20 |
|
class Electron : public ChargedParticle |
21 |
|
{ |
22 |
|
public: |
23 |
< |
Electron() : fESuperClusterOverP(0), fESeedClusterOverPout(0), fDeltaEtaSuperClTrkAtVtx(0), |
24 |
< |
fDeltaEtaSeedClTrkAtCalo(0), fDeltaPhiSuperClTrkAtVtx(0), |
25 |
< |
fDeltaPhiSeedClTrkAtCalo(0), fHadronicOverEm(0), fNumberOfClusters(0), fE33(0), |
26 |
< |
fE55(0), fCovEtaEta(0), fCoviEtaiEta(0), fCovEtaPhi(0), fCovPhiPhi(0), |
27 |
< |
fCaloIsolation(0), fCaloTowerIsolation(0), fTrackIsolation(0), |
28 |
< |
fEcalJurassicIsolation(0), fHcalJurassicIsolation(0), fPassLooseID(0), |
29 |
< |
fPassTightID(0), fIDLikelihood(0), fPIn(0), fPOut(0), |
30 |
< |
fIsEnergyScaleCorrected(0), fIsMomentumCorrected(0), fClassification(0) {} |
23 |
> |
Electron() : |
24 |
> |
fCharge(-99), fScPixCharge(0), |
25 |
> |
fESuperClusterOverP(0), fESeedClusterOverPout(0), fDeltaEtaSuperClTrkAtVtx(0), |
26 |
> |
fDeltaEtaSeedClTrkAtCalo(0), fDeltaPhiSuperClTrkAtVtx(0), |
27 |
> |
fDeltaPhiSeedClTrkAtCalo(0), fFBrem(0), fHadronicOverEm(0), fHcalDepth1OverEcal(0), |
28 |
> |
fHcalDepth2OverEcal(0), fNumberOfClusters(0), fE15(0), fE25Max(0), |
29 |
> |
fE55(0), fCovEtaEta(0), fCoviEtaiEta(0), |
30 |
> |
fCaloIsolation(0), fHcalJurassicIsolation(0), |
31 |
> |
fHcalDepth1TowerSumEtDr04(0), fHcalDepth2TowerSumEtDr04(0), |
32 |
> |
fEcalJurassicIsolation(0), fTrackIsolationDr04(0), fCaloTowerIsolation(0), |
33 |
> |
fHcalDepth1TowerSumEtDr03(0), fHcalDepth2TowerSumEtDr03(0), |
34 |
> |
fEcalRecHitSumEtDr03(0), fTrackIsolation(0), fPassLooseID(0), |
35 |
> |
fPassTightID(0), fIDLikelihood(0), fPIn(0), fPOut(0), fFracSharedHits(0), |
36 |
> |
fMva(0), fD0PV(0), fD0PVErr(0), fIp3dPV(0), fIp3dPVErr(0), |
37 |
> |
fD0PVBS(0), fD0PVBSErr(0), fIp3dPVBS(0), fIp3dPVBSErr(0), |
38 |
> |
fD0PVCkf(0), fD0PVCkfErr(0), fIp3dPVCkf(0), fIp3dPVCkfErr(0), |
39 |
> |
fD0PVBSCkf(0), fD0PVBSCkfErr(0), fIp3dPVBSCkf(0), fIp3dPVBSCkfErr(0), |
40 |
> |
fGsfPVCompatibility(0), fGsfPVBSCompatibility(0), |
41 |
> |
fGsfPVCompatibilityMatched(0), fGsfPVBSCompatibilityMatched(0), |
42 |
> |
fConvPartnerDCotTheta(0), fConvPartnerDist(0), fConvPartnerRadius(0), |
43 |
> |
fIsEnergyScaleCorrected(0), fIsMomentumCorrected(0), |
44 |
> |
fClassification(0), fIsEB(), fIsEE(0), fIsEBEEGap(0), fIsEBEtaGap(0), |
45 |
> |
fIsEBPhiGap(0), fIsEEDeeGap(0), fIsEERingGap(0), |
46 |
> |
fIsEcalDriven(0), fIsTrackerDriven(0), fMatchesVertexConversion(0) {} |
47 |
|
|
48 |
|
const Track *BestTrk() const; |
49 |
< |
Double_t CaloIsolation() const { return fCaloIsolation; } |
50 |
< |
Double_t CaloTowerIsolation() const { return fCaloTowerIsolation; } |
51 |
< |
Int_t Classification() const { return fClassification; } |
52 |
< |
Double_t CovEtaEta() const { return fCovEtaEta; } |
53 |
< |
Double_t CovEtaPhi() const { return fCovEtaPhi; } |
54 |
< |
Double_t CovPhiPhi() const { return fCovPhiPhi; } |
55 |
< |
Double_t CoviEtaiEta() const { return fCoviEtaiEta; } |
49 |
> |
Double_t D0PV() const { return fD0PV; } |
50 |
> |
Double_t D0PVErr() const { return fD0PVErr; } |
51 |
> |
Double_t D0PVSignificance() const { return fD0PV/fD0PVErr; } |
52 |
> |
Double_t Ip3dPV() const { return fIp3dPV; } |
53 |
> |
Double_t Ip3dPVErr() const { return fIp3dPVErr; } |
54 |
> |
Double_t Ip3dPVSignificance() const { return fIp3dPV/fIp3dPVErr; } |
55 |
> |
Double_t D0PVBS() const { return fD0PVBS; } |
56 |
> |
Double_t D0PVBSErr() const { return fD0PVBSErr; } |
57 |
> |
Double_t D0PVBSSignificance() const { return fD0PVBS/fD0PVBSErr; } |
58 |
> |
Double_t Ip3dPVBS() const { return fIp3dPVBS; } |
59 |
> |
Double_t Ip3dPVBSErr() const { return fIp3dPVBSErr; } |
60 |
> |
Double_t Ip3dPVBSSignificance() const { return fIp3dPVBS/fIp3dPVBSErr; } |
61 |
> |
Double_t D0PVCkf() const { return fD0PVCkf; } |
62 |
> |
Double_t D0PVCkfErr() const { return fD0PVCkfErr; } |
63 |
> |
Double_t D0PVCkfSignificance() const { return fD0PVCkf/fD0PVCkfErr; } |
64 |
> |
Double_t Ip3dPVCkf() const { return fIp3dPVCkf; } |
65 |
> |
Double_t Ip3dPVCkfErr() const { return fIp3dPVCkfErr; } |
66 |
> |
Double_t Ip3dPVCkfSignificance() const { return fIp3dPVCkf/fIp3dPVCkfErr; } |
67 |
> |
Double_t D0PVBSCkf() const { return fD0PVBSCkf; } |
68 |
> |
Double_t D0PVBSCkfErr() const { return fD0PVBSCkfErr; } |
69 |
> |
Double_t D0PVBSCkfSignificance() const { return fD0PVBSCkf/fD0PVBSCkfErr; } |
70 |
> |
Double_t Ip3dPVBSCkf() const { return fIp3dPVBSCkf; } |
71 |
> |
Double_t Ip3dPVBSCkfErr() const { return fIp3dPVBSCkfErr; } |
72 |
> |
Double_t Ip3dPVBSCkfSignificance() const { return fIp3dPVBSCkf/fIp3dPVBSCkfErr; } |
73 |
> |
Double_t GsfPVCompatibility() const { return fGsfPVCompatibility; } |
74 |
> |
Double_t GsfPVBSCompatibility() const { return fGsfPVBSCompatibility; } |
75 |
> |
Double_t GsfPVCompatibilityMatched() const { return fGsfPVCompatibilityMatched; } |
76 |
> |
Double_t GsfPVBSCompatibilityMatched() const { return fGsfPVBSCompatibilityMatched; } |
77 |
> |
Double_t ConvPartnerDCotTheta() const { return fConvPartnerDCotTheta; } |
78 |
> |
Double_t ConvPartnerDist() const { return fConvPartnerDist; } |
79 |
> |
Double_t ConvPartnerRadius() const { return fConvPartnerRadius; } |
80 |
> |
Double_t CaloIsolation() const { return fCaloIsolation; } // *DEPRECATED* |
81 |
> |
Int_t Classification() const { return fClassification; } |
82 |
> |
Double_t CovEtaEta() const { return fCovEtaEta; } |
83 |
> |
Double_t CoviEtaiEta() const { return fCoviEtaiEta; } |
84 |
|
Double_t DeltaEtaSuperClusterTrackAtVtx() const |
85 |
|
{ return fDeltaEtaSuperClTrkAtVtx; } |
86 |
|
Double_t DeltaEtaSeedClusterTrackAtCalo() const |
89 |
|
{ return fDeltaPhiSuperClTrkAtVtx; } |
90 |
|
Double_t DeltaPhiSeedClusterTrackAtCalo() const |
91 |
|
{ return fDeltaPhiSeedClTrkAtCalo; } |
92 |
< |
Double_t E33() const { return fE33; } |
93 |
< |
Double_t E55() const { return fE55; } |
94 |
< |
Double_t EcalJurassicIsolation() const { return fEcalJurassicIsolation; } |
92 |
> |
Double_t E15() const { return fE15; } |
93 |
> |
Double_t E25Max() const { return fE25Max; } |
94 |
> |
Double_t E55() const { return fE55; } |
95 |
|
Double_t ESuperClusterOverP() const { return fESuperClusterOverP; } |
96 |
|
Double_t ESeedClusterOverPout() const { return fESeedClusterOverPout; } |
97 |
|
Double_t ESeedClusterOverPIn() const; |
98 |
+ |
Double_t FBrem() const { return fFBrem; } |
99 |
+ |
Double_t FBremOld() const { return (PIn() - POut())/PIn(); } |
100 |
+ |
Double_t FracSharedHits() const { return fFracSharedHits; } |
101 |
|
const Track *GsfTrk() const { return fGsfTrackRef.Obj(); } |
102 |
|
Double_t HadronicOverEm() const { return fHadronicOverEm; } |
103 |
+ |
Double_t HcalDepth1OverEcal() const { return fHcalDepth1OverEcal; } |
104 |
+ |
Double_t HcalDepth2OverEcal() const { return fHcalDepth2OverEcal; } |
105 |
|
Bool_t HasGsfTrk() const { return fGsfTrackRef.IsValid(); } |
106 |
|
Bool_t HasTrackerTrk() const { return fTrackerTrackRef.IsValid(); } |
107 |
|
Bool_t HasSuperCluster() const { return fSuperClusterRef.IsValid(); } |
108 |
< |
Double_t HcalIsolation() const { return fHcalJurassicIsolation; } |
108 |
> |
Double_t HcalIsolation() const { return fHcalJurassicIsolation; } // *DEPRECATED* |
109 |
|
Double_t IDLikelihood() const { return fIDLikelihood; } |
110 |
|
Bool_t IsEnergyScaleCorrected() const { return fIsEnergyScaleCorrected; } |
111 |
|
Bool_t IsMomentumCorrected() const { return fIsMomentumCorrected; } |
112 |
+ |
Bool_t IsEB() const { return fIsEB; } |
113 |
+ |
Bool_t IsEE() const { return fIsEE; } |
114 |
+ |
Bool_t IsEBEEGap() const { return fIsEBEEGap; } |
115 |
+ |
Bool_t IsEBEtaGap() const { return fIsEBEtaGap; } |
116 |
+ |
Bool_t IsEBPhiGap() const { return fIsEBPhiGap; } |
117 |
+ |
Bool_t IsEEDeeGap() const { return fIsEEDeeGap; } |
118 |
+ |
Bool_t IsEERingGap() const { return fIsEERingGap; } |
119 |
+ |
Bool_t IsEcalDriven() const { return fIsEcalDriven; } |
120 |
+ |
Bool_t IsTrackerDriven() const { return fIsTrackerDriven; } |
121 |
+ |
Double_t Mva() const { return fMva; } |
122 |
|
Double_t NumberOfClusters() const { return fNumberOfClusters; } |
123 |
|
EObjType ObjType() const { return kElectron; } |
124 |
|
Double_t PassLooseID() const { return fPassLooseID; } |
126 |
|
Double_t PIn() const { return fPIn; } |
127 |
|
Double_t POut() const { return fPOut; } |
128 |
|
const SuperCluster *SCluster() const { return fSuperClusterRef.Obj(); } |
129 |
< |
void SetCaloIsolation(Double_t caloiso) { fCaloIsolation = caloiso; } |
130 |
< |
void SetCaloTowerIsolation(Double_t tiso) { fCaloTowerIsolation = tiso; } |
129 |
> |
Double_t ScPixCharge() const { return fScPixCharge; } |
130 |
> |
|
131 |
> |
Double_t EcalRecHitIsoDr04() const { return fEcalJurassicIsolation; } |
132 |
> |
Double_t HcalTowerSumEtDr04() const { return HcalDepth1TowerSumEtDr04() + |
133 |
> |
HcalDepth2TowerSumEtDr04(); } |
134 |
> |
Double_t HcalDepth1TowerSumEtDr04() const { return fHcalDepth1TowerSumEtDr04; } |
135 |
> |
Double_t HcalDepth2TowerSumEtDr04() const { return fHcalDepth2TowerSumEtDr04; } |
136 |
> |
Double_t TrackIsolationDr04() const { return fTrackIsolationDr04; } |
137 |
> |
Double_t EcalRecHitIsoDr03() const { return fEcalRecHitSumEtDr03; } |
138 |
> |
Double_t HcalTowerSumEtDr03() const { return fCaloTowerIsolation; } |
139 |
> |
Double_t HcalDepth1TowerSumEtDr03() const { return fHcalDepth1TowerSumEtDr03; } |
140 |
> |
Double_t HcalDepth2TowerSumEtDr03() const { return fHcalDepth2TowerSumEtDr03; } |
141 |
> |
Double_t TrackIsolationDr03() const { return fTrackIsolation; } |
142 |
> |
Bool_t MatchesVertexConversion() const { return fMatchesVertexConversion; } |
143 |
> |
UInt_t NAmbiguousGsfTracks() const { return fAmbiguousGsfTracks.Entries(); } |
144 |
> |
Bool_t HasAmbiguousGsfTrack(const Track *t) const { return fAmbiguousGsfTracks.HasObject(t); } |
145 |
> |
const Track *AmbiguousGsfTrack(UInt_t i) const { return fAmbiguousGsfTracks.At(i); } |
146 |
> |
|
147 |
> |
void AddAmbiguousGsfTrack(const Track *t) { fAmbiguousGsfTracks.Add(t); } |
148 |
> |
void SetCharge(Char_t x) { fCharge = x; ClearCharge(); } |
149 |
> |
void SetScPixCharge(Char_t x) { fScPixCharge = x; } |
150 |
> |
void SetD0PV(Double_t x) { fD0PV = x; } |
151 |
> |
void SetD0PVErr(Double_t x) { fD0PVErr = x; } |
152 |
> |
void SetIp3dPV(Double_t x) { fIp3dPV = x; } |
153 |
> |
void SetIp3dPVErr(Double_t x) { fIp3dPVErr = x; } |
154 |
> |
void SetD0PVBS(Double_t x) { fD0PVBS = x; } |
155 |
> |
void SetD0PVBSErr(Double_t x) { fD0PVBSErr = x; } |
156 |
> |
void SetIp3dPVBS(Double_t x) { fIp3dPVBS = x; } |
157 |
> |
void SetIp3dPVBSErr(Double_t x) { fIp3dPVBSErr = x; } |
158 |
> |
void SetD0PVCkf(Double_t x) { fD0PVCkf = x; } |
159 |
> |
void SetD0PVCkfErr(Double_t x) { fD0PVCkfErr = x; } |
160 |
> |
void SetIp3dPVCkf(Double_t x) { fIp3dPVCkf = x; } |
161 |
> |
void SetIp3dPVCkfErr(Double_t x) { fIp3dPVCkfErr = x; } |
162 |
> |
void SetD0PVBSCkf(Double_t x) { fD0PVBSCkf = x; } |
163 |
> |
void SetD0PVBSCkfErr(Double_t x) { fD0PVBSCkfErr = x; } |
164 |
> |
void SetIp3dPVBSCkf(Double_t x) { fIp3dPVBSCkf = x; } |
165 |
> |
void SetIp3dPVBSCkfErr(Double_t x) { fIp3dPVBSCkfErr = x; } |
166 |
> |
void SetGsfPVCompatibility(Double_t x) { fGsfPVCompatibility = x; } |
167 |
> |
void SetGsfPVBSCompatibility(Double_t x) { fGsfPVBSCompatibility = x; } |
168 |
> |
void SetGsfPVCompatibilityMatched(Double_t x) { fGsfPVCompatibilityMatched = x; } |
169 |
> |
void SetGsfPVBSCompatibilityMatched(Double_t x) { fGsfPVBSCompatibilityMatched = x; } |
170 |
> |
void SetConvPartnerDCotTheta(Double_t x) { fConvPartnerDCotTheta = x; } |
171 |
> |
void SetConvPartnerDist(Double_t x) { fConvPartnerDist = x; } |
172 |
> |
void SetConvPartnerRadius(Double_t x) { fConvPartnerRadius = x; } |
173 |
|
void SetClassification(Int_t x) { fClassification = x; } |
174 |
|
void SetCovEtaEta(Double_t CovEtaEta) { fCovEtaEta = CovEtaEta; } |
74 |
– |
void SetCovEtaPhi(Double_t CovEtaPhi) { fCovEtaPhi = CovEtaPhi; } |
75 |
– |
void SetCovPhiPhi(Double_t CovPhiPhi) { fCovPhiPhi = CovPhiPhi; } |
175 |
|
void SetCoviEtaiEta(Double_t CoviEtaiEta) { fCoviEtaiEta = CoviEtaiEta; } |
176 |
|
void SetDeltaEtaSuperClusterTrackAtVtx(Double_t x) |
177 |
|
{ fDeltaEtaSuperClTrkAtVtx = x; } |
181 |
|
{ fDeltaPhiSuperClTrkAtVtx = x; } |
182 |
|
void SetDeltaPhiSeedClusterTrackAtCalo(Double_t x) |
183 |
|
{ fDeltaPhiSeedClTrkAtCalo = x; } |
184 |
< |
void SetE33(Double_t E33) { fE33 = E33; } |
185 |
< |
void SetE55(Double_t E55) { fE55 = E55; } |
184 |
> |
void SetE15(Double_t x) { fE15 = x; } |
185 |
> |
void SetE25Max(Double_t x) { fE25Max = x; } |
186 |
> |
void SetE55(Double_t x) { fE55 = x; } |
187 |
|
void SetESeedClusterOverPout(Double_t x) { fESeedClusterOverPout = x; } |
188 |
|
void SetESuperClusterOverP(Double_t x) { fESuperClusterOverP = x; } |
189 |
< |
void SetEcalJurassicIso(Double_t iso ) { fEcalJurassicIsolation = iso; } |
189 |
> |
void SetFBrem(Double_t x) { fFBrem = x; } |
190 |
> |
void SetFracSharedHits(Double_t x) { fFracSharedHits = x; } |
191 |
|
void SetGsfTrk(const Track* t) |
192 |
|
{ fGsfTrackRef = t; ClearCharge(); } |
193 |
|
void SetHadronicOverEm(Double_t x) { fHadronicOverEm = x; } |
194 |
< |
void SetHcalIsolation(Double_t iso ) { fHcalJurassicIsolation = iso; } |
194 |
> |
void SetHcalDepth1OverEcal(Double_t x) { fHcalDepth1OverEcal = x; } |
195 |
> |
void SetHcalDepth2OverEcal(Double_t x) { fHcalDepth2OverEcal = x; } |
196 |
|
void SetIDLikelihood(Double_t likelihood) { fIDLikelihood = likelihood; } |
197 |
|
void SetIsEnergyScaleCorrected(Bool_t x) { fIsEnergyScaleCorrected = x; } |
198 |
|
void SetIsMomentumCorrected(Bool_t x) { fIsMomentumCorrected = x; } |
206 |
|
{ fSuperClusterRef = sc; } |
207 |
|
void SetTrackerTrk(const Track* t) |
208 |
|
{ fTrackerTrackRef = t; ClearCharge(); } |
209 |
< |
void SetTrackIsolation(Double_t trkiso) { fTrackIsolation = trkiso; } |
210 |
< |
const Track *TrackerTrk() const { return fTrackerTrackRef.Obj(); } |
211 |
< |
Double_t TrackIsolation() const { return fTrackIsolation; } |
212 |
< |
const Track *Trk() const { return BestTrk(); } |
209 |
> |
void SetConvPartnerTrk(const Track *t) |
210 |
> |
{ fConvPartnerTrackRef = t; } |
211 |
> |
void SetEcalRecHitIsoDr04(Double_t x) { fEcalJurassicIsolation = x; } |
212 |
> |
void SetHcalDepth1TowerSumEtDr04(Double_t x) { fHcalDepth1TowerSumEtDr04 = x; } |
213 |
> |
void SetHcalDepth2TowerSumEtDr04(Double_t x) { fHcalDepth2TowerSumEtDr04 = x; } |
214 |
> |
void SetTrackIsolationDr04(Double_t x) { fTrackIsolationDr04 = x; } |
215 |
> |
void SetEcalRecHitIsoDr03(Double_t x) { fEcalRecHitSumEtDr03 = x; } |
216 |
> |
void SetHcalTowerSumEtDr03(Double_t x) { fCaloTowerIsolation = x; } |
217 |
> |
void SetHcalDepth1TowerSumEtDr03(Double_t x) { fHcalDepth1TowerSumEtDr03 = x; } |
218 |
> |
void SetHcalDepth2TowerSumEtDr03(Double_t x) { fHcalDepth2TowerSumEtDr03 = x; } |
219 |
> |
void SetTrackIsolationDr03(Double_t x) { fTrackIsolation = x; } |
220 |
> |
void SetMva(Double_t x) { fMva = x; } |
221 |
> |
void SetIsEB(Bool_t b) { fIsEB = b; } |
222 |
> |
void SetIsEE(Bool_t b) { fIsEE = b; } |
223 |
> |
void SetIsEBEEGap(Bool_t b) { fIsEBEEGap = b; } |
224 |
> |
void SetIsEBEtaGap(Bool_t b) { fIsEBEtaGap = b; } |
225 |
> |
void SetIsEBPhiGap(Bool_t b) { fIsEBPhiGap = b; } |
226 |
> |
void SetIsEEDeeGap(Bool_t b) { fIsEEDeeGap = b; } |
227 |
> |
void SetIsEERingGap(Bool_t b) { fIsEERingGap = b; } |
228 |
> |
void SetIsEcalDriven(Bool_t b) { fIsEcalDriven = b; } |
229 |
> |
void SetIsTrackerDriven(Bool_t b) { fIsTrackerDriven = b; } |
230 |
> |
void SetMatchesVertexConversion(Bool_t b) { fMatchesVertexConversion = b; } |
231 |
> |
void SetConversionXYZ(Double_t x, Double_t y, Double_t z) |
232 |
> |
{ fConvPosition.SetXYZ(x,y,z); } |
233 |
> |
|
234 |
> |
|
235 |
> |
const Track *TrackerTrk() const { return fTrackerTrackRef.Obj(); } |
236 |
> |
const Track *Trk() const { return BestTrk(); } |
237 |
> |
const Track *ConvPartnerTrk() const { return fConvPartnerTrackRef.Obj(); } |
238 |
|
|
239 |
|
protected: |
240 |
< |
Double_t GetMass() const { return 0.51099892e-3; } |
240 |
> |
Double_t GetCharge() const; |
241 |
> |
Double_t GetMass() const { return 0.51099892e-3; } |
242 |
|
void GetMom() const; |
243 |
|
|
244 |
|
Vect3C fMom; //stored three-momentum |
245 |
+ |
Char_t fCharge; //stored charge - filled with -99 when reading old files |
246 |
+ |
Char_t fScPixCharge; //charge from supercluster-pixel matching |
247 |
|
Ref<Track> fGsfTrackRef; //gsf track reference |
248 |
|
Ref<Track> fTrackerTrackRef; //tracker track reference |
249 |
+ |
Ref<Track> fConvPartnerTrackRef; //conversion partner track reference |
250 |
|
Ref<SuperCluster> fSuperClusterRef; //reference to SuperCluster |
251 |
|
Double32_t fESuperClusterOverP; //[0,0,14]super cluster e over p ratio |
252 |
|
Double32_t fESeedClusterOverPout; //[0,0,14]seed cluster e over p mom |
254 |
|
Double32_t fDeltaEtaSeedClTrkAtCalo; //[0,0,14]delta eta of seeed cluster with trk |
255 |
|
Double32_t fDeltaPhiSuperClTrkAtVtx; //[0,0,14]delta phi of super cluster with trk |
256 |
|
Double32_t fDeltaPhiSeedClTrkAtCalo; //[0,0,14]delta phi of seeed cluster with trk |
257 |
< |
Double32_t fHadronicOverEm; //[0,0,14]hadronic over em fraction |
257 |
> |
Double32_t fFBrem; //[0,0,14]brem fraction |
258 |
> |
Double32_t fHadronicOverEm; //[0,0,14]hadronic over em fraction *DEPRECATED* |
259 |
> |
Double32_t fHcalDepth1OverEcal; //[0,0,14]hadronic over em fraction depth1 |
260 |
> |
Double32_t fHcalDepth2OverEcal; //[0,0,14]hadronic over em fraction depth2 |
261 |
|
Double32_t fNumberOfClusters; //[0,0,14]number of associated clusters |
262 |
< |
Double32_t fE33; //[0,0,14]3x3 crystal energy |
262 |
> |
Double32_t fE15; //[0,0,14]1x5 crystal energy |
263 |
> |
Double32_t fE25Max; //[0,0,14]2x5 crystal energy (max of two possible sums) |
264 |
|
Double32_t fE55; //[0,0,14]5x5 crystal energy |
265 |
|
Double32_t fCovEtaEta; //[0,0,14]variance eta-eta |
266 |
|
Double32_t fCoviEtaiEta; //[0,0,14]covariance eta-eta (in crystals) |
267 |
< |
Double32_t fCovEtaPhi; //[0,0,14]covariance eta-phi |
268 |
< |
Double32_t fCovPhiPhi; //[0,0,14]covariance phi-phi |
269 |
< |
Double32_t fCaloIsolation; //[0,0,14]isolation based on rechits |
270 |
< |
Double32_t fCaloTowerIsolation; //[0,0,14]isolation based on calo towers |
271 |
< |
Double32_t fTrackIsolation; //[0,0,14]isolation based on tracks |
272 |
< |
Double32_t fEcalJurassicIsolation; //[0,0,14]ecal jura iso |
273 |
< |
Double32_t fHcalJurassicIsolation; //[0,0,14]hcal jura iso |
267 |
> |
Double32_t fCaloIsolation; //[0,0,14](non-jura) ecal isolation based on rechits dR 0.3 *DEPRECATED* |
268 |
> |
Double32_t fHcalJurassicIsolation; //[0,0,14]hcal jura iso dR 0.4 *DEPRECATED* |
269 |
> |
Double32_t fHcalDepth1TowerSumEtDr04; //[0,0,14]hcal depth1 tower based isolation dR 0.4 |
270 |
> |
Double32_t fHcalDepth2TowerSumEtDr04; //[0,0,14]hcal depth2 tower based isolation dR 0.4 |
271 |
> |
Double32_t fEcalJurassicIsolation; //[0,0,14]ecal jura iso dR 0.4 *RENAMING* |
272 |
> |
Double32_t fTrackIsolationDr04; //[0,0,14]isolation based on tracks dR 0.4 |
273 |
> |
Double32_t fCaloTowerIsolation; //[0,0,14]hcal tower based isolation dR 0.3 *DEPRECATED* |
274 |
> |
Double32_t fHcalDepth1TowerSumEtDr03; //[0,0,14]hcal depth1 tower based isolation dR 0.3 |
275 |
> |
Double32_t fHcalDepth2TowerSumEtDr03; //[0,0,14]hcal depth2 tower based isolation dR 0.3 |
276 |
> |
Double32_t fEcalRecHitSumEtDr03; //[0,0,14]ecal jura iso dR 0.3 |
277 |
> |
Double32_t fTrackIsolation; //[0,0,14]isolation based on tracks dR 0.3 *RENAMING* |
278 |
|
Double32_t fPassLooseID; //[0,0,14]pass loose id |
279 |
|
Double32_t fPassTightID; //[0,0,14]pass tight id |
280 |
|
Double32_t fIDLikelihood; //[0,0,14]likelihood value |
281 |
|
Double32_t fPIn; //[0,0,14]momentum at vtx |
282 |
|
Double32_t fPOut; //[0,0,14]momentum at ecal surface |
283 |
+ |
Double32_t fFracSharedHits; //[0,0,14]fraction of shared hits btw gsf and std. track |
284 |
+ |
Double32_t fMva; //[0,0,14] pflow mva output |
285 |
+ |
Double32_t fD0PV; //[0,0,14]transverse impact parameter to signal PV (gsf track) |
286 |
+ |
Double32_t fD0PVErr; //[0,0,14]transverse impact parameter uncertainty to signal PV (gsf track) |
287 |
+ |
Double32_t fIp3dPV; //[0,0,14]3d impact parameter to signal PV (gsf track) |
288 |
+ |
Double32_t fIp3dPVErr; //[0,0,14]3d impact parameter uncertainty to signal PV (gsf track) |
289 |
+ |
Double32_t fD0PVBS; //[0,0,14]transverse impact parameter to signal PV w/ bs constraint (gsf track) |
290 |
+ |
Double32_t fD0PVBSErr; //[0,0,14]transverse impact parameter uncertainty to signal PV w/ bs constraint (gsf track) |
291 |
+ |
Double32_t fIp3dPVBS; //[0,0,14]3d impact parameter to signal PV w/ bs constraint (gsf track) |
292 |
+ |
Double32_t fIp3dPVBSErr; //[0,0,14]3d impact parameter uncertainty to signal PV w/ bs constraint (gsf track) |
293 |
+ |
Double32_t fD0PVCkf; //[0,0,14]transverse impact parameter to signal PV (ckf track) |
294 |
+ |
Double32_t fD0PVCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PV (ckf track) |
295 |
+ |
Double32_t fIp3dPVCkf; //[0,0,14]3d impact parameter to signal PV (ckf track) |
296 |
+ |
Double32_t fIp3dPVCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PV (ckf track) |
297 |
+ |
Double32_t fD0PVBSCkf; //[0,0,14]transverse impact parameter to signal PV w/ bs constraint (ckf track) |
298 |
+ |
Double32_t fD0PVBSCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PV w/ bs constraint (ckf track) |
299 |
+ |
Double32_t fIp3dPVBSCkf; //[0,0,14]3d impact parameter to signal PV w/ bs constraint (ckf track) |
300 |
+ |
Double32_t fIp3dPVBSCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PV w/ bs constraint (ckf track) |
301 |
+ |
Double32_t fGsfPVCompatibility; //[0,0,14]gsf compatibility with signal PV |
302 |
+ |
Double32_t fGsfPVBSCompatibility; //[0,0,14]gsf compatibility with signal PV w/ bs constraint |
303 |
+ |
Double32_t fGsfPVCompatibilityMatched; //[0,0,14]gsf compatibility with signal PV (matching ckf track excluded from vertex) |
304 |
+ |
Double32_t fGsfPVBSCompatibilityMatched; //[0,0,14]gsf compatibility with signal PV w/ bs constraint (matching ckf track excluded from vertex) |
305 |
+ |
Double32_t fConvPartnerDCotTheta; //[0,0,14]delta cot theta to nearest conversion partner track |
306 |
+ |
Double32_t fConvPartnerDist; //[0,0,14]distance in x-y plane to nearest conversion partner track |
307 |
+ |
Double32_t fConvPartnerRadius; //[0,0,14]radius of helix intersection with conversion partner track |
308 |
+ |
Vect3C fConvPosition; |
309 |
|
Bool_t fIsEnergyScaleCorrected; //class dependent escale correction |
310 |
|
Bool_t fIsMomentumCorrected; //class dependent E-p combination |
311 |
|
Int_t fClassification; //classification (see GsfElectron.h) |
312 |
+ |
Bool_t fIsEB; //is ECAL barrel |
313 |
+ |
Bool_t fIsEE; //is ECAL Endcap |
314 |
+ |
Bool_t fIsEBEEGap; //is in barrel-endcap gap |
315 |
+ |
Bool_t fIsEBEtaGap; //is in EB eta module gap |
316 |
+ |
Bool_t fIsEBPhiGap; //is in EB phi module gap |
317 |
+ |
Bool_t fIsEEDeeGap; //is in EE dee gap |
318 |
+ |
Bool_t fIsEERingGap; //is in EE ring gap |
319 |
+ |
Bool_t fIsEcalDriven; //is std. egamma electron |
320 |
+ |
Bool_t fIsTrackerDriven; //is pflow track-seeded electron |
321 |
+ |
Bool_t fMatchesVertexConversion; |
322 |
+ |
RefArray<Track> fAmbiguousGsfTracks; //ambiguous gsf tracks for this electron |
323 |
|
|
324 |
< |
ClassDef(Electron, 1) // Electron class |
324 |
> |
ClassDef(Electron, 9) // Electron class |
325 |
|
}; |
326 |
|
} |
327 |
|
|
339 |
|
} |
340 |
|
|
341 |
|
//-------------------------------------------------------------------------------------------------- |
342 |
+ |
inline Double_t mithep::Electron::GetCharge() const |
343 |
+ |
{ |
344 |
+ |
// Return stored charge, unless it is set to invalid (-99), |
345 |
+ |
// in that case get charge from track as before |
346 |
+ |
|
347 |
+ |
if (fCharge==-99) |
348 |
+ |
return mithep::ChargedParticle::GetCharge(); |
349 |
+ |
else |
350 |
+ |
return fCharge; |
351 |
+ |
|
352 |
+ |
} |
353 |
+ |
|
354 |
+ |
//-------------------------------------------------------------------------------------------------- |
355 |
|
inline void mithep::Electron::GetMom() const |
356 |
|
{ |
357 |
|
// Get momentum of the electron. We use an explicitly stored three vector, with the pdg mass, |