ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitAna/DataTree/interface/Electron.h
Revision: 1.59
Committed: Thu Aug 9 21:15:46 2012 UTC (12 years, 8 months ago) by paus
Content type: text/plain
Branch: MAIN
CVS Tags: Mit_029
Changes since 1.58: +2 -2 lines
Log Message:
For version 029.

File Contents

# User Rev Content
1 bendavid 1.1 //--------------------------------------------------------------------------------------------------
2 paus 1.59 // $Id: Electron.h,v 1.58 2012/07/25 03:08:41 paus Exp $
3 bendavid 1.1 //
4 paus 1.3 // Electron
5 bendavid 1.1 //
6 loizides 1.29 // This class holds information about reconstructed electrons from CMSSW.
7 bendavid 1.1 //
8 paus 1.55 // Authors: C.Paus, G.Ceballos, C.Loizides, J.Bendavid, S.Xie
9 bendavid 1.1 //--------------------------------------------------------------------------------------------------
10    
11 loizides 1.23 #ifndef MITANA_DATATREE_ELECTRON_H
12     #define MITANA_DATATREE_ELECTRON_H
13 loizides 1.6
14 sixie 1.13 #include "MitAna/DataTree/interface/SuperCluster.h"
15 bendavid 1.11 #include "MitAna/DataTree/interface/ChargedParticle.h"
16 bendavid 1.24 #include "MitAna/DataCont/interface/Ref.h"
17 loizides 1.6
18 bendavid 1.1 namespace mithep
19     {
20 bendavid 1.11 class Electron : public ChargedParticle
21 bendavid 1.1 {
22     public:
23 loizides 1.34 Electron() :
24 bendavid 1.38 fCharge(-99), fScPixCharge(0),
25 loizides 1.34 fESuperClusterOverP(0), fESeedClusterOverPout(0), fDeltaEtaSuperClTrkAtVtx(0),
26     fDeltaEtaSeedClTrkAtCalo(0), fDeltaPhiSuperClTrkAtVtx(0),
27     fDeltaPhiSeedClTrkAtCalo(0), fFBrem(0), fHadronicOverEm(0), fHcalDepth1OverEcal(0),
28 bendavid 1.35 fHcalDepth2OverEcal(0), fNumberOfClusters(0), fE15(0), fE25Max(0),
29     fE55(0), fCovEtaEta(0), fCoviEtaiEta(0),
30 loizides 1.34 fCaloIsolation(0), fHcalJurassicIsolation(0),
31     fHcalDepth1TowerSumEtDr04(0), fHcalDepth2TowerSumEtDr04(0),
32     fEcalJurassicIsolation(0), fTrackIsolationDr04(0), fCaloTowerIsolation(0),
33     fHcalDepth1TowerSumEtDr03(0), fHcalDepth2TowerSumEtDr03(0),
34     fEcalRecHitSumEtDr03(0), fTrackIsolation(0), fPassLooseID(0),
35     fPassTightID(0), fIDLikelihood(0), fPIn(0), fPOut(0), fFracSharedHits(0),
36 bendavid 1.40 fMva(0), fD0PV(0), fD0PVErr(0), fIp3dPV(0), fIp3dPVErr(0),
37     fD0PVBS(0), fD0PVBSErr(0), fIp3dPVBS(0), fIp3dPVBSErr(0),
38 bendavid 1.44 fD0PVCkf(0), fD0PVCkfErr(0), fIp3dPVCkf(0), fIp3dPVCkfErr(0),
39     fD0PVBSCkf(0), fD0PVBSCkfErr(0), fIp3dPVBSCkf(0), fIp3dPVBSCkfErr(0),
40 bendavid 1.47 fD0PVUB(0), fD0PVUBErr(0), fIp3dPVUB(0), fIp3dPVUBErr(0),
41     fD0PVUBBS(0), fD0PVUBBSErr(0), fIp3dPVUBBS(0), fIp3dPVUBBSErr(0),
42     fD0PVUBCkf(0), fD0PVUBCkfErr(0), fIp3dPVUBCkf(0), fIp3dPVUBCkfErr(0),
43     fD0PVUBBSCkf(0), fD0PVUBBSCkfErr(0), fIp3dPVUBBSCkf(0), fIp3dPVUBBSCkfErr(0),
44 bendavid 1.41 fGsfPVCompatibility(0), fGsfPVBSCompatibility(0),
45     fGsfPVCompatibilityMatched(0), fGsfPVBSCompatibilityMatched(0),
46 bendavid 1.40 fConvPartnerDCotTheta(0), fConvPartnerDist(0), fConvPartnerRadius(0),
47 bendavid 1.46 fPFChargedHadronIso(0), fPFNeutralHadronIso(0), fPFPhotonIso(0),
48 bendavid 1.45 fConvFlag(0), fIsEnergyScaleCorrected(0), fIsMomentumCorrected(0),
49 loizides 1.34 fClassification(0), fIsEB(), fIsEE(0), fIsEBEEGap(0), fIsEBEtaGap(0),
50     fIsEBPhiGap(0), fIsEEDeeGap(0), fIsEERingGap(0),
51 bendavid 1.52 fIsEcalDriven(0), fIsTrackerDriven(0), fMatchesVertexConversion(0),
52 paus 1.55 fHadOverEmTow(0), fHCalIsoTowDr03(0), fHCalIsoTowDr04(0),
53 paus 1.59 fEcalEnergy(0), fEcalEnergyError(0), fTrackMomentumError(0) {}
54 loizides 1.29
55 paus 1.48 const Track *BestTrk() const;
56     Double_t D0PV() const { return fD0PV; }
57     Double_t D0PVErr() const { return fD0PVErr; }
58     Double_t D0PVSignificance() const { return fD0PV/fD0PVErr; }
59     Double_t Ip3dPV() const { return fIp3dPV; }
60     Double_t Ip3dPVErr() const { return fIp3dPVErr; }
61     Double_t Ip3dPVSignificance() const { return fIp3dPV/fIp3dPVErr; }
62     Double_t D0PVBS() const { return fD0PVBS; }
63     Double_t D0PVBSErr() const { return fD0PVBSErr; }
64     Double_t D0PVBSSignificance() const { return fD0PVBS/fD0PVBSErr; }
65     Double_t Ip3dPVBS() const { return fIp3dPVBS; }
66     Double_t Ip3dPVBSErr() const { return fIp3dPVBSErr; }
67     Double_t Ip3dPVBSSignificance() const { return fIp3dPVBS/fIp3dPVBSErr; }
68     Double_t D0PVCkf() const { return fD0PVCkf; }
69     Double_t D0PVCkfErr() const { return fD0PVCkfErr; }
70     Double_t D0PVCkfSignificance() const { return fD0PVCkf/fD0PVCkfErr; }
71     Double_t Ip3dPVCkf() const { return fIp3dPVCkf; }
72     Double_t Ip3dPVCkfErr() const { return fIp3dPVCkfErr; }
73     Double_t Ip3dPVCkfSignificance() const { return fIp3dPVCkf/fIp3dPVCkfErr; }
74     Double_t D0PVBSCkf() const { return fD0PVBSCkf; }
75     Double_t D0PVBSCkfErr() const { return fD0PVBSCkfErr; }
76     Double_t D0PVBSCkfSignificance() const { return fD0PVBSCkf/fD0PVBSCkfErr; }
77     Double_t Ip3dPVBSCkf() const { return fIp3dPVBSCkf; }
78     Double_t Ip3dPVBSCkfErr() const { return fIp3dPVBSCkfErr; }
79     Double_t Ip3dPVBSCkfSignificance() const { return fIp3dPVBSCkf/fIp3dPVBSCkfErr; }
80     Double_t D0PVUB() const { return fD0PVUB; }
81     Double_t D0PVUBErr() const { return fD0PVUBErr; }
82     Double_t D0PVUBSignificance() const { return fD0PVUB/fD0PVUBErr; }
83     Double_t Ip3dPVUB() const { return fIp3dPVUB; }
84     Double_t Ip3dPVUBErr() const { return fIp3dPVUBErr; }
85     Double_t Ip3dPVUBSignificance() const { return fIp3dPVUB/fIp3dPVUBErr; }
86     Double_t D0PVUBBS() const { return fD0PVUBBS; }
87     Double_t D0PVUBBSErr() const { return fD0PVUBBSErr; }
88     Double_t D0PVUBBSSignificance() const { return fD0PVUBBS/fD0PVUBBSErr; }
89     Double_t Ip3dPVUBBS() const { return fIp3dPVUBBS; }
90     Double_t Ip3dPVUBBSErr() const { return fIp3dPVUBBSErr; }
91     Double_t Ip3dPVUBBSSignificance() const { return fIp3dPVUBBS/fIp3dPVUBBSErr; }
92     Double_t D0PVUBCkf() const { return fD0PVUBCkf; }
93     Double_t D0PVUBCkfErr() const { return fD0PVUBCkfErr; }
94     Double_t D0PVUBCkfSignificance() const { return fD0PVUBCkf/fD0PVUBCkfErr; }
95     Double_t Ip3dPVUBCkf() const { return fIp3dPVUBCkf; }
96     Double_t Ip3dPVUBCkfErr() const { return fIp3dPVUBCkfErr; }
97     Double_t Ip3dPVUBCkfSignificance() const { return fIp3dPVUBCkf/fIp3dPVUBCkfErr; }
98     Double_t D0PVUBBSCkf() const { return fD0PVUBBSCkf; }
99     Double_t D0PVUBBSCkfErr() const { return fD0PVUBBSCkfErr; }
100     Double_t D0PVUBBSCkfSignificance() const { return fD0PVUBBSCkf/fD0PVUBBSCkfErr; }
101     Double_t Ip3dPVUBBSCkf() const { return fIp3dPVUBBSCkf; }
102     Double_t Ip3dPVUBBSCkfErr() const { return fIp3dPVUBBSCkfErr; }
103 bendavid 1.47 Double_t Ip3dPVUBBSCkfSignificance() const { return fIp3dPVUBBSCkf/fIp3dPVUBBSCkfErr; }
104 paus 1.48 Double_t GsfPVCompatibility() const { return fGsfPVCompatibility; }
105     Double_t GsfPVBSCompatibility() const { return fGsfPVBSCompatibility; }
106     Double_t GsfPVCompatibilityMatched() const { return fGsfPVCompatibilityMatched; }
107     Double_t GsfPVBSCompatibilityMatched() const { return fGsfPVBSCompatibilityMatched; }
108     Double_t ConvPartnerDCotTheta() const { return fConvPartnerDCotTheta; }
109     Double_t ConvPartnerDist() const { return fConvPartnerDist; }
110     Double_t ConvPartnerRadius() const { return fConvPartnerRadius; }
111     Int_t ConvFlag() const { return fConvFlag; }
112     Double_t CaloIsolation() const { return fCaloIsolation; } // *DEPRECATED*
113     Int_t Classification() const { return fClassification; }
114     Double_t CovEtaEta() const { return fCovEtaEta; }
115     Double_t CoviEtaiEta() const { return fCoviEtaiEta; }
116     Double_t DeltaEtaSuperClusterTrackAtVtx() const { return fDeltaEtaSuperClTrkAtVtx; }
117     Double_t DeltaEtaSeedClusterTrackAtCalo() const { return fDeltaEtaSeedClTrkAtCalo; }
118     Double_t DeltaPhiSuperClusterTrackAtVtx() const { return fDeltaPhiSuperClTrkAtVtx; }
119     Double_t DeltaPhiSeedClusterTrackAtCalo() const { return fDeltaPhiSeedClTrkAtCalo; }
120     Double_t E15() const { return fE15; }
121     Double_t E25Max() const { return fE25Max; }
122     Double_t E55() const { return fE55; }
123     Double_t ESuperClusterOverP() const { return fESuperClusterOverP; }
124     Double_t ESeedClusterOverPout() const { return fESeedClusterOverPout; }
125 sixie 1.51 Double_t EEleClusterOverPout() const { return fEEleClusterOverPout; }
126 paus 1.48 Double_t ESeedClusterOverPIn() const;
127     Double_t FBrem() const { return fFBrem; }
128     Double_t FBremOld() const { return (PIn() - POut())/PIn(); }
129     Double_t FracSharedHits() const { return fFracSharedHits; }
130     const Track *GsfTrk() const { return fGsfTrackRef.Obj(); }
131     Double_t HadronicOverEm() const { return fHadronicOverEm; }
132     Double_t HcalDepth1OverEcal() const { return fHcalDepth1OverEcal; }
133     Double_t HcalDepth2OverEcal() const { return fHcalDepth2OverEcal; }
134     Bool_t HasGsfTrk() const { return fGsfTrackRef.IsValid(); }
135     Bool_t HasTrackerTrk() const { return fTrackerTrackRef.IsValid(); }
136     Bool_t HasSuperCluster() const { return fSuperClusterRef.IsValid(); }
137     Double_t HcalIsolation() const { return fHcalJurassicIsolation; } // *DEPRECATED*
138     Double_t IDLikelihood() const { return fIDLikelihood; }
139     Bool_t IsEnergyScaleCorrected() const { return fIsEnergyScaleCorrected; }
140     Bool_t IsMomentumCorrected() const { return fIsMomentumCorrected; }
141     Bool_t IsEB() const { return fIsEB; }
142     Bool_t IsEE() const { return fIsEE; }
143     Bool_t IsEBEEGap() const { return fIsEBEEGap; }
144     Bool_t IsEBEtaGap() const { return fIsEBEtaGap; }
145     Bool_t IsEBPhiGap() const { return fIsEBPhiGap; }
146     Bool_t IsEEDeeGap() const { return fIsEEDeeGap; }
147     Bool_t IsEERingGap() const { return fIsEERingGap; }
148     Bool_t IsEcalDriven() const { return fIsEcalDriven; }
149     Bool_t IsTrackerDriven() const { return fIsTrackerDriven; }
150     Double_t Mva() const { return fMva; }
151     Double_t NumberOfClusters() const { return fNumberOfClusters; }
152     EObjType ObjType() const { return kElectron; }
153     Double_t PassLooseID() const { return fPassLooseID; }
154     Double_t PassTightID() const { return fPassTightID; }
155     Double_t PIn() const { return fPIn; }
156     Double_t POut() const { return fPOut; }
157     const SuperCluster *SCluster() const { return fSuperClusterRef.Obj(); }
158 paus 1.53 const SuperCluster *PFSCluster() const { return fPFSuperClusterRef.Obj(); }
159 paus 1.48 Double_t ScPixCharge() const { return fScPixCharge; }
160    
161     Double_t EcalRecHitIsoDr04() const { return fEcalJurassicIsolation; }
162     Double_t HcalTowerSumEtDr04() const { return HcalDepth1TowerSumEtDr04() +
163     HcalDepth2TowerSumEtDr04(); }
164     Double_t HcalDepth1TowerSumEtDr04() const { return fHcalDepth1TowerSumEtDr04; }
165     Double_t HcalDepth2TowerSumEtDr04() const { return fHcalDepth2TowerSumEtDr04; }
166     Double_t TrackIsolationDr04() const { return fTrackIsolationDr04; }
167     Double_t EcalRecHitIsoDr03() const { return fEcalRecHitSumEtDr03; }
168     Double_t HcalTowerSumEtDr03() const { return fCaloTowerIsolation; }
169     Double_t HcalDepth1TowerSumEtDr03() const { return fHcalDepth1TowerSumEtDr03; }
170     Double_t HcalDepth2TowerSumEtDr03() const { return fHcalDepth2TowerSumEtDr03; }
171     Double_t TrackIsolationDr03() const { return fTrackIsolation; }
172     Double_t PFChargedHadronIso() const { return fPFChargedHadronIso; }
173     Double_t PFNeutralHadronIso() const { return fPFNeutralHadronIso; }
174     Double_t PFPhotonIso() const { return fPFPhotonIso; }
175     Bool_t MatchesVertexConversion() const { return fMatchesVertexConversion; }
176     UInt_t NAmbiguousGsfTracks() const { return fAmbiguousGsfTracks.Entries(); }
177 bendavid 1.43 Bool_t HasAmbiguousGsfTrack(const Track *t) const { return fAmbiguousGsfTracks.HasObject(t); }
178 paus 1.48 const Track *AmbiguousGsfTrack(UInt_t i) const { return fAmbiguousGsfTracks.At(i); }
179 sixie 1.51 Int_t CTFTrkNLayersWithMeasurement() const { return fCTFTrkNLayersWithMeasurement; }
180 paus 1.55 Double_t HadOverEmTow() const { return fHadOverEmTow; }
181     Double_t HcalIsoTowDr03() const { return fHCalIsoTowDr03; }
182     Double_t HcalIsoTowDr04() const { return fHCalIsoTowDr04; }
183     Double_t EcalEnergy() const { return fEcalEnergy; }
184     Double_t EcalEnergyError() const { return fEcalEnergyError; }
185 sixie 1.51
186 paus 1.48 void AddAmbiguousGsfTrack(const Track *t) { fAmbiguousGsfTracks.Add(t); }
187     void SetCharge(Char_t x) { fCharge = x; ClearCharge(); }
188     void SetScPixCharge(Char_t x) { fScPixCharge = x; }
189     void SetD0PV(Double_t x) { fD0PV = x; }
190     void SetD0PVErr(Double_t x) { fD0PVErr = x; }
191     void SetIp3dPV(Double_t x) { fIp3dPV = x; }
192     void SetIp3dPVErr(Double_t x) { fIp3dPVErr = x; }
193     void SetD0PVBS(Double_t x) { fD0PVBS = x; }
194     void SetD0PVBSErr(Double_t x) { fD0PVBSErr = x; }
195     void SetIp3dPVBS(Double_t x) { fIp3dPVBS = x; }
196     void SetIp3dPVBSErr(Double_t x) { fIp3dPVBSErr = x; }
197     void SetD0PVCkf(Double_t x) { fD0PVCkf = x; }
198     void SetD0PVCkfErr(Double_t x) { fD0PVCkfErr = x; }
199     void SetIp3dPVCkf(Double_t x) { fIp3dPVCkf = x; }
200     void SetIp3dPVCkfErr(Double_t x) { fIp3dPVCkfErr = x; }
201     void SetD0PVBSCkf(Double_t x) { fD0PVBSCkf = x; }
202     void SetD0PVBSCkfErr(Double_t x) { fD0PVBSCkfErr = x; }
203     void SetIp3dPVBSCkf(Double_t x) { fIp3dPVBSCkf = x; }
204     void SetIp3dPVBSCkfErr(Double_t x) { fIp3dPVBSCkfErr = x; }
205     void SetD0PVUB(Double_t x) { fD0PVUB = x; }
206     void SetD0PVUBErr(Double_t x) { fD0PVUBErr = x; }
207     void SetIp3dPVUB(Double_t x) { fIp3dPVUB = x; }
208     void SetIp3dPVUBErr(Double_t x) { fIp3dPVUBErr = x; }
209     void SetD0PVUBBS(Double_t x) { fD0PVUBBS = x; }
210     void SetD0PVUBBSErr(Double_t x) { fD0PVUBBSErr = x; }
211     void SetIp3dPVUBBS(Double_t x) { fIp3dPVUBBS = x; }
212     void SetIp3dPVUBBSErr(Double_t x) { fIp3dPVUBBSErr = x; }
213     void SetD0PVUBCkf(Double_t x) { fD0PVUBCkf = x; }
214     void SetD0PVUBCkfErr(Double_t x) { fD0PVUBCkfErr = x; }
215     void SetIp3dPVUBCkf(Double_t x) { fIp3dPVUBCkf = x; }
216     void SetIp3dPVUBCkfErr(Double_t x) { fIp3dPVUBCkfErr = x; }
217     void SetD0PVUBBSCkf(Double_t x) { fD0PVUBBSCkf = x; }
218     void SetD0PVUBBSCkfErr(Double_t x) { fD0PVUBBSCkfErr = x; }
219     void SetIp3dPVUBBSCkf(Double_t x) { fIp3dPVUBBSCkf = x; }
220     void SetIp3dPVUBBSCkfErr(Double_t x) { fIp3dPVUBBSCkfErr = x; }
221     void SetGsfPVCompatibility(Double_t x) { fGsfPVCompatibility = x; }
222     void SetGsfPVBSCompatibility(Double_t x) { fGsfPVBSCompatibility = x; }
223     void SetGsfPVCompatibilityMatched(Double_t x) { fGsfPVCompatibilityMatched = x; }
224 bendavid 1.41 void SetGsfPVBSCompatibilityMatched(Double_t x) { fGsfPVBSCompatibilityMatched = x; }
225 paus 1.48 void SetConvPartnerDCotTheta(Double_t x) { fConvPartnerDCotTheta = x; }
226     void SetConvPartnerDist(Double_t x) { fConvPartnerDist = x; }
227     void SetConvPartnerRadius(Double_t x) { fConvPartnerRadius = x; }
228     void SetConvFlag(Int_t n) { fConvFlag = n; }
229     void SetClassification(Int_t x) { fClassification = x; }
230     void SetCovEtaEta(Double_t x) { fCovEtaEta = x; }
231     void SetCoviEtaiEta(Double_t x) { fCoviEtaiEta = x; }
232 loizides 1.27 void SetDeltaEtaSuperClusterTrackAtVtx(Double_t x)
233 paus 1.48 { fDeltaEtaSuperClTrkAtVtx = x; }
234 loizides 1.27 void SetDeltaEtaSeedClusterTrackAtCalo(Double_t x)
235 paus 1.48 { fDeltaEtaSeedClTrkAtCalo = x; }
236 loizides 1.27 void SetDeltaPhiSuperClusterTrackAtVtx(Double_t x)
237 paus 1.48 { fDeltaPhiSuperClTrkAtVtx = x; }
238 loizides 1.27 void SetDeltaPhiSeedClusterTrackAtCalo(Double_t x)
239 paus 1.48 { fDeltaPhiSeedClTrkAtCalo = x; }
240     void SetE15(Double_t x) { fE15 = x; }
241     void SetE25Max(Double_t x) { fE25Max = x; }
242     void SetE55(Double_t x) { fE55 = x; }
243     void SetESeedClusterOverPout(Double_t x) { fESeedClusterOverPout = x; }
244 sixie 1.51 void SetEEleClusterOverPout(Double_t x) { fEEleClusterOverPout = x; }
245 paus 1.48 void SetESuperClusterOverP(Double_t x) { fESuperClusterOverP = x; }
246     void SetFBrem(Double_t x) { fFBrem = x; }
247     void SetFracSharedHits(Double_t x) { fFracSharedHits = x; }
248 loizides 1.29 void SetGsfTrk(const Track* t)
249 bendavid 1.31 { fGsfTrackRef = t; ClearCharge(); }
250 paus 1.48 void SetHadronicOverEm(Double_t x) { fHadronicOverEm = x; }
251     void SetHcalDepth1OverEcal(Double_t x) { fHcalDepth1OverEcal = x; }
252     void SetHcalDepth2OverEcal(Double_t x) { fHcalDepth2OverEcal = x; }
253     void SetIDLikelihood(Double_t x) { fIDLikelihood = x; }
254     void SetIsEnergyScaleCorrected(Bool_t x) { fIsEnergyScaleCorrected = x; }
255     void SetIsMomentumCorrected(Bool_t x) { fIsMomentumCorrected = x; }
256     void SetNumberOfClusters(Double_t x) { fNumberOfClusters = x; }
257     void SetPIn(Double_t pIn) { fPIn = pIn; }
258     void SetPOut(Double_t pOut) { fPOut = pOut; }
259     void SetPassLooseID(Double_t passLooseID) { fPassLooseID = passLooseID; }
260     void SetPassTightID(Double_t passTightID) { fPassTightID = passTightID; }
261 bendavid 1.31 void SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi);
262     void SetSuperCluster(const SuperCluster* sc)
263     { fSuperClusterRef = sc; }
264 paus 1.53 void SetPFSuperCluster(const SuperCluster* sc)
265     { fPFSuperClusterRef = sc; }
266 loizides 1.29 void SetTrackerTrk(const Track* t)
267 bendavid 1.31 { fTrackerTrackRef = t; ClearCharge(); }
268 bendavid 1.42 void SetConvPartnerTrk(const Track *t)
269     { fConvPartnerTrackRef = t; }
270 paus 1.48 void SetEcalRecHitIsoDr04(Double_t x) { fEcalJurassicIsolation = x; }
271 bendavid 1.33 void SetHcalDepth1TowerSumEtDr04(Double_t x) { fHcalDepth1TowerSumEtDr04 = x; }
272     void SetHcalDepth2TowerSumEtDr04(Double_t x) { fHcalDepth2TowerSumEtDr04 = x; }
273 paus 1.48 void SetTrackIsolationDr04(Double_t x) { fTrackIsolationDr04 = x; }
274     void SetEcalRecHitIsoDr03(Double_t x) { fEcalRecHitSumEtDr03 = x; }
275     void SetHcalTowerSumEtDr03(Double_t x) { fCaloTowerIsolation = x; }
276 bendavid 1.33 void SetHcalDepth1TowerSumEtDr03(Double_t x) { fHcalDepth1TowerSumEtDr03 = x; }
277     void SetHcalDepth2TowerSumEtDr03(Double_t x) { fHcalDepth2TowerSumEtDr03 = x; }
278 paus 1.48 void SetTrackIsolationDr03(Double_t x) { fTrackIsolation = x; }
279     void SetPFChargedHadronIso(Double_t x) { fPFChargedHadronIso = x; }
280     void SetPFNeutralHadronIso(Double_t x) { fPFNeutralHadronIso = x; }
281     void SetPFPhotonIso(Double_t x) { fPFPhotonIso = x; }
282     void SetMva(Double_t x) { fMva = x; }
283     void SetIsEB(Bool_t b) { fIsEB = b; }
284     void SetIsEE(Bool_t b) { fIsEE = b; }
285     void SetIsEBEEGap(Bool_t b) { fIsEBEEGap = b; }
286     void SetIsEBEtaGap(Bool_t b) { fIsEBEtaGap = b; }
287     void SetIsEBPhiGap(Bool_t b) { fIsEBPhiGap = b; }
288     void SetIsEEDeeGap(Bool_t b) { fIsEEDeeGap = b; }
289     void SetIsEERingGap(Bool_t b) { fIsEERingGap = b; }
290     void SetIsEcalDriven(Bool_t b) { fIsEcalDriven = b; }
291     void SetIsTrackerDriven(Bool_t b) { fIsTrackerDriven = b; }
292 bendavid 1.42 void SetMatchesVertexConversion(Bool_t b) { fMatchesVertexConversion = b; }
293     void SetConversionXYZ(Double_t x, Double_t y, Double_t z)
294     { fConvPosition.SetXYZ(x,y,z); }
295 sixie 1.51 void SetCTFTrkNLayersWithMeasurement(Int_t x){ fCTFTrkNLayersWithMeasurement = x; }
296 paus 1.55 void SetHadOverEmTow(Double_t x) { fHadOverEmTow = x; }
297     void SetHCalIsoTowDr03(Double_t x) { fHCalIsoTowDr03 = x; }
298     void SetHCalIsoTowDr04(Double_t x) { fHCalIsoTowDr04 = x; }
299     void SetEcalEnergy(Double_t e) { fEcalEnergy = e; }
300     void SetEcalEnergyError(Double_t e) { fEcalEnergyError = e; }
301 paus 1.58 void SetTrackMomentumError(Double_t e) { fTrackMomentumError = e; }
302 bendavid 1.33
303 paus 1.48 const Track *TrackerTrk() const { return fTrackerTrackRef.Obj(); }
304     const Track *Trk() const { return BestTrk(); }
305 bendavid 1.42 const Track *ConvPartnerTrk() const { return fConvPartnerTrackRef.Obj(); }
306 sixie 1.13
307 paus 1.49 // Some structural tools
308 paus 1.50 void Mark(UInt_t i=1) const;
309 paus 1.49
310 loizides 1.8 protected:
311 bendavid 1.37 Double_t GetCharge() const;
312 paus 1.48 Double_t GetMass() const { return 0.51099892e-3; }
313 loizides 1.27 void GetMom() const;
314 loizides 1.25
315 bendavid 1.31 Vect3C fMom; //stored three-momentum
316 bendavid 1.37 Char_t fCharge; //stored charge - filled with -99 when reading old files
317 bendavid 1.38 Char_t fScPixCharge; //charge from supercluster-pixel matching
318 loizides 1.27 Ref<Track> fGsfTrackRef; //gsf track reference
319     Ref<Track> fTrackerTrackRef; //tracker track reference
320 bendavid 1.42 Ref<Track> fConvPartnerTrackRef; //conversion partner track reference
321 loizides 1.27 Ref<SuperCluster> fSuperClusterRef; //reference to SuperCluster
322 loizides 1.29 Double32_t fESuperClusterOverP; //[0,0,14]super cluster e over p ratio
323     Double32_t fESeedClusterOverPout; //[0,0,14]seed cluster e over p mom
324     Double32_t fDeltaEtaSuperClTrkAtVtx; //[0,0,14]delta eta of super cluster with trk
325     Double32_t fDeltaEtaSeedClTrkAtCalo; //[0,0,14]delta eta of seeed cluster with trk
326     Double32_t fDeltaPhiSuperClTrkAtVtx; //[0,0,14]delta phi of super cluster with trk
327     Double32_t fDeltaPhiSeedClTrkAtCalo; //[0,0,14]delta phi of seeed cluster with trk
328 bendavid 1.33 Double32_t fFBrem; //[0,0,14]brem fraction
329     Double32_t fHadronicOverEm; //[0,0,14]hadronic over em fraction *DEPRECATED*
330     Double32_t fHcalDepth1OverEcal; //[0,0,14]hadronic over em fraction depth1
331     Double32_t fHcalDepth2OverEcal; //[0,0,14]hadronic over em fraction depth2
332 loizides 1.29 Double32_t fNumberOfClusters; //[0,0,14]number of associated clusters
333 bendavid 1.33 Double32_t fE15; //[0,0,14]1x5 crystal energy
334     Double32_t fE25Max; //[0,0,14]2x5 crystal energy (max of two possible sums)
335 loizides 1.29 Double32_t fE55; //[0,0,14]5x5 crystal energy
336     Double32_t fCovEtaEta; //[0,0,14]variance eta-eta
337     Double32_t fCoviEtaiEta; //[0,0,14]covariance eta-eta (in crystals)
338 bendavid 1.33 Double32_t fCaloIsolation; //[0,0,14](non-jura) ecal isolation based on rechits dR 0.3 *DEPRECATED*
339     Double32_t fHcalJurassicIsolation; //[0,0,14]hcal jura iso dR 0.4 *DEPRECATED*
340     Double32_t fHcalDepth1TowerSumEtDr04; //[0,0,14]hcal depth1 tower based isolation dR 0.4
341     Double32_t fHcalDepth2TowerSumEtDr04; //[0,0,14]hcal depth2 tower based isolation dR 0.4
342     Double32_t fEcalJurassicIsolation; //[0,0,14]ecal jura iso dR 0.4 *RENAMING*
343     Double32_t fTrackIsolationDr04; //[0,0,14]isolation based on tracks dR 0.4
344     Double32_t fCaloTowerIsolation; //[0,0,14]hcal tower based isolation dR 0.3 *DEPRECATED*
345     Double32_t fHcalDepth1TowerSumEtDr03; //[0,0,14]hcal depth1 tower based isolation dR 0.3
346     Double32_t fHcalDepth2TowerSumEtDr03; //[0,0,14]hcal depth2 tower based isolation dR 0.3
347     Double32_t fEcalRecHitSumEtDr03; //[0,0,14]ecal jura iso dR 0.3
348     Double32_t fTrackIsolation; //[0,0,14]isolation based on tracks dR 0.3 *RENAMING*
349 loizides 1.29 Double32_t fPassLooseID; //[0,0,14]pass loose id
350     Double32_t fPassTightID; //[0,0,14]pass tight id
351     Double32_t fIDLikelihood; //[0,0,14]likelihood value
352     Double32_t fPIn; //[0,0,14]momentum at vtx
353     Double32_t fPOut; //[0,0,14]momentum at ecal surface
354 bendavid 1.33 Double32_t fFracSharedHits; //[0,0,14]fraction of shared hits btw gsf and std. track
355     Double32_t fMva; //[0,0,14] pflow mva output
356 bendavid 1.44 Double32_t fD0PV; //[0,0,14]transverse impact parameter to signal PV (gsf track)
357     Double32_t fD0PVErr; //[0,0,14]transverse impact parameter uncertainty to signal PV (gsf track)
358     Double32_t fIp3dPV; //[0,0,14]3d impact parameter to signal PV (gsf track)
359     Double32_t fIp3dPVErr; //[0,0,14]3d impact parameter uncertainty to signal PV (gsf track)
360     Double32_t fD0PVBS; //[0,0,14]transverse impact parameter to signal PV w/ bs constraint (gsf track)
361     Double32_t fD0PVBSErr; //[0,0,14]transverse impact parameter uncertainty to signal PV w/ bs constraint (gsf track)
362     Double32_t fIp3dPVBS; //[0,0,14]3d impact parameter to signal PV w/ bs constraint (gsf track)
363     Double32_t fIp3dPVBSErr; //[0,0,14]3d impact parameter uncertainty to signal PV w/ bs constraint (gsf track)
364 paus 1.55 Double32_t fD0PVCkf; //[0,0,14]transverse impact parameter to signal PV (ckf track)
365     Double32_t fD0PVCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PV (ckf track)
366     Double32_t fIp3dPVCkf; //[0,0,14]3d impact parameter to signal PV (ckf track)
367     Double32_t fIp3dPVCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PV (ckf track)
368     Double32_t fD0PVBSCkf; //[0,0,14]transverse impact parameter to signal PV w/ bs constraint (ckf track)
369     Double32_t fD0PVBSCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PV w/ bs constraint (ckf track)
370     Double32_t fIp3dPVBSCkf; //[0,0,14]3d impact parameter to signal PV w/ bs constraint (ckf track)
371     Double32_t fIp3dPVBSCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PV w/ bs constraint (ckf track)
372     Double32_t fD0PVUB; //[0,0,14]transverse impact parameter to signal PVUB (gsf track)
373     Double32_t fD0PVUBErr; //[0,0,14]transverse impact parameter uncertainty to signal PVUB (gsf track)
374     Double32_t fIp3dPVUB; //[0,0,14]3d impact parameter to signal PVUB (gsf track)
375     Double32_t fIp3dPVUBErr; //[0,0,14]3d impact parameter uncertainty to signal PVUB (gsf track)
376     Double32_t fD0PVUBBS; //[0,0,14]transverse impact parameter to signal PVUB w/ bs constraint (gsf track)
377     Double32_t fD0PVUBBSErr; //[0,0,14]transverse impact parameter uncertainty to signal PVUB w/ bs constraint (gsf track)
378     Double32_t fIp3dPVUBBS; //[0,0,14]3d impact parameter to signal PVUB w/ bs constraint (gsf track)
379     Double32_t fIp3dPVUBBSErr; //[0,0,14]3d impact parameter uncertainty to signal PVUB w/ bs constraint (gsf track)
380     Double32_t fD0PVUBCkf; //[0,0,14]transverse impact parameter to signal PVUB (ckf track)
381     Double32_t fD0PVUBCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PVUB (ckf track)
382     Double32_t fIp3dPVUBCkf; //[0,0,14]3d impact parameter to signal PVUB (ckf track)
383     Double32_t fIp3dPVUBCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PVUB (ckf track)
384     Double32_t fD0PVUBBSCkf; //[0,0,14]transverse impact parameter to signal PVUB w/ bs constraint (ckf track)
385     Double32_t fD0PVUBBSCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PVUB w/ bs constraint (ckf track)
386     Double32_t fIp3dPVUBBSCkf; //[0,0,14]3d impact parameter to signal PVUB w/ bs constraint (ckf track)
387     Double32_t fIp3dPVUBBSCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PVUB w/ bs constraint (ckf track)
388 bendavid 1.41 Double32_t fGsfPVCompatibility; //[0,0,14]gsf compatibility with signal PV
389     Double32_t fGsfPVBSCompatibility; //[0,0,14]gsf compatibility with signal PV w/ bs constraint
390     Double32_t fGsfPVCompatibilityMatched; //[0,0,14]gsf compatibility with signal PV (matching ckf track excluded from vertex)
391     Double32_t fGsfPVBSCompatibilityMatched; //[0,0,14]gsf compatibility with signal PV w/ bs constraint (matching ckf track excluded from vertex)
392 bendavid 1.40 Double32_t fConvPartnerDCotTheta; //[0,0,14]delta cot theta to nearest conversion partner track
393     Double32_t fConvPartnerDist; //[0,0,14]distance in x-y plane to nearest conversion partner track
394     Double32_t fConvPartnerRadius; //[0,0,14]radius of helix intersection with conversion partner track
395 bendavid 1.46 Double32_t fPFChargedHadronIso; //[0,0,14]pf isolation, charged hadrons
396     Double32_t fPFNeutralHadronIso; //[0,0,14]pf isolation, neutral hadrons
397     Double32_t fPFPhotonIso; //[0,0,14]pf isolation, photons
398 bendavid 1.45 Int_t fConvFlag; //conversion flag indicating which track combination was used
399 bendavid 1.42 Vect3C fConvPosition;
400 loizides 1.29 Bool_t fIsEnergyScaleCorrected; //class dependent escale correction
401     Bool_t fIsMomentumCorrected; //class dependent E-p combination
402     Int_t fClassification; //classification (see GsfElectron.h)
403 bendavid 1.33 Bool_t fIsEB; //is ECAL barrel
404     Bool_t fIsEE; //is ECAL Endcap
405     Bool_t fIsEBEEGap; //is in barrel-endcap gap
406     Bool_t fIsEBEtaGap; //is in EB eta module gap
407     Bool_t fIsEBPhiGap; //is in EB phi module gap
408     Bool_t fIsEEDeeGap; //is in EE dee gap
409     Bool_t fIsEERingGap; //is in EE ring gap
410     Bool_t fIsEcalDriven; //is std. egamma electron
411     Bool_t fIsTrackerDriven; //is pflow track-seeded electron
412 bendavid 1.42 Bool_t fMatchesVertexConversion;
413 bendavid 1.43 RefArray<Track> fAmbiguousGsfTracks; //ambiguous gsf tracks for this electron
414 sixie 1.51 Double_t fEEleClusterOverPout; //energy of the electron cluster
415     Int_t fCTFTrkNLayersWithMeasurement; //number of tracker layers from associated ctf trk
416 paus 1.55 Double32_t fHadOverEmTow; //[0,0,14]per-tower definition of hadronic/em energy fraction
417     Double32_t fHCalIsoTowDr03; //[0,0,14]hcal isolation matched to per tower h/e definition
418     Double32_t fHCalIsoTowDr04; //[0,0,14]hcal isolation matched to per tower h/e definition
419     Double32_t fEcalEnergy; //[0,0,14]corrected Ecal energy
420     Double32_t fEcalEnergyError; //[0,0,14]corrected Ecal energy error
421 paus 1.58 Double32_t fTrackMomentumError; //track momentum error
422 paus 1.55 Ref<SuperCluster> fPFSuperClusterRef; //reference to Particle Flow SuperCluster
423 sixie 1.13
424 paus 1.55 ClassDef(Electron, 15) // Electron class
425 bendavid 1.1 };
426 loizides 1.4 }
427 loizides 1.8
428 loizides 1.9 //--------------------------------------------------------------------------------------------------
429 paus 1.50 inline void mithep::Electron::Mark(UInt_t ib) const
430 paus 1.49 {
431     // mark myself
432 paus 1.50 mithep::DataObject::Mark(ib);
433 paus 1.49 // mark my dependencies if they are there
434 paus 1.50 if (fSuperClusterRef.IsValid())
435     fSuperClusterRef.Obj()->Mark(ib);
436     if (fGsfTrackRef.IsValid())
437     fGsfTrackRef.Obj()->Mark(ib);
438     if (fTrackerTrackRef.IsValid())
439     fTrackerTrackRef.Obj()->Mark(ib);
440 paus 1.49 if (fConvPartnerTrackRef.IsValid())
441 paus 1.50 fConvPartnerTrackRef.Obj()->Mark(ib);
442     fAmbiguousGsfTracks.Mark(ib);
443 paus 1.49 }
444    
445     //--------------------------------------------------------------------------------------------------
446 loizides 1.10 inline const mithep::Track *mithep::Electron::BestTrk() const
447 loizides 1.9 {
448 loizides 1.10 // Return "best" track.
449    
450 bendavid 1.24 if (HasGsfTrk())
451 loizides 1.10 return GsfTrk();
452 bendavid 1.24 else if (HasTrackerTrk())
453 loizides 1.10 return TrackerTrk();
454 loizides 1.9
455 loizides 1.10 return 0;
456 loizides 1.9 }
457    
458 loizides 1.25 //--------------------------------------------------------------------------------------------------
459 bendavid 1.37 inline Double_t mithep::Electron::GetCharge() const
460     {
461     // Return stored charge, unless it is set to invalid (-99),
462     // in that case get charge from track as before
463    
464     if (fCharge==-99)
465     return mithep::ChargedParticle::GetCharge();
466     else
467     return fCharge;
468    
469     }
470    
471     //--------------------------------------------------------------------------------------------------
472 loizides 1.25 inline void mithep::Electron::GetMom() const
473 sixie 1.14 {
474 bendavid 1.31 // Get momentum of the electron. We use an explicitly stored three vector, with the pdg mass,
475     // since the momentum vector may be computed non-trivially in cmssw
476 sixie 1.14
477 bendavid 1.31 fCachedMom.SetCoordinates(fMom.Rho(),fMom.Eta(),fMom.Phi(),GetMass());
478 bendavid 1.18 }
479    
480     //-------------------------------------------------------------------------------------------------
481 loizides 1.25 inline Double_t mithep::Electron::ESeedClusterOverPIn() const
482 bendavid 1.18 {
483 loizides 1.25 // Return energy of the SuperCluster seed divided by the magnitude
484     // of the track momentum at the vertex.
485    
486     return SCluster()->Seed()->Energy() / PIn();
487 bendavid 1.18 }
488 bendavid 1.31
489     //-------------------------------------------------------------------------------------------------
490     inline void mithep::Electron::SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi)
491     {
492     // Set three-vector
493    
494     fMom.Set(pt,eta,phi);
495     ClearMom();
496     }
497 loizides 1.8 #endif