ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitAna/DataTree/interface/Electron.h
Revision: 1.40
Committed: Thu May 6 17:30:39 2010 UTC (15 years ago) by bendavid
Content type: text/plain
Branch: MAIN
CVS Tags: Mit_014pre2, Mit_014pre1
Changes since 1.39: +43 -3 lines
Log Message:
Add impact parameter signficance values to leptons

File Contents

# Content
1 //--------------------------------------------------------------------------------------------------
2 // $Id: Electron.h,v 1.39 2010/03/22 18:54:19 bendavid Exp $
3 //
4 // Electron
5 //
6 // This class holds information about reconstructed electrons from CMSSW.
7 //
8 // Authors: C.Loizides, J.Bendavid, S.Xie
9 //--------------------------------------------------------------------------------------------------
10
11 #ifndef MITANA_DATATREE_ELECTRON_H
12 #define MITANA_DATATREE_ELECTRON_H
13
14 #include "MitAna/DataTree/interface/SuperCluster.h"
15 #include "MitAna/DataTree/interface/ChargedParticle.h"
16 #include "MitAna/DataCont/interface/Ref.h"
17
18 namespace mithep
19 {
20 class Electron : public ChargedParticle
21 {
22 public:
23 Electron() :
24 fCharge(-99), fScPixCharge(0),
25 fESuperClusterOverP(0), fESeedClusterOverPout(0), fDeltaEtaSuperClTrkAtVtx(0),
26 fDeltaEtaSeedClTrkAtCalo(0), fDeltaPhiSuperClTrkAtVtx(0),
27 fDeltaPhiSeedClTrkAtCalo(0), fFBrem(0), fHadronicOverEm(0), fHcalDepth1OverEcal(0),
28 fHcalDepth2OverEcal(0), fNumberOfClusters(0), fE15(0), fE25Max(0),
29 fE55(0), fCovEtaEta(0), fCoviEtaiEta(0),
30 fCaloIsolation(0), fHcalJurassicIsolation(0),
31 fHcalDepth1TowerSumEtDr04(0), fHcalDepth2TowerSumEtDr04(0),
32 fEcalJurassicIsolation(0), fTrackIsolationDr04(0), fCaloTowerIsolation(0),
33 fHcalDepth1TowerSumEtDr03(0), fHcalDepth2TowerSumEtDr03(0),
34 fEcalRecHitSumEtDr03(0), fTrackIsolation(0), fPassLooseID(0),
35 fPassTightID(0), fIDLikelihood(0), fPIn(0), fPOut(0), fFracSharedHits(0),
36 fMva(0), fD0PV(0), fD0PVErr(0), fIp3dPV(0), fIp3dPVErr(0),
37 fD0PVBS(0), fD0PVBSErr(0), fIp3dPVBS(0), fIp3dPVBSErr(0),
38 fConvPartnerDCotTheta(0), fConvPartnerDist(0), fConvPartnerRadius(0),
39 fIsEnergyScaleCorrected(0), fIsMomentumCorrected(0),
40 fClassification(0), fIsEB(), fIsEE(0), fIsEBEEGap(0), fIsEBEtaGap(0),
41 fIsEBPhiGap(0), fIsEEDeeGap(0), fIsEERingGap(0),
42 fIsEcalDriven(0), fIsTrackerDriven(0) {}
43
44 const Track *BestTrk() const;
45 Double_t D0PV() const { return fD0PV; }
46 Double_t D0PVErr() const { return fD0PVErr; }
47 Double_t D0PVSignificance() const { return fD0PV/fD0PVErr; }
48 Double_t Ip3dPV() const { return fIp3dPV; }
49 Double_t Ip3dPVErr() const { return fIp3dPVErr; }
50 Double_t Ip3dPVSignificance() const { return fIp3dPV/fIp3dPVErr; }
51 Double_t D0PVBS() const { return fD0PVBS; }
52 Double_t D0PVBSErr() const { return fD0PVBSErr; }
53 Double_t D0PVBSSignificance() const { return fD0PVBS/fD0PVBSErr; }
54 Double_t Ip3dPVBS() const { return fIp3dPVBS; }
55 Double_t Ip3dPVBSErr() const { return fIp3dPVBSErr; }
56 Double_t Ip3dPVBSSignificance() const { return fIp3dPVBS/fIp3dPVBSErr; }
57 Double_t ConvPartnerDCotTheta() const { return fConvPartnerDCotTheta; }
58 Double_t ConvPartnerDist() const { return fConvPartnerDist; }
59 Double_t ConvPartnerRadius() const { return fConvPartnerRadius; }
60 Double_t CaloIsolation() const { return fCaloIsolation; } // *DEPRECATED*
61 Int_t Classification() const { return fClassification; }
62 Double_t CovEtaEta() const { return fCovEtaEta; }
63 Double_t CoviEtaiEta() const { return fCoviEtaiEta; }
64 Double_t DeltaEtaSuperClusterTrackAtVtx() const
65 { return fDeltaEtaSuperClTrkAtVtx; }
66 Double_t DeltaEtaSeedClusterTrackAtCalo() const
67 { return fDeltaEtaSeedClTrkAtCalo; }
68 Double_t DeltaPhiSuperClusterTrackAtVtx() const
69 { return fDeltaPhiSuperClTrkAtVtx; }
70 Double_t DeltaPhiSeedClusterTrackAtCalo() const
71 { return fDeltaPhiSeedClTrkAtCalo; }
72 Double_t E15() const { return fE15; }
73 Double_t E25Max() const { return fE25Max; }
74 Double_t E55() const { return fE55; }
75 Double_t ESuperClusterOverP() const { return fESuperClusterOverP; }
76 Double_t ESeedClusterOverPout() const { return fESeedClusterOverPout; }
77 Double_t ESeedClusterOverPIn() const;
78 Double_t FBrem() const { return fFBrem; }
79 Double_t FBremOld() const { return (PIn() - POut())/PIn(); }
80 Double_t FracSharedHits() const { return fFracSharedHits; }
81 const Track *GsfTrk() const { return fGsfTrackRef.Obj(); }
82 Double_t HadronicOverEm() const { return fHadronicOverEm; }
83 Double_t HcalDepth1OverEcal() const { return fHcalDepth1OverEcal; }
84 Double_t HcalDepth2OverEcal() const { return fHcalDepth2OverEcal; }
85 Bool_t HasGsfTrk() const { return fGsfTrackRef.IsValid(); }
86 Bool_t HasTrackerTrk() const { return fTrackerTrackRef.IsValid(); }
87 Bool_t HasSuperCluster() const { return fSuperClusterRef.IsValid(); }
88 Double_t HcalIsolation() const { return fHcalJurassicIsolation; } // *DEPRECATED*
89 Double_t IDLikelihood() const { return fIDLikelihood; }
90 Bool_t IsEnergyScaleCorrected() const { return fIsEnergyScaleCorrected; }
91 Bool_t IsMomentumCorrected() const { return fIsMomentumCorrected; }
92 Bool_t IsEB() const { return fIsEB; }
93 Bool_t IsEE() const { return fIsEE; }
94 Bool_t IsEBEEGap() const { return fIsEBEEGap; }
95 Bool_t IsEBEtaGap() const { return fIsEBEtaGap; }
96 Bool_t IsEBPhiGap() const { return fIsEBPhiGap; }
97 Bool_t IsEEDeeGap() const { return fIsEEDeeGap; }
98 Bool_t IsEERingGap() const { return fIsEERingGap; }
99 Bool_t IsEcalDriven() const { return fIsEcalDriven; }
100 Bool_t IsTrackerDriven() const { return fIsTrackerDriven; }
101 Double_t Mva() const { return fMva; }
102 Double_t NumberOfClusters() const { return fNumberOfClusters; }
103 EObjType ObjType() const { return kElectron; }
104 Double_t PassLooseID() const { return fPassLooseID; }
105 Double_t PassTightID() const { return fPassTightID; }
106 Double_t PIn() const { return fPIn; }
107 Double_t POut() const { return fPOut; }
108 const SuperCluster *SCluster() const { return fSuperClusterRef.Obj(); }
109 Double_t ScPixCharge() const { return fScPixCharge; }
110
111 Double_t EcalRecHitIsoDr04() const { return fEcalJurassicIsolation; }
112 Double_t HcalTowerSumEtDr04() const { return HcalDepth1TowerSumEtDr04() +
113 HcalDepth2TowerSumEtDr04(); }
114 Double_t HcalDepth1TowerSumEtDr04() const { return fHcalDepth1TowerSumEtDr04; }
115 Double_t HcalDepth2TowerSumEtDr04() const { return fHcalDepth2TowerSumEtDr04; }
116 Double_t TrackIsolationDr04() const { return fTrackIsolationDr04; }
117 Double_t EcalRecHitIsoDr03() const { return fEcalRecHitSumEtDr03; }
118 Double_t HcalTowerSumEtDr03() const { return fCaloTowerIsolation; }
119 Double_t HcalDepth1TowerSumEtDr03() const { return fHcalDepth1TowerSumEtDr03; }
120 Double_t HcalDepth2TowerSumEtDr03() const { return fHcalDepth2TowerSumEtDr03; }
121 Double_t TrackIsolationDr03() const { return fTrackIsolation; }
122
123
124 void SetCharge(Char_t x) { fCharge = x; ClearCharge(); }
125 void SetScPixCharge(Char_t x) { fScPixCharge = x; }
126 void SetD0PV(Double_t x) { fD0PV = x; }
127 void SetD0PVErr(Double_t x) { fD0PVErr = x; }
128 void SetIp3dPV(Double_t x) { fIp3dPV = x; }
129 void SetIp3dPVErr(Double_t x) { fIp3dPVErr = x; }
130 void SetD0PVBS(Double_t x) { fD0PVBS = x; }
131 void SetD0PVBSErr(Double_t x) { fD0PVBSErr = x; }
132 void SetIp3dPVBS(Double_t x) { fIp3dPVBS = x; }
133 void SetIp3dPVBSErr(Double_t x) { fIp3dPVBSErr = x; }
134 void SetConvPartnerDCotTheta(Double_t x) { fConvPartnerDCotTheta = x; }
135 void SetConvPartnerDist(Double_t x) { fConvPartnerDist = x; }
136 void SetConvPartnerRadius(Double_t x) { fConvPartnerRadius = x; }
137 void SetClassification(Int_t x) { fClassification = x; }
138 void SetCovEtaEta(Double_t CovEtaEta) { fCovEtaEta = CovEtaEta; }
139 void SetCoviEtaiEta(Double_t CoviEtaiEta) { fCoviEtaiEta = CoviEtaiEta; }
140 void SetDeltaEtaSuperClusterTrackAtVtx(Double_t x)
141 { fDeltaEtaSuperClTrkAtVtx = x; }
142 void SetDeltaEtaSeedClusterTrackAtCalo(Double_t x)
143 { fDeltaEtaSeedClTrkAtCalo = x; }
144 void SetDeltaPhiSuperClusterTrackAtVtx(Double_t x)
145 { fDeltaPhiSuperClTrkAtVtx = x; }
146 void SetDeltaPhiSeedClusterTrackAtCalo(Double_t x)
147 { fDeltaPhiSeedClTrkAtCalo = x; }
148 void SetE15(Double_t x) { fE15 = x; }
149 void SetE25Max(Double_t x) { fE25Max = x; }
150 void SetE55(Double_t x) { fE55 = x; }
151 void SetESeedClusterOverPout(Double_t x) { fESeedClusterOverPout = x; }
152 void SetESuperClusterOverP(Double_t x) { fESuperClusterOverP = x; }
153 void SetFBrem(Double_t x) { fFBrem = x; }
154 void SetFracSharedHits(Double_t x) { fFracSharedHits = x; }
155 void SetGsfTrk(const Track* t)
156 { fGsfTrackRef = t; ClearCharge(); }
157 void SetHadronicOverEm(Double_t x) { fHadronicOverEm = x; }
158 void SetHcalDepth1OverEcal(Double_t x) { fHcalDepth1OverEcal = x; }
159 void SetHcalDepth2OverEcal(Double_t x) { fHcalDepth2OverEcal = x; }
160 void SetIDLikelihood(Double_t likelihood) { fIDLikelihood = likelihood; }
161 void SetIsEnergyScaleCorrected(Bool_t x) { fIsEnergyScaleCorrected = x; }
162 void SetIsMomentumCorrected(Bool_t x) { fIsMomentumCorrected = x; }
163 void SetNumberOfClusters(Double_t x) { fNumberOfClusters = x; }
164 void SetPIn(Double_t PIn) { fPIn = PIn; }
165 void SetPOut(Double_t POut) { fPOut = POut; }
166 void SetPassLooseID(Double_t passLooseID) { fPassLooseID = passLooseID; }
167 void SetPassTightID(Double_t passTightID) { fPassTightID = passTightID; }
168 void SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi);
169 void SetSuperCluster(const SuperCluster* sc)
170 { fSuperClusterRef = sc; }
171 void SetTrackerTrk(const Track* t)
172 { fTrackerTrackRef = t; ClearCharge(); }
173 void SetEcalRecHitIsoDr04(Double_t x) { fEcalJurassicIsolation = x; }
174 void SetHcalDepth1TowerSumEtDr04(Double_t x) { fHcalDepth1TowerSumEtDr04 = x; }
175 void SetHcalDepth2TowerSumEtDr04(Double_t x) { fHcalDepth2TowerSumEtDr04 = x; }
176 void SetTrackIsolationDr04(Double_t x) { fTrackIsolationDr04 = x; }
177 void SetEcalRecHitIsoDr03(Double_t x) { fEcalRecHitSumEtDr03 = x; }
178 void SetHcalTowerSumEtDr03(Double_t x) { fCaloTowerIsolation = x; }
179 void SetHcalDepth1TowerSumEtDr03(Double_t x) { fHcalDepth1TowerSumEtDr03 = x; }
180 void SetHcalDepth2TowerSumEtDr03(Double_t x) { fHcalDepth2TowerSumEtDr03 = x; }
181 void SetTrackIsolationDr03(Double_t x) { fTrackIsolation = x; }
182 void SetMva(Double_t x) { fMva = x; }
183 void SetIsEB(Bool_t b) { fIsEB = b; }
184 void SetIsEE(Bool_t b) { fIsEE = b; }
185 void SetIsEBEEGap(Bool_t b) { fIsEBEEGap = b; }
186 void SetIsEBEtaGap(Bool_t b) { fIsEBEtaGap = b; }
187 void SetIsEBPhiGap(Bool_t b) { fIsEBPhiGap = b; }
188 void SetIsEEDeeGap(Bool_t b) { fIsEEDeeGap = b; }
189 void SetIsEERingGap(Bool_t b) { fIsEERingGap = b; }
190 void SetIsEcalDriven(Bool_t b) { fIsEcalDriven = b; }
191 void SetIsTrackerDriven(Bool_t b) { fIsTrackerDriven = b; }
192
193
194 const Track *TrackerTrk() const { return fTrackerTrackRef.Obj(); }
195 const Track *Trk() const { return BestTrk(); }
196
197 protected:
198 Double_t GetCharge() const;
199 Double_t GetMass() const { return 0.51099892e-3; }
200 void GetMom() const;
201
202 Vect3C fMom; //stored three-momentum
203 Char_t fCharge; //stored charge - filled with -99 when reading old files
204 Char_t fScPixCharge; //charge from supercluster-pixel matching
205 Ref<Track> fGsfTrackRef; //gsf track reference
206 Ref<Track> fTrackerTrackRef; //tracker track reference
207 Ref<SuperCluster> fSuperClusterRef; //reference to SuperCluster
208 Double32_t fESuperClusterOverP; //[0,0,14]super cluster e over p ratio
209 Double32_t fESeedClusterOverPout; //[0,0,14]seed cluster e over p mom
210 Double32_t fDeltaEtaSuperClTrkAtVtx; //[0,0,14]delta eta of super cluster with trk
211 Double32_t fDeltaEtaSeedClTrkAtCalo; //[0,0,14]delta eta of seeed cluster with trk
212 Double32_t fDeltaPhiSuperClTrkAtVtx; //[0,0,14]delta phi of super cluster with trk
213 Double32_t fDeltaPhiSeedClTrkAtCalo; //[0,0,14]delta phi of seeed cluster with trk
214 Double32_t fFBrem; //[0,0,14]brem fraction
215 Double32_t fHadronicOverEm; //[0,0,14]hadronic over em fraction *DEPRECATED*
216 Double32_t fHcalDepth1OverEcal; //[0,0,14]hadronic over em fraction depth1
217 Double32_t fHcalDepth2OverEcal; //[0,0,14]hadronic over em fraction depth2
218 Double32_t fNumberOfClusters; //[0,0,14]number of associated clusters
219 Double32_t fE15; //[0,0,14]1x5 crystal energy
220 Double32_t fE25Max; //[0,0,14]2x5 crystal energy (max of two possible sums)
221 Double32_t fE55; //[0,0,14]5x5 crystal energy
222 Double32_t fCovEtaEta; //[0,0,14]variance eta-eta
223 Double32_t fCoviEtaiEta; //[0,0,14]covariance eta-eta (in crystals)
224 Double32_t fCaloIsolation; //[0,0,14](non-jura) ecal isolation based on rechits dR 0.3 *DEPRECATED*
225 Double32_t fHcalJurassicIsolation; //[0,0,14]hcal jura iso dR 0.4 *DEPRECATED*
226 Double32_t fHcalDepth1TowerSumEtDr04; //[0,0,14]hcal depth1 tower based isolation dR 0.4
227 Double32_t fHcalDepth2TowerSumEtDr04; //[0,0,14]hcal depth2 tower based isolation dR 0.4
228 Double32_t fEcalJurassicIsolation; //[0,0,14]ecal jura iso dR 0.4 *RENAMING*
229 Double32_t fTrackIsolationDr04; //[0,0,14]isolation based on tracks dR 0.4
230 Double32_t fCaloTowerIsolation; //[0,0,14]hcal tower based isolation dR 0.3 *DEPRECATED*
231 Double32_t fHcalDepth1TowerSumEtDr03; //[0,0,14]hcal depth1 tower based isolation dR 0.3
232 Double32_t fHcalDepth2TowerSumEtDr03; //[0,0,14]hcal depth2 tower based isolation dR 0.3
233 Double32_t fEcalRecHitSumEtDr03; //[0,0,14]ecal jura iso dR 0.3
234 Double32_t fTrackIsolation; //[0,0,14]isolation based on tracks dR 0.3 *RENAMING*
235 Double32_t fPassLooseID; //[0,0,14]pass loose id
236 Double32_t fPassTightID; //[0,0,14]pass tight id
237 Double32_t fIDLikelihood; //[0,0,14]likelihood value
238 Double32_t fPIn; //[0,0,14]momentum at vtx
239 Double32_t fPOut; //[0,0,14]momentum at ecal surface
240 Double32_t fFracSharedHits; //[0,0,14]fraction of shared hits btw gsf and std. track
241 Double32_t fMva; //[0,0,14] pflow mva output
242 Double32_t fD0PV; //[0,0,14]transverse impact parameter to signal PV
243 Double32_t fD0PVErr; //[0,0,14]transverse impact parameter uncertainty to signal PV
244 Double32_t fIp3dPV; //[0,0,14]3d impact parameter to signal PV
245 Double32_t fIp3dPVErr; //[0,0,14]3d impact parameter uncertainty to signal PV
246 Double32_t fD0PVBS; //[0,0,14]transverse impact parameter to signal PV w/ bs constraint
247 Double32_t fD0PVBSErr; //[0,0,14]transverse impact parameter uncertainty to signal PV w/ bs constraint
248 Double32_t fIp3dPVBS; //[0,0,14]3d impact parameter to signal PV w/ bs constraint
249 Double32_t fIp3dPVBSErr; //[0,0,14]3d impact parameter uncertainty to signal PV w/ bs constraint
250 Double32_t fConvPartnerDCotTheta; //[0,0,14]delta cot theta to nearest conversion partner track
251 Double32_t fConvPartnerDist; //[0,0,14]distance in x-y plane to nearest conversion partner track
252 Double32_t fConvPartnerRadius; //[0,0,14]radius of helix intersection with conversion partner track
253 Bool_t fIsEnergyScaleCorrected; //class dependent escale correction
254 Bool_t fIsMomentumCorrected; //class dependent E-p combination
255 Int_t fClassification; //classification (see GsfElectron.h)
256 Bool_t fIsEB; //is ECAL barrel
257 Bool_t fIsEE; //is ECAL Endcap
258 Bool_t fIsEBEEGap; //is in barrel-endcap gap
259 Bool_t fIsEBEtaGap; //is in EB eta module gap
260 Bool_t fIsEBPhiGap; //is in EB phi module gap
261 Bool_t fIsEEDeeGap; //is in EE dee gap
262 Bool_t fIsEERingGap; //is in EE ring gap
263 Bool_t fIsEcalDriven; //is std. egamma electron
264 Bool_t fIsTrackerDriven; //is pflow track-seeded electron
265
266 ClassDef(Electron, 4) // Electron class
267 };
268 }
269
270 //--------------------------------------------------------------------------------------------------
271 inline const mithep::Track *mithep::Electron::BestTrk() const
272 {
273 // Return "best" track.
274
275 if (HasGsfTrk())
276 return GsfTrk();
277 else if (HasTrackerTrk())
278 return TrackerTrk();
279
280 return 0;
281 }
282
283 //--------------------------------------------------------------------------------------------------
284 inline Double_t mithep::Electron::GetCharge() const
285 {
286 // Return stored charge, unless it is set to invalid (-99),
287 // in that case get charge from track as before
288
289 if (fCharge==-99)
290 return mithep::ChargedParticle::GetCharge();
291 else
292 return fCharge;
293
294 }
295
296 //--------------------------------------------------------------------------------------------------
297 inline void mithep::Electron::GetMom() const
298 {
299 // Get momentum of the electron. We use an explicitly stored three vector, with the pdg mass,
300 // since the momentum vector may be computed non-trivially in cmssw
301
302 fCachedMom.SetCoordinates(fMom.Rho(),fMom.Eta(),fMom.Phi(),GetMass());
303 }
304
305 //-------------------------------------------------------------------------------------------------
306 inline Double_t mithep::Electron::ESeedClusterOverPIn() const
307 {
308 // Return energy of the SuperCluster seed divided by the magnitude
309 // of the track momentum at the vertex.
310
311 return SCluster()->Seed()->Energy() / PIn();
312 }
313
314 //-------------------------------------------------------------------------------------------------
315 inline void mithep::Electron::SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi)
316 {
317 // Set three-vector
318
319 fMom.Set(pt,eta,phi);
320 ClearMom();
321 }
322 #endif