3 |
|
// |
4 |
|
// Electron |
5 |
|
// |
6 |
< |
// Details to be worked out... TODO: Needs description ala Muon class |
6 |
> |
// This class holds information about reconstructed electrons from CMSSW. |
7 |
|
// |
8 |
|
// Authors: C.Loizides, J.Bendavid, S.Xie |
9 |
|
//-------------------------------------------------------------------------------------------------- |
10 |
|
|
11 |
< |
#ifndef DATATREE_ELECTRON_H |
12 |
< |
#define DATATREE_ELECTRON_H |
11 |
> |
#ifndef MITANA_DATATREE_ELECTRON_H |
12 |
> |
#define MITANA_DATATREE_ELECTRON_H |
13 |
|
|
14 |
|
#include "MitAna/DataTree/interface/SuperCluster.h" |
15 |
|
#include "MitAna/DataTree/interface/ChargedParticle.h" |
16 |
+ |
#include "MitAna/DataCont/interface/Ref.h" |
17 |
|
|
18 |
|
namespace mithep |
19 |
|
{ |
20 |
|
class Electron : public ChargedParticle |
21 |
|
{ |
22 |
|
public: |
23 |
< |
Electron() : fESuperClusterOverP(0), fESeedClusterOverPout(0), fDeltaEtaSuperClTrkAtVtx(0), |
24 |
< |
fDeltaEtaSeedClTrkAtCalo(0), fDeltaPhiSuperClTrkAtVtx(0), |
25 |
< |
fDeltaPhiSeedClTrkAtCalo(0), fHadronicOverEm(0), fIsEnergyScaleCorrected(0), |
26 |
< |
fIsMomentumCorrected(0), fNumberOfClusters(0), fClassification(0), fE33(0), |
27 |
< |
fE55(0), fCovEtaEta(0), fCoviEtaiEta(0), fCovEtaPhi(0), fCovPhiPhi(0), |
28 |
< |
fCaloIsolation(0), fCaloTowerIsolation(0), fTrackIsolation(0), |
29 |
< |
fEcalJurassicIsolation(0), fHcalJurassicIsolation(0), fPassLooseID(0), |
30 |
< |
fPassTightID(0), fIDLikelihood(0), fPIn(0), fPOut(0) {} |
31 |
< |
~Electron() {} |
23 |
> |
Electron() : |
24 |
> |
fCharge(-99), fScPixCharge(0), |
25 |
> |
fESuperClusterOverP(0), fESeedClusterOverPout(0), fDeltaEtaSuperClTrkAtVtx(0), |
26 |
> |
fDeltaEtaSeedClTrkAtCalo(0), fDeltaPhiSuperClTrkAtVtx(0), |
27 |
> |
fDeltaPhiSeedClTrkAtCalo(0), fFBrem(0), fHadronicOverEm(0), fHcalDepth1OverEcal(0), |
28 |
> |
fHcalDepth2OverEcal(0), fNumberOfClusters(0), fE15(0), fE25Max(0), |
29 |
> |
fE55(0), fCovEtaEta(0), fCoviEtaiEta(0), |
30 |
> |
fCaloIsolation(0), fHcalJurassicIsolation(0), |
31 |
> |
fHcalDepth1TowerSumEtDr04(0), fHcalDepth2TowerSumEtDr04(0), |
32 |
> |
fEcalJurassicIsolation(0), fTrackIsolationDr04(0), fCaloTowerIsolation(0), |
33 |
> |
fHcalDepth1TowerSumEtDr03(0), fHcalDepth2TowerSumEtDr03(0), |
34 |
> |
fEcalRecHitSumEtDr03(0), fTrackIsolation(0), fPassLooseID(0), |
35 |
> |
fPassTightID(0), fIDLikelihood(0), fPIn(0), fPOut(0), fFracSharedHits(0), |
36 |
> |
fMva(0), fD0PV(0), fD0PVErr(0), fIp3dPV(0), fIp3dPVErr(0), |
37 |
> |
fD0PVBS(0), fD0PVBSErr(0), fIp3dPVBS(0), fIp3dPVBSErr(0), |
38 |
> |
fD0PVCkf(0), fD0PVCkfErr(0), fIp3dPVCkf(0), fIp3dPVCkfErr(0), |
39 |
> |
fD0PVBSCkf(0), fD0PVBSCkfErr(0), fIp3dPVBSCkf(0), fIp3dPVBSCkfErr(0), |
40 |
> |
fGsfPVCompatibility(0), fGsfPVBSCompatibility(0), |
41 |
> |
fGsfPVCompatibilityMatched(0), fGsfPVBSCompatibilityMatched(0), |
42 |
> |
fConvPartnerDCotTheta(0), fConvPartnerDist(0), fConvPartnerRadius(0), |
43 |
> |
fConvFlag(0), fIsEnergyScaleCorrected(0), fIsMomentumCorrected(0), |
44 |
> |
fClassification(0), fIsEB(), fIsEE(0), fIsEBEEGap(0), fIsEBEtaGap(0), |
45 |
> |
fIsEBPhiGap(0), fIsEEDeeGap(0), fIsEERingGap(0), |
46 |
> |
fIsEcalDriven(0), fIsTrackerDriven(0), fMatchesVertexConversion(0) {} |
47 |
> |
|
48 |
> |
const Track *BestTrk() const; |
49 |
> |
Double_t D0PV() const { return fD0PV; } |
50 |
> |
Double_t D0PVErr() const { return fD0PVErr; } |
51 |
> |
Double_t D0PVSignificance() const { return fD0PV/fD0PVErr; } |
52 |
> |
Double_t Ip3dPV() const { return fIp3dPV; } |
53 |
> |
Double_t Ip3dPVErr() const { return fIp3dPVErr; } |
54 |
> |
Double_t Ip3dPVSignificance() const { return fIp3dPV/fIp3dPVErr; } |
55 |
> |
Double_t D0PVBS() const { return fD0PVBS; } |
56 |
> |
Double_t D0PVBSErr() const { return fD0PVBSErr; } |
57 |
> |
Double_t D0PVBSSignificance() const { return fD0PVBS/fD0PVBSErr; } |
58 |
> |
Double_t Ip3dPVBS() const { return fIp3dPVBS; } |
59 |
> |
Double_t Ip3dPVBSErr() const { return fIp3dPVBSErr; } |
60 |
> |
Double_t Ip3dPVBSSignificance() const { return fIp3dPVBS/fIp3dPVBSErr; } |
61 |
> |
Double_t D0PVCkf() const { return fD0PVCkf; } |
62 |
> |
Double_t D0PVCkfErr() const { return fD0PVCkfErr; } |
63 |
> |
Double_t D0PVCkfSignificance() const { return fD0PVCkf/fD0PVCkfErr; } |
64 |
> |
Double_t Ip3dPVCkf() const { return fIp3dPVCkf; } |
65 |
> |
Double_t Ip3dPVCkfErr() const { return fIp3dPVCkfErr; } |
66 |
> |
Double_t Ip3dPVCkfSignificance() const { return fIp3dPVCkf/fIp3dPVCkfErr; } |
67 |
> |
Double_t D0PVBSCkf() const { return fD0PVBSCkf; } |
68 |
> |
Double_t D0PVBSCkfErr() const { return fD0PVBSCkfErr; } |
69 |
> |
Double_t D0PVBSCkfSignificance() const { return fD0PVBSCkf/fD0PVBSCkfErr; } |
70 |
> |
Double_t Ip3dPVBSCkf() const { return fIp3dPVBSCkf; } |
71 |
> |
Double_t Ip3dPVBSCkfErr() const { return fIp3dPVBSCkfErr; } |
72 |
> |
Double_t Ip3dPVBSCkfSignificance() const { return fIp3dPVBSCkf/fIp3dPVBSCkfErr; } |
73 |
> |
Double_t GsfPVCompatibility() const { return fGsfPVCompatibility; } |
74 |
> |
Double_t GsfPVBSCompatibility() const { return fGsfPVBSCompatibility; } |
75 |
> |
Double_t GsfPVCompatibilityMatched() const { return fGsfPVCompatibilityMatched; } |
76 |
> |
Double_t GsfPVBSCompatibilityMatched() const { return fGsfPVBSCompatibilityMatched; } |
77 |
> |
Double_t ConvPartnerDCotTheta() const { return fConvPartnerDCotTheta; } |
78 |
> |
Double_t ConvPartnerDist() const { return fConvPartnerDist; } |
79 |
> |
Double_t ConvPartnerRadius() const { return fConvPartnerRadius; } |
80 |
> |
Int_t ConvFlag() const { return fConvFlag; } |
81 |
> |
Double_t CaloIsolation() const { return fCaloIsolation; } // *DEPRECATED* |
82 |
> |
Int_t Classification() const { return fClassification; } |
83 |
> |
Double_t CovEtaEta() const { return fCovEtaEta; } |
84 |
> |
Double_t CoviEtaiEta() const { return fCoviEtaiEta; } |
85 |
> |
Double_t DeltaEtaSuperClusterTrackAtVtx() const |
86 |
> |
{ return fDeltaEtaSuperClTrkAtVtx; } |
87 |
> |
Double_t DeltaEtaSeedClusterTrackAtCalo() const |
88 |
> |
{ return fDeltaEtaSeedClTrkAtCalo; } |
89 |
> |
Double_t DeltaPhiSuperClusterTrackAtVtx() const |
90 |
> |
{ return fDeltaPhiSuperClTrkAtVtx; } |
91 |
> |
Double_t DeltaPhiSeedClusterTrackAtCalo() const |
92 |
> |
{ return fDeltaPhiSeedClTrkAtCalo; } |
93 |
> |
Double_t E15() const { return fE15; } |
94 |
> |
Double_t E25Max() const { return fE25Max; } |
95 |
> |
Double_t E55() const { return fE55; } |
96 |
> |
Double_t ESuperClusterOverP() const { return fESuperClusterOverP; } |
97 |
> |
Double_t ESeedClusterOverPout() const { return fESeedClusterOverPout; } |
98 |
> |
Double_t ESeedClusterOverPIn() const; |
99 |
> |
Double_t FBrem() const { return fFBrem; } |
100 |
> |
Double_t FBremOld() const { return (PIn() - POut())/PIn(); } |
101 |
> |
Double_t FracSharedHits() const { return fFracSharedHits; } |
102 |
> |
const Track *GsfTrk() const { return fGsfTrackRef.Obj(); } |
103 |
> |
Double_t HadronicOverEm() const { return fHadronicOverEm; } |
104 |
> |
Double_t HcalDepth1OverEcal() const { return fHcalDepth1OverEcal; } |
105 |
> |
Double_t HcalDepth2OverEcal() const { return fHcalDepth2OverEcal; } |
106 |
> |
Bool_t HasGsfTrk() const { return fGsfTrackRef.IsValid(); } |
107 |
> |
Bool_t HasTrackerTrk() const { return fTrackerTrackRef.IsValid(); } |
108 |
> |
Bool_t HasSuperCluster() const { return fSuperClusterRef.IsValid(); } |
109 |
> |
Double_t HcalIsolation() const { return fHcalJurassicIsolation; } // *DEPRECATED* |
110 |
> |
Double_t IDLikelihood() const { return fIDLikelihood; } |
111 |
> |
Bool_t IsEnergyScaleCorrected() const { return fIsEnergyScaleCorrected; } |
112 |
> |
Bool_t IsMomentumCorrected() const { return fIsMomentumCorrected; } |
113 |
> |
Bool_t IsEB() const { return fIsEB; } |
114 |
> |
Bool_t IsEE() const { return fIsEE; } |
115 |
> |
Bool_t IsEBEEGap() const { return fIsEBEEGap; } |
116 |
> |
Bool_t IsEBEtaGap() const { return fIsEBEtaGap; } |
117 |
> |
Bool_t IsEBPhiGap() const { return fIsEBPhiGap; } |
118 |
> |
Bool_t IsEEDeeGap() const { return fIsEEDeeGap; } |
119 |
> |
Bool_t IsEERingGap() const { return fIsEERingGap; } |
120 |
> |
Bool_t IsEcalDriven() const { return fIsEcalDriven; } |
121 |
> |
Bool_t IsTrackerDriven() const { return fIsTrackerDriven; } |
122 |
> |
Double_t Mva() const { return fMva; } |
123 |
> |
Double_t NumberOfClusters() const { return fNumberOfClusters; } |
124 |
> |
EObjType ObjType() const { return kElectron; } |
125 |
> |
Double_t PassLooseID() const { return fPassLooseID; } |
126 |
> |
Double_t PassTightID() const { return fPassTightID; } |
127 |
> |
Double_t PIn() const { return fPIn; } |
128 |
> |
Double_t POut() const { return fPOut; } |
129 |
> |
const SuperCluster *SCluster() const { return fSuperClusterRef.Obj(); } |
130 |
> |
Double_t ScPixCharge() const { return fScPixCharge; } |
131 |
|
|
132 |
< |
const Track *BestTrk() const; |
133 |
< |
const Track *GsfTrk() const; |
134 |
< |
const Track *TrackerTrk() const; |
135 |
< |
const SuperCluster *SCluster() const; |
136 |
< |
FourVector Mom() const; |
132 |
> |
Double_t EcalRecHitIsoDr04() const { return fEcalJurassicIsolation; } |
133 |
> |
Double_t HcalTowerSumEtDr04() const { return HcalDepth1TowerSumEtDr04() + |
134 |
> |
HcalDepth2TowerSumEtDr04(); } |
135 |
> |
Double_t HcalDepth1TowerSumEtDr04() const { return fHcalDepth1TowerSumEtDr04; } |
136 |
> |
Double_t HcalDepth2TowerSumEtDr04() const { return fHcalDepth2TowerSumEtDr04; } |
137 |
> |
Double_t TrackIsolationDr04() const { return fTrackIsolationDr04; } |
138 |
> |
Double_t EcalRecHitIsoDr03() const { return fEcalRecHitSumEtDr03; } |
139 |
> |
Double_t HcalTowerSumEtDr03() const { return fCaloTowerIsolation; } |
140 |
> |
Double_t HcalDepth1TowerSumEtDr03() const { return fHcalDepth1TowerSumEtDr03; } |
141 |
> |
Double_t HcalDepth2TowerSumEtDr03() const { return fHcalDepth2TowerSumEtDr03; } |
142 |
> |
Double_t TrackIsolationDr03() const { return fTrackIsolation; } |
143 |
> |
Bool_t MatchesVertexConversion() const { return fMatchesVertexConversion; } |
144 |
> |
UInt_t NAmbiguousGsfTracks() const { return fAmbiguousGsfTracks.Entries(); } |
145 |
> |
Bool_t HasAmbiguousGsfTrack(const Track *t) const { return fAmbiguousGsfTracks.HasObject(t); } |
146 |
> |
const Track *AmbiguousGsfTrack(UInt_t i) const { return fAmbiguousGsfTracks.At(i); } |
147 |
> |
|
148 |
> |
void AddAmbiguousGsfTrack(const Track *t) { fAmbiguousGsfTracks.Add(t); } |
149 |
> |
void SetCharge(Char_t x) { fCharge = x; ClearCharge(); } |
150 |
> |
void SetScPixCharge(Char_t x) { fScPixCharge = x; } |
151 |
> |
void SetD0PV(Double_t x) { fD0PV = x; } |
152 |
> |
void SetD0PVErr(Double_t x) { fD0PVErr = x; } |
153 |
> |
void SetIp3dPV(Double_t x) { fIp3dPV = x; } |
154 |
> |
void SetIp3dPVErr(Double_t x) { fIp3dPVErr = x; } |
155 |
> |
void SetD0PVBS(Double_t x) { fD0PVBS = x; } |
156 |
> |
void SetD0PVBSErr(Double_t x) { fD0PVBSErr = x; } |
157 |
> |
void SetIp3dPVBS(Double_t x) { fIp3dPVBS = x; } |
158 |
> |
void SetIp3dPVBSErr(Double_t x) { fIp3dPVBSErr = x; } |
159 |
> |
void SetD0PVCkf(Double_t x) { fD0PVCkf = x; } |
160 |
> |
void SetD0PVCkfErr(Double_t x) { fD0PVCkfErr = x; } |
161 |
> |
void SetIp3dPVCkf(Double_t x) { fIp3dPVCkf = x; } |
162 |
> |
void SetIp3dPVCkfErr(Double_t x) { fIp3dPVCkfErr = x; } |
163 |
> |
void SetD0PVBSCkf(Double_t x) { fD0PVBSCkf = x; } |
164 |
> |
void SetD0PVBSCkfErr(Double_t x) { fD0PVBSCkfErr = x; } |
165 |
> |
void SetIp3dPVBSCkf(Double_t x) { fIp3dPVBSCkf = x; } |
166 |
> |
void SetIp3dPVBSCkfErr(Double_t x) { fIp3dPVBSCkfErr = x; } |
167 |
> |
void SetGsfPVCompatibility(Double_t x) { fGsfPVCompatibility = x; } |
168 |
> |
void SetGsfPVBSCompatibility(Double_t x) { fGsfPVBSCompatibility = x; } |
169 |
> |
void SetGsfPVCompatibilityMatched(Double_t x) { fGsfPVCompatibilityMatched = x; } |
170 |
> |
void SetGsfPVBSCompatibilityMatched(Double_t x) { fGsfPVBSCompatibilityMatched = x; } |
171 |
> |
void SetConvPartnerDCotTheta(Double_t x) { fConvPartnerDCotTheta = x; } |
172 |
> |
void SetConvPartnerDist(Double_t x) { fConvPartnerDist = x; } |
173 |
> |
void SetConvPartnerRadius(Double_t x) { fConvPartnerRadius = x; } |
174 |
> |
void SetConvFlag(Int_t n) { fConvFlag = n; } |
175 |
> |
void SetClassification(Int_t x) { fClassification = x; } |
176 |
> |
void SetCovEtaEta(Double_t CovEtaEta) { fCovEtaEta = CovEtaEta; } |
177 |
> |
void SetCoviEtaiEta(Double_t CoviEtaiEta) { fCoviEtaiEta = CoviEtaiEta; } |
178 |
> |
void SetDeltaEtaSuperClusterTrackAtVtx(Double_t x) |
179 |
> |
{ fDeltaEtaSuperClTrkAtVtx = x; } |
180 |
> |
void SetDeltaEtaSeedClusterTrackAtCalo(Double_t x) |
181 |
> |
{ fDeltaEtaSeedClTrkAtCalo = x; } |
182 |
> |
void SetDeltaPhiSuperClusterTrackAtVtx(Double_t x) |
183 |
> |
{ fDeltaPhiSuperClTrkAtVtx = x; } |
184 |
> |
void SetDeltaPhiSeedClusterTrackAtCalo(Double_t x) |
185 |
> |
{ fDeltaPhiSeedClTrkAtCalo = x; } |
186 |
> |
void SetE15(Double_t x) { fE15 = x; } |
187 |
> |
void SetE25Max(Double_t x) { fE25Max = x; } |
188 |
> |
void SetE55(Double_t x) { fE55 = x; } |
189 |
> |
void SetESeedClusterOverPout(Double_t x) { fESeedClusterOverPout = x; } |
190 |
> |
void SetESuperClusterOverP(Double_t x) { fESuperClusterOverP = x; } |
191 |
> |
void SetFBrem(Double_t x) { fFBrem = x; } |
192 |
> |
void SetFracSharedHits(Double_t x) { fFracSharedHits = x; } |
193 |
> |
void SetGsfTrk(const Track* t) |
194 |
> |
{ fGsfTrackRef = t; ClearCharge(); } |
195 |
> |
void SetHadronicOverEm(Double_t x) { fHadronicOverEm = x; } |
196 |
> |
void SetHcalDepth1OverEcal(Double_t x) { fHcalDepth1OverEcal = x; } |
197 |
> |
void SetHcalDepth2OverEcal(Double_t x) { fHcalDepth2OverEcal = x; } |
198 |
> |
void SetIDLikelihood(Double_t likelihood) { fIDLikelihood = likelihood; } |
199 |
> |
void SetIsEnergyScaleCorrected(Bool_t x) { fIsEnergyScaleCorrected = x; } |
200 |
> |
void SetIsMomentumCorrected(Bool_t x) { fIsMomentumCorrected = x; } |
201 |
> |
void SetNumberOfClusters(Double_t x) { fNumberOfClusters = x; } |
202 |
> |
void SetPIn(Double_t PIn) { fPIn = PIn; } |
203 |
> |
void SetPOut(Double_t POut) { fPOut = POut; } |
204 |
> |
void SetPassLooseID(Double_t passLooseID) { fPassLooseID = passLooseID; } |
205 |
> |
void SetPassTightID(Double_t passTightID) { fPassTightID = passTightID; } |
206 |
> |
void SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi); |
207 |
> |
void SetSuperCluster(const SuperCluster* sc) |
208 |
> |
{ fSuperClusterRef = sc; } |
209 |
> |
void SetTrackerTrk(const Track* t) |
210 |
> |
{ fTrackerTrackRef = t; ClearCharge(); } |
211 |
> |
void SetConvPartnerTrk(const Track *t) |
212 |
> |
{ fConvPartnerTrackRef = t; } |
213 |
> |
void SetEcalRecHitIsoDr04(Double_t x) { fEcalJurassicIsolation = x; } |
214 |
> |
void SetHcalDepth1TowerSumEtDr04(Double_t x) { fHcalDepth1TowerSumEtDr04 = x; } |
215 |
> |
void SetHcalDepth2TowerSumEtDr04(Double_t x) { fHcalDepth2TowerSumEtDr04 = x; } |
216 |
> |
void SetTrackIsolationDr04(Double_t x) { fTrackIsolationDr04 = x; } |
217 |
> |
void SetEcalRecHitIsoDr03(Double_t x) { fEcalRecHitSumEtDr03 = x; } |
218 |
> |
void SetHcalTowerSumEtDr03(Double_t x) { fCaloTowerIsolation = x; } |
219 |
> |
void SetHcalDepth1TowerSumEtDr03(Double_t x) { fHcalDepth1TowerSumEtDr03 = x; } |
220 |
> |
void SetHcalDepth2TowerSumEtDr03(Double_t x) { fHcalDepth2TowerSumEtDr03 = x; } |
221 |
> |
void SetTrackIsolationDr03(Double_t x) { fTrackIsolation = x; } |
222 |
> |
void SetMva(Double_t x) { fMva = x; } |
223 |
> |
void SetIsEB(Bool_t b) { fIsEB = b; } |
224 |
> |
void SetIsEE(Bool_t b) { fIsEE = b; } |
225 |
> |
void SetIsEBEEGap(Bool_t b) { fIsEBEEGap = b; } |
226 |
> |
void SetIsEBEtaGap(Bool_t b) { fIsEBEtaGap = b; } |
227 |
> |
void SetIsEBPhiGap(Bool_t b) { fIsEBPhiGap = b; } |
228 |
> |
void SetIsEEDeeGap(Bool_t b) { fIsEEDeeGap = b; } |
229 |
> |
void SetIsEERingGap(Bool_t b) { fIsEERingGap = b; } |
230 |
> |
void SetIsEcalDriven(Bool_t b) { fIsEcalDriven = b; } |
231 |
> |
void SetIsTrackerDriven(Bool_t b) { fIsTrackerDriven = b; } |
232 |
> |
void SetMatchesVertexConversion(Bool_t b) { fMatchesVertexConversion = b; } |
233 |
> |
void SetConversionXYZ(Double_t x, Double_t y, Double_t z) |
234 |
> |
{ fConvPosition.SetXYZ(x,y,z); } |
235 |
> |
|
236 |
> |
|
237 |
> |
const Track *TrackerTrk() const { return fTrackerTrackRef.Obj(); } |
238 |
|
const Track *Trk() const { return BestTrk(); } |
239 |
< |
Double_t CaloIsolation() const { return fCaloIsolation; } |
39 |
< |
Double_t CaloTowerIsolation() const { return fCaloTowerIsolation; } |
40 |
< |
Double_t Classification() const { return fClassification; } |
41 |
< |
Double_t CovEtaEta() const { return fCovEtaEta; } |
42 |
< |
Double_t CovEtaPhi() const { return fCovEtaPhi; } |
43 |
< |
Double_t CovPhiPhi() const { return fCovPhiPhi; } |
44 |
< |
Double_t CoviEtaiEta() const { return fCoviEtaiEta; } |
45 |
< |
Double_t DeltaEtaSuperClusterTrackAtVtx() const { return fDeltaEtaSuperClTrkAtVtx; } |
46 |
< |
Double_t DeltaEtaSeedClusterTrackAtCalo() const { return fDeltaEtaSeedClTrkAtCalo; } |
47 |
< |
Double_t DeltaPhiSuperClusterTrackAtVtx() const { return fDeltaPhiSuperClTrkAtVtx; } |
48 |
< |
Double_t DeltaPhiSeedClusterTrackAtCalo() const { return fDeltaPhiSeedClTrkAtCalo; } |
49 |
< |
Double_t E() const; |
50 |
< |
Double_t E33() const { return fE33; } |
51 |
< |
Double_t E55() const { return fE55; } |
52 |
< |
Double_t EcalJurassicIsolation() const { return fEcalJurassicIsolation; } |
53 |
< |
Double_t ESuperClusterOverP() const { return fESuperClusterOverP; } |
54 |
< |
Double_t ESeedClusterOverPout() const { return fESeedClusterOverPout; } |
55 |
< |
Double_t ESeedClusterOverPIn() const; |
56 |
< |
Double_t IDLikelihood() const { return fIDLikelihood; } |
57 |
< |
Double_t IsEnergyScaleCorrected() const { return fIsEnergyScaleCorrected; } |
58 |
< |
Double_t IsMomentumCorrected() const { return fIsMomentumCorrected; } |
59 |
< |
Double_t HadronicOverEm() const { return fHadronicOverEm; } |
60 |
< |
Double_t HcalIsolation() const { return fHcalJurassicIsolation; } |
61 |
< |
Double_t Mass() const { return 0.51099892e-3; } |
62 |
< |
Double_t NumberOfClusters() const { return fNumberOfClusters; } |
63 |
< |
EObjType ObjType() const { return kElectron; } |
64 |
< |
Double_t PassLooseID() const { return fPassLooseID; } |
65 |
< |
Double_t PassTightID() const { return fPassTightID; } |
66 |
< |
Double_t PIn() const { return fPIn; } |
67 |
< |
Double_t POut() const { return fPOut; } |
68 |
< |
Double_t P() const; |
69 |
< |
Double_t Pt() const; |
70 |
< |
Double_t Px() const; |
71 |
< |
Double_t Py() const; |
72 |
< |
Double_t Pz() const; |
73 |
< |
Double_t TrackIsolation() const { return fTrackIsolation; } |
74 |
< |
void SetGsfTrk(const Track* t) |
75 |
< |
{ fGsfTrackRef = const_cast<Track*>(t); } |
76 |
< |
void SetTrackerTrk(const Track* t) |
77 |
< |
{ fTrackerTrackRef = const_cast<Track*>(t); } |
78 |
< |
void SetSuperCluster(const SuperCluster* sc) |
79 |
< |
{ fSuperClusterRef = const_cast<SuperCluster*>(sc); } |
80 |
< |
void SetCaloIsolation(Double_t CaloIsolation) { fCaloIsolation = CaloIsolation; } |
81 |
< |
void SetCaloTowerIsolation(Double_t TowerIso) { fCaloTowerIsolation = TowerIso; } |
82 |
< |
void SetClassification(Double_t x) { fClassification = x; } |
83 |
< |
void SetCovEtaEta(Double_t CovEtaEta) { fCovEtaEta = CovEtaEta; } |
84 |
< |
void SetCovEtaPhi(Double_t CovEtaPhi) { fCovEtaPhi = CovEtaPhi; } |
85 |
< |
void SetCovPhiPhi(Double_t CovPhiPhi) { fCovPhiPhi = CovPhiPhi; } |
86 |
< |
void SetCoviEtaiEta(Double_t CoviEtaiEta) { fCoviEtaiEta = CoviEtaiEta; } |
87 |
< |
void SetDeltaEtaSuperClusterTrackAtVtx(Double_t x) { fDeltaEtaSuperClTrkAtVtx = x; } |
88 |
< |
void SetDeltaEtaSeedClusterTrackAtCalo(Double_t x) { fDeltaEtaSeedClTrkAtCalo = x; } |
89 |
< |
void SetDeltaPhiSuperClusterTrackAtVtx(Double_t x) { fDeltaPhiSuperClTrkAtVtx = x; } |
90 |
< |
void SetDeltaPhiSeedClusterTrackAtCalo(Double_t x) { fDeltaPhiSeedClTrkAtCalo = x; } |
91 |
< |
void SetE33(Double_t E33) { fE33 = E33; } |
92 |
< |
void SetE55(Double_t E55) { fE55 = E55; } |
93 |
< |
void SetEcalJurassicIsolation(Double_t iso ) { fEcalJurassicIsolation = iso; } |
94 |
< |
void SetESuperClusterOverP(Double_t x) { fESuperClusterOverP = x; } |
95 |
< |
void SetESeedClusterOverPout(Double_t x) { fESeedClusterOverPout = x; } |
96 |
< |
void SetHadronicOverEm(Double_t x) { fHadronicOverEm = x; } |
97 |
< |
void SetIDLikelihood(Double_t likelihood) { fIDLikelihood = likelihood; } |
98 |
< |
void SetIsEnergyScaleCorrected(Double_t x) { fIsEnergyScaleCorrected = x; } |
99 |
< |
void SetIsMomentumCorrected(Double_t x) { fIsMomentumCorrected = x; } |
100 |
< |
void SetHcalIsolation(Double_t iso ) { fHcalJurassicIsolation = iso; } |
101 |
< |
void SetNumberOfClusters(Double_t x) { fNumberOfClusters = x; } |
102 |
< |
void SetPassLooseID(Double_t passLooseID) { fPassLooseID = passLooseID; } |
103 |
< |
void SetPassTightID(Double_t passTightID) { fPassTightID = passTightID; } |
104 |
< |
void SetPIn(Double_t PIn) { fPIn = PIn; } |
105 |
< |
void SetPOut(Double_t POut) { fPOut = POut; } |
106 |
< |
void SetTrackIsolation(Double_t TrackIsolation) { fTrackIsolation = TrackIsolation;} |
239 |
> |
const Track *ConvPartnerTrk() const { return fConvPartnerTrackRef.Obj(); } |
240 |
|
|
241 |
|
protected: |
242 |
< |
TRef fGsfTrackRef; //global combined track reference |
243 |
< |
TRef fTrackerTrackRef; //tracker track reference |
244 |
< |
TRef fSuperClusterRef; //reference to SuperCluster |
245 |
< |
Double_t fESuperClusterOverP; // |
246 |
< |
Double_t fESeedClusterOverPout; // |
247 |
< |
Double_t fDeltaEtaSuperClTrkAtVtx; // |
248 |
< |
Double_t fDeltaEtaSeedClTrkAtCalo; // |
249 |
< |
Double_t fDeltaPhiSuperClTrkAtVtx; // |
250 |
< |
Double_t fDeltaPhiSeedClTrkAtCalo; // |
251 |
< |
Double_t fHadronicOverEm; // |
252 |
< |
Double_t fIsEnergyScaleCorrected; // |
253 |
< |
Double_t fIsMomentumCorrected; // |
254 |
< |
Double_t fNumberOfClusters; // |
255 |
< |
Double_t fClassification; // |
256 |
< |
Double_t fE33; // |
257 |
< |
Double_t fE55; // |
258 |
< |
Double_t fCovEtaEta; // |
259 |
< |
Double_t fCoviEtaiEta; // |
260 |
< |
Double_t fCovEtaPhi; // |
261 |
< |
Double_t fCovPhiPhi; // |
262 |
< |
Double_t fCaloIsolation; // |
263 |
< |
Double_t fCaloTowerIsolation; // |
264 |
< |
Double_t fTrackIsolation; // |
265 |
< |
Double_t fEcalJurassicIsolation; // |
266 |
< |
Double_t fHcalJurassicIsolation; // |
267 |
< |
Double_t fPassLooseID; // |
268 |
< |
Double_t fPassTightID; // |
269 |
< |
Double_t fIDLikelihood; // |
270 |
< |
Double_t fPIn; // |
271 |
< |
Double_t fPOut; // |
242 |
> |
Double_t GetCharge() const; |
243 |
> |
Double_t GetMass() const { return 0.51099892e-3; } |
244 |
> |
void GetMom() const; |
245 |
> |
|
246 |
> |
Vect3C fMom; //stored three-momentum |
247 |
> |
Char_t fCharge; //stored charge - filled with -99 when reading old files |
248 |
> |
Char_t fScPixCharge; //charge from supercluster-pixel matching |
249 |
> |
Ref<Track> fGsfTrackRef; //gsf track reference |
250 |
> |
Ref<Track> fTrackerTrackRef; //tracker track reference |
251 |
> |
Ref<Track> fConvPartnerTrackRef; //conversion partner track reference |
252 |
> |
Ref<SuperCluster> fSuperClusterRef; //reference to SuperCluster |
253 |
> |
Double32_t fESuperClusterOverP; //[0,0,14]super cluster e over p ratio |
254 |
> |
Double32_t fESeedClusterOverPout; //[0,0,14]seed cluster e over p mom |
255 |
> |
Double32_t fDeltaEtaSuperClTrkAtVtx; //[0,0,14]delta eta of super cluster with trk |
256 |
> |
Double32_t fDeltaEtaSeedClTrkAtCalo; //[0,0,14]delta eta of seeed cluster with trk |
257 |
> |
Double32_t fDeltaPhiSuperClTrkAtVtx; //[0,0,14]delta phi of super cluster with trk |
258 |
> |
Double32_t fDeltaPhiSeedClTrkAtCalo; //[0,0,14]delta phi of seeed cluster with trk |
259 |
> |
Double32_t fFBrem; //[0,0,14]brem fraction |
260 |
> |
Double32_t fHadronicOverEm; //[0,0,14]hadronic over em fraction *DEPRECATED* |
261 |
> |
Double32_t fHcalDepth1OverEcal; //[0,0,14]hadronic over em fraction depth1 |
262 |
> |
Double32_t fHcalDepth2OverEcal; //[0,0,14]hadronic over em fraction depth2 |
263 |
> |
Double32_t fNumberOfClusters; //[0,0,14]number of associated clusters |
264 |
> |
Double32_t fE15; //[0,0,14]1x5 crystal energy |
265 |
> |
Double32_t fE25Max; //[0,0,14]2x5 crystal energy (max of two possible sums) |
266 |
> |
Double32_t fE55; //[0,0,14]5x5 crystal energy |
267 |
> |
Double32_t fCovEtaEta; //[0,0,14]variance eta-eta |
268 |
> |
Double32_t fCoviEtaiEta; //[0,0,14]covariance eta-eta (in crystals) |
269 |
> |
Double32_t fCaloIsolation; //[0,0,14](non-jura) ecal isolation based on rechits dR 0.3 *DEPRECATED* |
270 |
> |
Double32_t fHcalJurassicIsolation; //[0,0,14]hcal jura iso dR 0.4 *DEPRECATED* |
271 |
> |
Double32_t fHcalDepth1TowerSumEtDr04; //[0,0,14]hcal depth1 tower based isolation dR 0.4 |
272 |
> |
Double32_t fHcalDepth2TowerSumEtDr04; //[0,0,14]hcal depth2 tower based isolation dR 0.4 |
273 |
> |
Double32_t fEcalJurassicIsolation; //[0,0,14]ecal jura iso dR 0.4 *RENAMING* |
274 |
> |
Double32_t fTrackIsolationDr04; //[0,0,14]isolation based on tracks dR 0.4 |
275 |
> |
Double32_t fCaloTowerIsolation; //[0,0,14]hcal tower based isolation dR 0.3 *DEPRECATED* |
276 |
> |
Double32_t fHcalDepth1TowerSumEtDr03; //[0,0,14]hcal depth1 tower based isolation dR 0.3 |
277 |
> |
Double32_t fHcalDepth2TowerSumEtDr03; //[0,0,14]hcal depth2 tower based isolation dR 0.3 |
278 |
> |
Double32_t fEcalRecHitSumEtDr03; //[0,0,14]ecal jura iso dR 0.3 |
279 |
> |
Double32_t fTrackIsolation; //[0,0,14]isolation based on tracks dR 0.3 *RENAMING* |
280 |
> |
Double32_t fPassLooseID; //[0,0,14]pass loose id |
281 |
> |
Double32_t fPassTightID; //[0,0,14]pass tight id |
282 |
> |
Double32_t fIDLikelihood; //[0,0,14]likelihood value |
283 |
> |
Double32_t fPIn; //[0,0,14]momentum at vtx |
284 |
> |
Double32_t fPOut; //[0,0,14]momentum at ecal surface |
285 |
> |
Double32_t fFracSharedHits; //[0,0,14]fraction of shared hits btw gsf and std. track |
286 |
> |
Double32_t fMva; //[0,0,14] pflow mva output |
287 |
> |
Double32_t fD0PV; //[0,0,14]transverse impact parameter to signal PV (gsf track) |
288 |
> |
Double32_t fD0PVErr; //[0,0,14]transverse impact parameter uncertainty to signal PV (gsf track) |
289 |
> |
Double32_t fIp3dPV; //[0,0,14]3d impact parameter to signal PV (gsf track) |
290 |
> |
Double32_t fIp3dPVErr; //[0,0,14]3d impact parameter uncertainty to signal PV (gsf track) |
291 |
> |
Double32_t fD0PVBS; //[0,0,14]transverse impact parameter to signal PV w/ bs constraint (gsf track) |
292 |
> |
Double32_t fD0PVBSErr; //[0,0,14]transverse impact parameter uncertainty to signal PV w/ bs constraint (gsf track) |
293 |
> |
Double32_t fIp3dPVBS; //[0,0,14]3d impact parameter to signal PV w/ bs constraint (gsf track) |
294 |
> |
Double32_t fIp3dPVBSErr; //[0,0,14]3d impact parameter uncertainty to signal PV w/ bs constraint (gsf track) |
295 |
> |
Double32_t fD0PVCkf; //[0,0,14]transverse impact parameter to signal PV (ckf track) |
296 |
> |
Double32_t fD0PVCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PV (ckf track) |
297 |
> |
Double32_t fIp3dPVCkf; //[0,0,14]3d impact parameter to signal PV (ckf track) |
298 |
> |
Double32_t fIp3dPVCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PV (ckf track) |
299 |
> |
Double32_t fD0PVBSCkf; //[0,0,14]transverse impact parameter to signal PV w/ bs constraint (ckf track) |
300 |
> |
Double32_t fD0PVBSCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PV w/ bs constraint (ckf track) |
301 |
> |
Double32_t fIp3dPVBSCkf; //[0,0,14]3d impact parameter to signal PV w/ bs constraint (ckf track) |
302 |
> |
Double32_t fIp3dPVBSCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PV w/ bs constraint (ckf track) |
303 |
> |
Double32_t fGsfPVCompatibility; //[0,0,14]gsf compatibility with signal PV |
304 |
> |
Double32_t fGsfPVBSCompatibility; //[0,0,14]gsf compatibility with signal PV w/ bs constraint |
305 |
> |
Double32_t fGsfPVCompatibilityMatched; //[0,0,14]gsf compatibility with signal PV (matching ckf track excluded from vertex) |
306 |
> |
Double32_t fGsfPVBSCompatibilityMatched; //[0,0,14]gsf compatibility with signal PV w/ bs constraint (matching ckf track excluded from vertex) |
307 |
> |
Double32_t fConvPartnerDCotTheta; //[0,0,14]delta cot theta to nearest conversion partner track |
308 |
> |
Double32_t fConvPartnerDist; //[0,0,14]distance in x-y plane to nearest conversion partner track |
309 |
> |
Double32_t fConvPartnerRadius; //[0,0,14]radius of helix intersection with conversion partner track |
310 |
> |
Int_t fConvFlag; //conversion flag indicating which track combination was used |
311 |
> |
Vect3C fConvPosition; |
312 |
> |
Bool_t fIsEnergyScaleCorrected; //class dependent escale correction |
313 |
> |
Bool_t fIsMomentumCorrected; //class dependent E-p combination |
314 |
> |
Int_t fClassification; //classification (see GsfElectron.h) |
315 |
> |
Bool_t fIsEB; //is ECAL barrel |
316 |
> |
Bool_t fIsEE; //is ECAL Endcap |
317 |
> |
Bool_t fIsEBEEGap; //is in barrel-endcap gap |
318 |
> |
Bool_t fIsEBEtaGap; //is in EB eta module gap |
319 |
> |
Bool_t fIsEBPhiGap; //is in EB phi module gap |
320 |
> |
Bool_t fIsEEDeeGap; //is in EE dee gap |
321 |
> |
Bool_t fIsEERingGap; //is in EE ring gap |
322 |
> |
Bool_t fIsEcalDriven; //is std. egamma electron |
323 |
> |
Bool_t fIsTrackerDriven; //is pflow track-seeded electron |
324 |
> |
Bool_t fMatchesVertexConversion; |
325 |
> |
RefArray<Track> fAmbiguousGsfTracks; //ambiguous gsf tracks for this electron |
326 |
|
|
327 |
< |
ClassDef(Electron, 1) // Electron class |
327 |
> |
ClassDef(Electron, 10) // Electron class |
328 |
|
}; |
329 |
|
} |
330 |
|
|
333 |
|
{ |
334 |
|
// Return "best" track. |
335 |
|
|
336 |
< |
if (GsfTrk()) |
336 |
> |
if (HasGsfTrk()) |
337 |
|
return GsfTrk(); |
338 |
< |
else if (TrackerTrk()) |
338 |
> |
else if (HasTrackerTrk()) |
339 |
|
return TrackerTrk(); |
340 |
|
|
341 |
|
return 0; |
342 |
|
} |
343 |
|
|
344 |
|
//-------------------------------------------------------------------------------------------------- |
345 |
< |
inline const mithep::Track *mithep::Electron::GsfTrk() const |
159 |
< |
{ |
160 |
< |
// Return global combined track. |
161 |
< |
|
162 |
< |
return static_cast<const Track*>(fGsfTrackRef.GetObject()); |
163 |
< |
} |
164 |
< |
|
165 |
< |
//-------------------------------------------------------------------------------------------------- |
166 |
< |
inline const mithep::Track *mithep::Electron::TrackerTrk() const |
345 |
> |
inline Double_t mithep::Electron::GetCharge() const |
346 |
|
{ |
347 |
< |
// Return tracker track. |
347 |
> |
// Return stored charge, unless it is set to invalid (-99), |
348 |
> |
// in that case get charge from track as before |
349 |
|
|
350 |
< |
return static_cast<const Track*>(fTrackerTrackRef.GetObject()); |
351 |
< |
} |
352 |
< |
//-------------------------------------------------------------------------------------------------- |
353 |
< |
inline const mithep::SuperCluster *mithep::Electron::SCluster() const |
174 |
< |
{ |
175 |
< |
// Return super cluster. |
350 |
> |
if (fCharge==-99) |
351 |
> |
return mithep::ChargedParticle::GetCharge(); |
352 |
> |
else |
353 |
> |
return fCharge; |
354 |
|
|
177 |
– |
return static_cast<const SuperCluster*>(fSuperClusterRef.GetObject()); |
355 |
|
} |
356 |
|
|
357 |
< |
//------------------------------------------------------------------------------------------------- |
358 |
< |
inline mithep::FourVector mithep::Electron::Mom() const |
357 |
> |
//-------------------------------------------------------------------------------------------------- |
358 |
> |
inline void mithep::Electron::GetMom() const |
359 |
|
{ |
360 |
< |
// Return momentum of the electron. We use the direction of the |
361 |
< |
// track and the energy of the SuperCluster. |
360 |
> |
// Get momentum of the electron. We use an explicitly stored three vector, with the pdg mass, |
361 |
> |
// since the momentum vector may be computed non-trivially in cmssw |
362 |
|
|
363 |
< |
return FourVector(Px(), Py(), Pz(), E()); |
363 |
> |
fCachedMom.SetCoordinates(fMom.Rho(),fMom.Eta(),fMom.Phi(),GetMass()); |
364 |
|
} |
365 |
|
|
366 |
|
//------------------------------------------------------------------------------------------------- |
373 |
|
} |
374 |
|
|
375 |
|
//------------------------------------------------------------------------------------------------- |
376 |
< |
inline Double_t mithep::Electron::E() const |
200 |
< |
{ |
201 |
< |
// Return energy of the SuperCluster if present |
202 |
< |
// or else return energy derived from the track. |
203 |
< |
|
204 |
< |
const mithep::SuperCluster *sc = SCluster(); |
205 |
< |
if (sc) |
206 |
< |
return sc->Energy(); |
207 |
< |
else |
208 |
< |
return TMath::Sqrt(Trk()->P()*Trk()->P() + Mass()*Mass()); |
209 |
< |
} |
210 |
< |
|
211 |
< |
//------------------------------------------------------------------------------------------------- |
212 |
< |
inline Double_t mithep::Electron::P() const |
376 |
> |
inline void mithep::Electron::SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi) |
377 |
|
{ |
378 |
< |
// Return momentum derived from the SuperCluster if present |
215 |
< |
// or else return momentum from the track. |
378 |
> |
// Set three-vector |
379 |
|
|
380 |
< |
const mithep::SuperCluster *sc = SCluster(); |
381 |
< |
if (sc) |
219 |
< |
return TMath::Sqrt(sc->Energy()*sc->Energy() - Mass()*Mass()); |
220 |
< |
else |
221 |
< |
return Trk()->P(); |
222 |
< |
} |
223 |
< |
|
224 |
< |
//------------------------------------------------------------------------------------------------- |
225 |
< |
inline Double_t mithep::Electron::Px() const |
226 |
< |
{ |
227 |
< |
// Return px. |
228 |
< |
|
229 |
< |
return Pt()*TMath::Cos(Trk()->Phi()); |
230 |
< |
} |
231 |
< |
|
232 |
< |
//------------------------------------------------------------------------------------------------- |
233 |
< |
inline Double_t mithep::Electron::Py() const |
234 |
< |
{ |
235 |
< |
// Return py. |
236 |
< |
|
237 |
< |
return Pt()*TMath::Sin(Trk()->Phi()); |
238 |
< |
} |
239 |
< |
|
240 |
< |
//------------------------------------------------------------------------------------------------- |
241 |
< |
inline Double_t mithep::Electron::Pz() const |
242 |
< |
{ |
243 |
< |
// Return pz. |
244 |
< |
|
245 |
< |
return P()*TMath::Sin(Trk()->Lambda()); |
246 |
< |
} |
247 |
< |
|
248 |
< |
//------------------------------------------------------------------------------------------------- |
249 |
< |
inline Double_t mithep::Electron::Pt() const |
250 |
< |
{ |
251 |
< |
// Return pt. |
252 |
< |
|
253 |
< |
return TMath::Abs(P()*TMath::Cos(Trk()->Lambda())); |
380 |
> |
fMom.Set(pt,eta,phi); |
381 |
> |
ClearMom(); |
382 |
|
} |
383 |
|
#endif |