1 |
//--------------------------------------------------------------------------------------------------
|
2 |
// $Id: CaloJet.h,v 1.5 2009/09/09 03:38:26 bendavid Exp $
|
3 |
//
|
4 |
// CaloJet
|
5 |
//
|
6 |
// This class holds information about reconstructed jet based on calorimeter towers.
|
7 |
//
|
8 |
// Authors: S.Xie, C.Loizides, J.Bendavid
|
9 |
//--------------------------------------------------------------------------------------------------
|
10 |
|
11 |
#ifndef MITANA_DATATREE_CALOJET_H
|
12 |
#define MITANA_DATATREE_CALOJET_H
|
13 |
|
14 |
#include "MitAna/DataTree/interface/Jet.h"
|
15 |
#include "MitAna/DataCont/interface/RefArray.h"
|
16 |
#include "MitAna/DataTree/interface/CaloTower.h"
|
17 |
|
18 |
namespace mithep
|
19 |
{
|
20 |
class CaloJet : public Jet
|
21 |
{
|
22 |
public:
|
23 |
CaloJet() : fMaxEInEmTowers(0), fMaxEInHadTowers(0), fEnergyFractionH(0),
|
24 |
fEnergyFractionEm(0), fHadEnergyInHB(0), fHadEnergyInHO(0), fHadEnergyInHE(0),
|
25 |
fHadEnergyInHF(0), fEmEnergyInEB(0), fEmEnergyInEE(0), fEmEnergyInHF(0),
|
26 |
fTowersArea(0), fHPD(0), fRBX(0), fN90Hits(0), fSubDetector1(0), fSubDetector2(0),
|
27 |
fSubDetector3(0), fSubDetector4(0), fRestrictedEMF(0), fNHCalTowers(0),
|
28 |
fNECalTowers(0), fApproximatefHPD(0), fApproximatefRBX(0), fHitsInN90(0),
|
29 |
fNHits2RPC(0), fNHits3RPC(0), fNHitsRPC(0) {}
|
30 |
CaloJet(Double_t px, Double_t py, Double_t pz, Double_t e) :
|
31 |
Jet(px,py,pz,e),
|
32 |
fMaxEInEmTowers(0), fMaxEInHadTowers(0), fEnergyFractionH(0),
|
33 |
fEnergyFractionEm(0), fHadEnergyInHB(0), fHadEnergyInHO(0), fHadEnergyInHE(0),
|
34 |
fHadEnergyInHF(0), fEmEnergyInEB(0), fEmEnergyInEE(0), fEmEnergyInHF(0),
|
35 |
fTowersArea(0), fHPD(0), fRBX(0), fN90Hits(0), fSubDetector1(0), fSubDetector2(0),
|
36 |
fSubDetector3(0), fSubDetector4(0), fRestrictedEMF(0), fNHCalTowers(0),
|
37 |
fNECalTowers(0), fApproximatefHPD(0), fApproximatefRBX(0), fHitsInN90(0),
|
38 |
fNHits2RPC(0), fNHits3RPC(0), fNHitsRPC(0) {}
|
39 |
|
40 |
void AddTower(const CaloTower *t) { fTowers.Add(t); }
|
41 |
Bool_t HasTower(const CaloTower *t) const { return fTowers.HasObject(t); }
|
42 |
UInt_t NTowers() const { return fTowers.Entries(); }
|
43 |
const CaloTower *Tower(UInt_t i) const { return fTowers.At(i); }
|
44 |
UInt_t NConstituents() const { return NTowers(); }
|
45 |
EObjType ObjType() const { return kCaloJet; }
|
46 |
Double_t EmEnergyInEB() const { return fEmEnergyInEB; }
|
47 |
Double_t EmEnergyInEE() const { return fEmEnergyInEE; }
|
48 |
Double_t EmEnergyInHF() const { return fEmEnergyInHF; }
|
49 |
Double_t EnergyFractionH() const { return fEnergyFractionH; }
|
50 |
Double_t EnergyFractionEm() const { return fEnergyFractionEm; }
|
51 |
Double_t HadEnergyInHO() const { return fHadEnergyInHO; }
|
52 |
Double_t HadEnergyInHB() const { return fHadEnergyInHB; }
|
53 |
Double_t HadEnergyInHF() const { return fHadEnergyInHF; }
|
54 |
Double_t HadEnergyInHE() const { return fHadEnergyInHE; }
|
55 |
Jet *MakeCopy() const { return new CaloJet(*this); }
|
56 |
Double_t MaxEInEmTowers() const { return fMaxEInEmTowers; }
|
57 |
Double_t MaxEInHadTowers() const { return fMaxEInHadTowers; }
|
58 |
void SetEmEnergyInEB(Double_t val) { fEmEnergyInEB = val; }
|
59 |
void SetEmEnergyInEE(Double_t val) { fEmEnergyInEE = val; }
|
60 |
void SetEmEnergyInHF(Double_t val) { fEmEnergyInHF = val; }
|
61 |
void SetEnergyFractionH(Double_t val) { fEnergyFractionH = val; }
|
62 |
void SetEnergyFractionEm(Double_t val) { fEnergyFractionEm = val; }
|
63 |
void SetHadEnergyInHO(Double_t val) { fHadEnergyInHO = val; }
|
64 |
void SetHadEnergyInHB(Double_t val) { fHadEnergyInHB = val; }
|
65 |
void SetHadEnergyInHF(Double_t val) { fHadEnergyInHF = val; }
|
66 |
void SetHadEnergyInHE(Double_t val) { fHadEnergyInHE = val; }
|
67 |
void SetMaxEInEmTowers(Double_t val) { fMaxEInEmTowers = val; }
|
68 |
void SetMaxEInHadTowers(Double_t val) { fMaxEInHadTowers = val; }
|
69 |
void SetTowersArea(Double_t val) { fTowersArea = val; }
|
70 |
void SetFHPD(Double_t val) { fHPD = val; }
|
71 |
void SetFRBX(Double_t val) { fRBX = val; }
|
72 |
void SetN90Hits(Int_t val) { fN90Hits = val; }
|
73 |
void SetFSubDetector1(Double_t val) { fSubDetector1 = val; }
|
74 |
void SetFSubDetector2(Double_t val) { fSubDetector2 = val; }
|
75 |
void SetFSubDetector3(Double_t val) { fSubDetector3 = val; }
|
76 |
void SetFSubDetector4(Double_t val) { fSubDetector4 = val; }
|
77 |
void SetRestrictedEMF(Double_t val) { fRestrictedEMF = val; }
|
78 |
void SetNHCalTowers(Int_t val) { fNHCalTowers = val; }
|
79 |
void SetNECalTowers(Int_t val) { fNECalTowers = val; }
|
80 |
void SetApproximatefHPD(Double_t val) { fApproximatefHPD = val; }
|
81 |
void SetApproximatefRBX(Double_t val) { fApproximatefRBX = val; }
|
82 |
void SetHitsInN90(Int_t val) { fHitsInN90 = val; }
|
83 |
void SetNHits2RPC(Int_t val) { fNHits2RPC = val; }
|
84 |
void SetNHits3RPC(Int_t val) { fNHits3RPC = val; }
|
85 |
void SetNHitsRPC(Int_t val) { fNHitsRPC = val; }
|
86 |
Double_t TowersArea() const { return fTowersArea; }
|
87 |
Double_t FHPD() const { return fHPD; }
|
88 |
Double_t FRBX() const { return fRBX; }
|
89 |
UInt_t N90Hits() const { return fN90Hits; }
|
90 |
Double_t FSubDetector1() const { return fSubDetector1; }
|
91 |
Double_t FSubDetector2() const { return fSubDetector2; }
|
92 |
Double_t FSubDetector3() const { return fSubDetector3; }
|
93 |
Double_t FSubDetector4() const { return fSubDetector4; }
|
94 |
Double_t RestrictedEMF() const { return fRestrictedEMF; }
|
95 |
UInt_t NHCalTowers() const { return fNHCalTowers; }
|
96 |
UInt_t NECalTowers() const { return fNECalTowers; }
|
97 |
Double_t ApproximatefHPD() const { return fApproximatefHPD; }
|
98 |
Double_t ApproximatefRBX() const { return fApproximatefRBX; }
|
99 |
UInt_t HitsInN90() const { return fHitsInN90; }
|
100 |
UInt_t NHits2RPC() const { return fNHits2RPC; }
|
101 |
UInt_t NHits3RPC() const { return fNHits3RPC; }
|
102 |
UInt_t NHitsRPC() const { return fNHitsRPC; }
|
103 |
|
104 |
|
105 |
|
106 |
protected:
|
107 |
|
108 |
Double32_t fMaxEInEmTowers; //[0,0,14]maximum energy in EM towers
|
109 |
Double32_t fMaxEInHadTowers; //[0,0,14]maximum energy in HCAL towers
|
110 |
Double32_t fEnergyFractionH; //[0,0,14]hadronic energy fraction
|
111 |
Double32_t fEnergyFractionEm; //[0,0,14]electromagnetic energy fraction
|
112 |
Double32_t fHadEnergyInHB; //[0,0,14]hadronic energy in HB
|
113 |
Double32_t fHadEnergyInHO; //[0,0,14]hadronic energy in HO
|
114 |
Double32_t fHadEnergyInHE; //[0,0,14]hadronic energy in HE
|
115 |
Double32_t fHadEnergyInHF; //[0,0,14]hadronic energy in HF
|
116 |
Double32_t fEmEnergyInEB; //[0,0,14]electromagnetic energy in EB
|
117 |
Double32_t fEmEnergyInEE; //[0,0,14]electromagnetic energy in EE
|
118 |
Double32_t fEmEnergyInHF; //[0,0,14]electromagnetic energy extracted from HF
|
119 |
Double32_t fTowersArea; //[0,0,14]area of contributing towers
|
120 |
Double32_t fHPD; //[0,0,14]energy from hottest hpd
|
121 |
Double32_t fRBX; //[0,0,14]energy fraction from hottest rbx
|
122 |
Int_t fN90Hits; //number of hits comprising 90 percent of the energy
|
123 |
Double32_t fSubDetector1; //[0,0,14]
|
124 |
Double32_t fSubDetector2; //[0,0,14]
|
125 |
Double32_t fSubDetector3; //[0,0,14]
|
126 |
Double32_t fSubDetector4; //[0,0,14]
|
127 |
Double32_t fRestrictedEMF; //[0,0,14]
|
128 |
Int_t fNHCalTowers;
|
129 |
Int_t fNECalTowers;
|
130 |
Double32_t fApproximatefHPD; //[0,0,14]
|
131 |
Double32_t fApproximatefRBX; //[0,0,14]
|
132 |
Int_t fHitsInN90;
|
133 |
Int_t fNHits2RPC;
|
134 |
Int_t fNHits3RPC;
|
135 |
Int_t fNHitsRPC;
|
136 |
RefArray<CaloTower> fTowers; //calotowers in jet
|
137 |
|
138 |
ClassDef(CaloJet, 2) // CaloJet class
|
139 |
};
|
140 |
}
|
141 |
#endif
|