ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitAna/DataTree/interface/Electron.h
Revision: 1.18
Committed: Fri Sep 12 12:44:57 2008 UTC (16 years, 7 months ago) by bendavid
Content type: text/plain
Branch: MAIN
CVS Tags: Mit_005, Mit_004
Changes since 1.17: +57 -6 lines
Log Message:
Updated electron momentum accessors to work when no supercluster is present

File Contents

# User Rev Content
1 bendavid 1.1 //--------------------------------------------------------------------------------------------------
2 bendavid 1.18 // $Id: Electron.h,v 1.17 2008/09/09 12:50:43 sixie Exp $
3 bendavid 1.1 //
4 paus 1.3 // Electron
5 bendavid 1.1 //
6     // Details to be worked out...
7     //
8 sixie 1.13 // Authors: C.Loizides, J.Bendavid, S.Xie
9 bendavid 1.1 //--------------------------------------------------------------------------------------------------
10    
11 loizides 1.6 #ifndef DATATREE_ELECTRON_H
12     #define DATATREE_ELECTRON_H
13    
14 sixie 1.13 #include "MitAna/DataTree/interface/SuperCluster.h"
15 bendavid 1.11 #include "MitAna/DataTree/interface/ChargedParticle.h"
16 loizides 1.6
17 bendavid 1.1 namespace mithep
18     {
19 bendavid 1.11 class Electron : public ChargedParticle
20 bendavid 1.1 {
21     public:
22     Electron() {}
23     ~Electron() {}
24    
25 sixie 1.14 const Track *BestTrk() const;
26     const Track *GsfTrk() const;
27     const Track *TrackerTrk() const;
28     const SuperCluster *SCluster() const;
29     FourVector Mom() const;
30     const Track *Trk() const { return BestTrk(); }
31 bendavid 1.18 Double_t E() const;
32     Double_t P() const;
33     Double_t Pt() const;
34     Double_t Px() const;
35     Double_t Py() const;
36     Double_t Pz() const;
37 sixie 1.14
38 sixie 1.13 Double_t Mass() const { return 0.51099892e-3; }
39     Double_t ESuperClusterOverP() const { return fESuperClusterOverP; }
40     Double_t ESeedClusterOverPout() const { return fESeedClusterOverPout; }
41 sixie 1.15 Double_t ESeedClusterOverPIn() const;
42     Double_t PIn() const { return fPIn; }
43     Double_t POut() const { return fPOut; }
44 sixie 1.13 Double_t DeltaEtaSuperClusterTrackAtVtx() const { return fDeltaEtaSuperClTrkAtVtx; }
45     Double_t DeltaEtaSeedClusterTrackAtCalo() const { return fDeltaEtaSeedClTrkAtCalo; }
46     Double_t DeltaPhiSuperClusterTrackAtVtx() const { return fDeltaPhiSuperClTrkAtVtx; }
47     Double_t DeltaPhiSeedClusterTrackAtCalo() const { return fDeltaPhiSeedClTrkAtCalo; }
48     Double_t HadronicOverEm() const { return fHadronicOverEm; }
49     Double_t IsEnergyScaleCorrected() const { return fIsEnergyScaleCorrected; }
50     Double_t IsMomentumCorrected() const { return fIsMomentumCorrected; }
51     Double_t NumberOfClusters() const { return fNumberOfClusters; }
52     Double_t Classification() const { return fClassification; }
53     Double_t E33() const { return fE33; }
54     Double_t E55() const { return fE55; }
55     Double_t CovEtaEta() const { return fCovEtaEta; }
56     Double_t CovEtaPhi() const { return fCovEtaPhi; }
57     Double_t CovPhiPhi() const { return fCovPhiPhi; }
58     Double_t CaloIsolation() const { return fCaloIsolation; }
59 sixie 1.16 Double_t CaloTowerIsolation() const { return fCaloTowerIsolation; }
60 sixie 1.13 Double_t TrackIsolation() const { return fTrackIsolation; }
61 sixie 1.17 Double_t EcalJurassicIsolation() const { return fEcalJurassicIsolation; }
62     Double_t HcalJurassicIsolation() const { return fHcalJurassicIsolation; }
63    
64 sixie 1.15 Double_t PassLooseID() const { return fPassLooseID; }
65     Double_t PassTightID() const { return fPassTightID; }
66     Double_t IDLikelihood() const { return fIDLikelihood; }
67 sixie 1.13
68     void SetGsfTrk(Track* t) { fGsfTrackRef = t; }
69     void SetTrackerTrk(Track* t) { fTrackerTrackRef = t; }
70     void SetSuperCluster(SuperCluster* sc) { fSuperClusterRef = sc; }
71     void SetESuperClusterOverP(Double_t x) { fESuperClusterOverP = x; }
72     void SetESeedClusterOverPout(Double_t x) { fESeedClusterOverPout = x; }
73 sixie 1.15 void SetPIn(Double_t PIn) { fPIn = PIn; }
74     void SetPOut(Double_t POut) { fPOut = POut; }
75 sixie 1.13 void SetDeltaEtaSuperClusterTrackAtVtx(Double_t x) { fDeltaEtaSuperClTrkAtVtx = x; }
76     void SetDeltaEtaSeedClusterTrackAtCalo(Double_t x) { fDeltaEtaSeedClTrkAtCalo = x; }
77     void SetDeltaPhiSuperClusterTrackAtVtx(Double_t x) { fDeltaPhiSuperClTrkAtVtx = x; }
78     void SetDeltaPhiSeedClusterTrackAtCalo(Double_t x) { fDeltaPhiSeedClTrkAtCalo = x; }
79     void SetHadronicOverEm(Double_t x) { fHadronicOverEm = x; }
80     void SetIsEnergyScaleCorrected(Double_t x) { fIsEnergyScaleCorrected = x; }
81     void SetIsMomentumCorrected(Double_t x) { fIsMomentumCorrected = x; }
82     void SetNumberOfClusters(Double_t x) { fNumberOfClusters = x; }
83     void SetClassification(Double_t x) { fClassification = x; }
84     void SetE33(Double_t E33) { fE33 = E33; }
85     void SetE55(Double_t E55) { fE55 = E55; }
86     void SetCovEtaEta(Double_t CovEtaEta) { fCovEtaEta = CovEtaEta; }
87     void SetCovEtaPhi(Double_t CovEtaPhi) { fCovEtaPhi = CovEtaPhi; }
88     void SetCovPhiPhi(Double_t CovPhiPhi) { fCovPhiPhi = CovPhiPhi; }
89     void SetCaloIsolation(Double_t CaloIsolation) { fCaloIsolation = CaloIsolation; }
90 sixie 1.16 void SetCaloTowerIsolation(Double_t TowerIso) { fCaloTowerIsolation = TowerIso; }
91 sixie 1.13 void SetTrackIsolation(Double_t TrackIsolation) { fTrackIsolation = TrackIsolation;}
92 sixie 1.17 void SetEcalJurassicIsolation(Double_t iso ) { fEcalJurassicIsolation = iso; }
93     void SetHcalJurassicIsolation(Double_t iso ) { fHcalJurassicIsolation = iso; }
94 sixie 1.15 void SetPassLooseID(Double_t passLooseID) { fPassLooseID = passLooseID; }
95     void SetPassTightID(Double_t passTightID) { fPassTightID = passTightID; }
96     void SetIDLikelihood(Double_t likelihood) { fIDLikelihood = likelihood; }
97 sixie 1.13
98 loizides 1.8 protected:
99 loizides 1.9 TRef fGsfTrackRef; //global combined track reference
100     TRef fTrackerTrackRef; //tracker track reference
101 sixie 1.13 TRef fSuperClusterRef; //superCluster
102    
103     Double_t fESuperClusterOverP;
104     Double_t fESeedClusterOverPout;
105     Double_t fDeltaEtaSuperClTrkAtVtx;
106     Double_t fDeltaEtaSeedClTrkAtCalo;
107     Double_t fDeltaPhiSuperClTrkAtVtx;
108     Double_t fDeltaPhiSeedClTrkAtCalo;
109     Double_t fHadronicOverEm;
110     Double_t fIsEnergyScaleCorrected;
111     Double_t fIsMomentumCorrected;
112     Double_t fNumberOfClusters;
113     Double_t fClassification;
114     Double_t fE33;
115     Double_t fE55;
116     Double_t fCovEtaEta;
117     Double_t fCovEtaPhi;
118     Double_t fCovPhiPhi;
119     Double_t fCaloIsolation;
120 sixie 1.16 Double_t fCaloTowerIsolation;
121 sixie 1.13 Double_t fTrackIsolation;
122 sixie 1.17 Double_t fEcalJurassicIsolation;
123     Double_t fHcalJurassicIsolation;
124 sixie 1.15 Double_t fPassLooseID;
125     Double_t fPassTightID;
126     Double_t fIDLikelihood;
127     Double_t fPIn;
128     Double_t fPOut;
129 sixie 1.13
130 loizides 1.7 ClassDef(Electron, 1) // Electron class
131 bendavid 1.1 };
132 loizides 1.4 }
133 loizides 1.8
134 loizides 1.9 //--------------------------------------------------------------------------------------------------
135 loizides 1.10 inline const mithep::Track *mithep::Electron::BestTrk() const
136 loizides 1.9 {
137 loizides 1.10 // Return "best" track.
138    
139     if (GsfTrk())
140     return GsfTrk();
141     else if (TrackerTrk())
142     return TrackerTrk();
143 loizides 1.9
144 loizides 1.10 return 0;
145 loizides 1.9 }
146    
147     //--------------------------------------------------------------------------------------------------
148 loizides 1.10 inline const mithep::Track *mithep::Electron::GsfTrk() const
149 loizides 1.9 {
150 loizides 1.10 // Return global combined track.
151 loizides 1.9
152 loizides 1.10 return static_cast<const Track*>(fGsfTrackRef.GetObject());
153 loizides 1.9 }
154    
155     //--------------------------------------------------------------------------------------------------
156 loizides 1.10 inline const mithep::Track *mithep::Electron::TrackerTrk() const
157 loizides 1.9 {
158 loizides 1.10 // Return tracker track.
159 loizides 1.9
160 loizides 1.10 return static_cast<const Track*>(fTrackerTrackRef.GetObject());
161 loizides 1.9 }
162 sixie 1.13 //--------------------------------------------------------------------------------------------------
163     inline const mithep::SuperCluster *mithep::Electron::SCluster() const
164     {
165     // Return Super cluster
166    
167     return static_cast<const SuperCluster*>(fSuperClusterRef.GetObject());
168     }
169 sixie 1.14
170     //-------------------------------------------------------------------------------------------------
171     inline mithep::FourVector mithep::Electron::Mom() const
172     {
173     // Return Momentum of the electron. We use the direction of the
174     // Track and the Energy of the Super Cluster
175    
176 bendavid 1.18 return FourVector(Px(), Py(), Pz(), E());
177 sixie 1.14 }
178 sixie 1.15
179 bendavid 1.18 //-------------------------------------------------------------------------------------------------
180 sixie 1.15 inline Double_t mithep::Electron::ESeedClusterOverPIn() const
181     {
182     // Return Energy of the SuperCluster Seed Divided by the magnitude
183     // of the track momentum at the vertex
184    
185     return SCluster()->Seed()->Energy() / PIn();
186     }
187    
188 bendavid 1.18 //-------------------------------------------------------------------------------------------------
189     inline Double_t mithep::Electron::E() const
190     {
191     // Return Energy of the SuperCluster if present
192     // or else return energy derived from the track
193    
194     const mithep::SuperCluster *sc = SCluster();
195     if (sc)
196     return sc->Energy();
197     else
198     return TMath::Sqrt(Trk()->P()*Trk()->P() + Mass()*Mass());
199     }
200    
201     //-------------------------------------------------------------------------------------------------
202     inline Double_t mithep::Electron::P() const
203     {
204     // Return momentum derived from the SuperCluster if present
205     // or else return momentum from the track
206    
207     const mithep::SuperCluster *sc = SCluster();
208     if (sc)
209     return TMath::Sqrt(sc->Energy()*sc->Energy() - Mass()*Mass());
210     else
211     return Trk()->P();
212     }
213    
214     //-------------------------------------------------------------------------------------------------
215     inline Double_t mithep::Electron::Px() const
216     {
217     return Pt()*TMath::Cos(Trk()->Phi());
218     }
219    
220     //-------------------------------------------------------------------------------------------------
221     inline Double_t mithep::Electron::Py() const
222     {
223     return Pt()*TMath::Sin(Trk()->Phi());
224     }
225 sixie 1.15
226 bendavid 1.18 //-------------------------------------------------------------------------------------------------
227     inline Double_t mithep::Electron::Pz() const
228     {
229     return P()*TMath::Sin(Trk()->Lambda());
230     }
231    
232     //-------------------------------------------------------------------------------------------------
233     inline Double_t mithep::Electron::Pt() const
234     {
235     return TMath::Abs(P()*TMath::Cos(Trk()->Lambda()));
236     }
237 loizides 1.8 #endif