |
Double_t y2 = margY + height;
|
129 |
|
130 |
TPaveLabel *p = new TPaveLabel(x1, y1, x2, y2, label+"", "br");
|
131 |
p->SetFillColor(gStyle->GetTitleFillColor());
|
132 |
p->SetFillStyle(1001);
|
133 |
p->Draw();
|
134 |
}
|
135 |
}
|
136 |
|
137 |
void draw_input_labels(Int_t nInputs, Double_t* cy,
|
138 |
Double_t rad, Double_t layerWidth)
|
139 |
{
|
140 |
const Double_t LABEL_HEIGHT = 0.03;
|
141 |
const Double_t LABEL_WIDTH = 0.20;
|
142 |
Double_t width = LABEL_WIDTH + (layerWidth-4*rad);
|
143 |
Double_t margX = 0.01;
|
144 |
Double_t effHeight = 0.8*LABEL_HEIGHT;
|
145 |
|
146 |
TString *varNames = get_var_names(nInputs);
|
147 |
TString input;
|
148 |
|
149 |
for (Int_t i = 0; i < nInputs; i++) {
|
150 |
if (i != nInputs-1) input = varNames[i];
|
151 |
else input = "bias";
|
152 |
Double_t x1 = margX;
|
153 |
Double_t x2 = margX + width;
|
154 |
Double_t y1 = cy[i] - effHeight;
|
155 |
Double_t y2 = cy[i] + effHeight;
|
156 |
|
157 |
TPaveLabel *p = new TPaveLabel(x1, y1, x2, y2, input+"", "br");
|
158 |
p->SetFillColor(gStyle->GetTitleFillColor());
|
159 |
p->SetFillStyle(1001);
|
160 |
p->Draw();
|
161 |
if (i == nInputs-1) p->SetTextColor(9);
|
162 |
}
|
163 |
|
164 |
delete[] varNames;
|
165 |
}
|
166 |
|
167 |
TString* get_var_names(Int_t nVars)
|
168 |
{
|
169 |
TString fname = "weights/MVAnalysis_MLP.weights.txt";
|
170 |
ifstream fin( fname );
|
171 |
if (!fin.good( )) { // file not found --> Error
|
172 |
cout << "Error opening " << fname << endl;
|
173 |
exit(1);
|
174 |
}
|
175 |
|
176 |
Int_t idummy;
|
177 |
Float_t fdummy;
|
178 |
TString dummy = "";
|
179 |
|
180 |
// file header with name
|
181 |
while (!dummy.Contains("#VAR")) fin >> dummy;
|
182 |
fin >> dummy >> dummy >> dummy; // the rest of header line
|
183 |
|
184 |
// number of variables
|
185 |
fin >> dummy >> idummy;
|
186 |
// at this point, we should have idummy == nVars
|
187 |
|
188 |
// variable mins and maxes
|
189 |
TString* vars = new TString[nVars];
|
190 |
for (Int_t i = 0; i < idummy; i++) fin >> vars[i] >> dummy >> dummy >> dummy;
|
191 |
|
192 |
fin.close();
|
193 |
|
194 |
return vars;
|
195 |
}
|
196 |
|
197 |
void draw_activation(TCanvas* c, Double_t cx, Double_t cy,
|
198 |
Double_t radx, Double_t rady, Int_t whichActivation)
|
199 |
{
|
200 |
TImage *activation = NULL;
|
201 |
|
202 |
switch (whichActivation) {
|
203 |
case 0:
|
204 |
activation = TImage::Open("sigmoid-small.png");
|
205 |
break;
|
206 |
case 1:
|
207 |
activation = TImage::Open("line-small.png");
|
208 |
break;
|
209 |
default:
|
210 |
cout << "Activation index " << whichActivation << " is not known." << endl;
|
211 |
cout << "You messed up or you need to modify network.C to introduce a new "
|
212 |
<< "activation function (and image) corresponding to this index" << endl;
|
213 |
}
|
214 |
|
215 |
if (activation == NULL) {
|
216 |
cout << "Could not create an image... exit" << endl;
|
217 |
return;
|
218 |
}
|
219 |
|
220 |
activation->SetConstRatio(kFALSE);
|
221 |
|
222 |
radx *= 0.7;
|
223 |
rady *= 0.7;
|
224 |
TString name = Form("activation%f%f", cx, cy);
|
225 |
TPad* p = new TPad(name+"", name+"", cx-radx, cy-rady, cx+radx, cy+rady);
|
226 |
|
227 |
p->Draw();
|
228 |
p->cd();
|
229 |
|
230 |
activation->Draw();
|
231 |
c->cd();
|
232 |
}
|
233 |
|
234 |
void draw_layer(TCanvas* c, TH2F* h, Int_t iHist,
|
235 |
Int_t nLayers, Double_t maxWeight)
|
236 |
{
|
237 |
const Double_t MAX_NEURONS_NICE = 12;
|
238 |
const Double_t LABEL_HEIGHT = 0.03;
|
239 |
const Double_t LABEL_WIDTH = 0.20;
|
240 |
Double_t ratio = ((Double_t)(c->GetWindowHeight())) / c->GetWindowWidth();
|
241 |
Double_t rad, cx1, *cy1, cx2, *cy2;
|
242 |
|
243 |
// this is the smallest radius that will still display the activation images
|
244 |
rad = 0.04*650/c->GetWindowHeight();
|
245 |
|
246 |
Int_t nNeurons1 = h->GetNbinsX();
|
247 |
cx1 = iHist*(1.0-LABEL_WIDTH)/nLayers + 1.0/(2.0*nLayers) + LABEL_WIDTH;
|
248 |
cy1 = new Double_t[nNeurons1];
|
249 |
|
250 |
Int_t nNeurons2 = h->GetNbinsY();
|
251 |
cx2 = (iHist+1)*(1.0-LABEL_WIDTH)/nLayers + 1.0/(2.0*nLayers) + LABEL_WIDTH;
|
252 |
cy2 = new Double_t[nNeurons2];
|
253 |
|
254 |
Double_t effRad1 = rad;
|
255 |
if (nNeurons1 > MAX_NEURONS_NICE)
|
256 |
effRad1 = 0.8*(1.0-LABEL_HEIGHT)/(2.0*nNeurons1);
|
257 |
|
258 |
|
259 |
for (Int_t i = 0; i < nNeurons1; i++) {
|
260 |
cy1[nNeurons1-i-1] = i*(1.0-LABEL_HEIGHT)/nNeurons1 +
|
261 |
1.0/(2.0*nNeurons1) + LABEL_HEIGHT;
|
262 |
|
263 |
if (iHist == 0) {
|
264 |
|
265 |
TEllipse *ellipse
|
266 |
= new TEllipse(cx1, cy1[nNeurons1-i-1],
|
267 |
effRad1*ratio, effRad1, 0, 360, 0);
|
268 |
ellipse->SetFillColor(19+150);
|
269 |
ellipse->SetFillStyle(1001);
|
270 |
ellipse->Draw();
|
271 |
|
272 |
if (i == 0) ellipse->SetLineColor(9);
|
273 |
|
274 |
if (nNeurons1 > MAX_NEURONS_NICE) continue;
|
275 |
|
276 |
Int_t whichActivation = 0;
|
277 |
if (iHist==0 || iHist==nLayers-1 || i==0) whichActivation = 1;
|
278 |
draw_activation(c, cx1, cy1[nNeurons1-i-1],
|
279 |
rad*ratio, rad, whichActivation);
|
280 |
}
|
281 |
}
|
282 |
|
283 |
if (iHist == 0) draw_input_labels(nNeurons1, cy1, rad, (1.0-LABEL_WIDTH)/nLayers);
|
284 |
|
285 |
Double_t effRad2 = rad;
|
286 |
if (nNeurons2 > MAX_NEURONS_NICE)
|
287 |
effRad2 = 0.8*(1.0-LABEL_HEIGHT)/(2.0*nNeurons2);
|
288 |
|
289 |
for (Int_t i = 0; i < nNeurons2; i++) {
|
290 |
cy2[nNeurons2-i-1] = i*(1.0-LABEL_HEIGHT)/nNeurons2 + 1.0/(2.0*nNeurons2) + LABEL_HEIGHT;
|
291 |
|
292 |
TEllipse *ellipse =
|
293 |
new TEllipse(cx2, cy2[nNeurons2-i-1], effRad2*ratio, effRad2, 0, 360, 0);
|
294 |
ellipse->SetFillColor(19+150);
|
295 |
ellipse->SetFillStyle(1001);
|
296 |
ellipse->Draw();
|
297 |
|
298 |
if (i == 0 && nNeurons2 > 1) ellipse->SetLineColor(9);
|
299 |
|
300 |
if (nNeurons2 > MAX_NEURONS_NICE) continue;
|
301 |
|
302 |
Int_t whichActivation = 0;
|
303 |
if (iHist+1==0 || iHist+1==nLayers-1 || i==0) whichActivation = 1;
|
304 |
draw_activation(c, cx2, cy2[nNeurons2-i-1], rad*ratio, rad, whichActivation);
|
305 |
}
|
306 |
|
307 |
for (Int_t i = 0; i < nNeurons1; i++) {
|
308 |
for (Int_t j = 0; j < nNeurons2; j++) {
|
309 |
draw_synapse(cx1, cy1[i], cx2, cy2[j], effRad1*ratio, effRad2*ratio,
|
310 |
h->GetBinContent(i+1, j+1)/maxWeight);
|
311 |
}
|
312 |
}
|
313 |
|
314 |
delete[] cy1;
|
315 |
delete[] cy2;
|
316 |
}
|
317 |
|
318 |
void draw_synapse(Double_t cx1, Double_t cy1, Double_t cx2, Double_t cy2,
|
319 |
Double_t rad1, Double_t rad2, Double_t weightNormed)
|
320 |
{
|
321 |
const Double_t TIP_SIZE = 0.01;
|
322 |
const Double_t MAX_WEIGHT = 8;
|
323 |
const Double_t MAX_COLOR = 100; // red
|
324 |
const Double_t MIN_COLOR = 60; // blue
|
325 |
|
326 |
if (weightNormed == 0) return;
|
327 |
|
328 |
// gStyle->SetPalette(100, NULL);
|
329 |
|
330 |
TArrow *arrow = new TArrow(cx1+rad1, cy1, cx2-rad2, cy2, TIP_SIZE, ">");
|
331 |
arrow->SetFillColor(1);
|
332 |
arrow->SetFillStyle(1001);
|
333 |
arrow->SetLineWidth((Int_t)(TMath::Abs(weightNormed)*MAX_WEIGHT+0.5));
|
334 |
arrow->SetLineColor((Int_t)((weightNormed+1.0)/2.0*(MAX_COLOR-MIN_COLOR)+MIN_COLOR+0.5));
|
335 |
arrow->Draw();
|
336 |
}
|