ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitAna/DataTree/interface/Electron.h
Revision: 1.52
Committed: Fri Apr 20 16:05:48 2012 UTC (13 years ago) by bendavid
Content type: text/plain
Branch: MAIN
Changes since 1.51: +13 -4 lines
Log Message:
Add new H/E variables for electrons and photons

File Contents

# Content
1 //--------------------------------------------------------------------------------------------------
2 // $Id: Electron.h,v 1.51 2012/04/04 21:00:15 sixie Exp $
3 //
4 // Electron
5 //
6 // This class holds information about reconstructed electrons from CMSSW.
7 //
8 // Authors: C.Loizides, J.Bendavid, S.Xie
9 //--------------------------------------------------------------------------------------------------
10
11 #ifndef MITANA_DATATREE_ELECTRON_H
12 #define MITANA_DATATREE_ELECTRON_H
13
14 #include "MitAna/DataTree/interface/SuperCluster.h"
15 #include "MitAna/DataTree/interface/ChargedParticle.h"
16 #include "MitAna/DataCont/interface/Ref.h"
17
18 namespace mithep
19 {
20 class Electron : public ChargedParticle
21 {
22 public:
23 Electron() :
24 fCharge(-99), fScPixCharge(0),
25 fESuperClusterOverP(0), fESeedClusterOverPout(0), fDeltaEtaSuperClTrkAtVtx(0),
26 fDeltaEtaSeedClTrkAtCalo(0), fDeltaPhiSuperClTrkAtVtx(0),
27 fDeltaPhiSeedClTrkAtCalo(0), fFBrem(0), fHadronicOverEm(0), fHcalDepth1OverEcal(0),
28 fHcalDepth2OverEcal(0), fNumberOfClusters(0), fE15(0), fE25Max(0),
29 fE55(0), fCovEtaEta(0), fCoviEtaiEta(0),
30 fCaloIsolation(0), fHcalJurassicIsolation(0),
31 fHcalDepth1TowerSumEtDr04(0), fHcalDepth2TowerSumEtDr04(0),
32 fEcalJurassicIsolation(0), fTrackIsolationDr04(0), fCaloTowerIsolation(0),
33 fHcalDepth1TowerSumEtDr03(0), fHcalDepth2TowerSumEtDr03(0),
34 fEcalRecHitSumEtDr03(0), fTrackIsolation(0), fPassLooseID(0),
35 fPassTightID(0), fIDLikelihood(0), fPIn(0), fPOut(0), fFracSharedHits(0),
36 fMva(0), fD0PV(0), fD0PVErr(0), fIp3dPV(0), fIp3dPVErr(0),
37 fD0PVBS(0), fD0PVBSErr(0), fIp3dPVBS(0), fIp3dPVBSErr(0),
38 fD0PVCkf(0), fD0PVCkfErr(0), fIp3dPVCkf(0), fIp3dPVCkfErr(0),
39 fD0PVBSCkf(0), fD0PVBSCkfErr(0), fIp3dPVBSCkf(0), fIp3dPVBSCkfErr(0),
40 fD0PVUB(0), fD0PVUBErr(0), fIp3dPVUB(0), fIp3dPVUBErr(0),
41 fD0PVUBBS(0), fD0PVUBBSErr(0), fIp3dPVUBBS(0), fIp3dPVUBBSErr(0),
42 fD0PVUBCkf(0), fD0PVUBCkfErr(0), fIp3dPVUBCkf(0), fIp3dPVUBCkfErr(0),
43 fD0PVUBBSCkf(0), fD0PVUBBSCkfErr(0), fIp3dPVUBBSCkf(0), fIp3dPVUBBSCkfErr(0),
44 fGsfPVCompatibility(0), fGsfPVBSCompatibility(0),
45 fGsfPVCompatibilityMatched(0), fGsfPVBSCompatibilityMatched(0),
46 fConvPartnerDCotTheta(0), fConvPartnerDist(0), fConvPartnerRadius(0),
47 fPFChargedHadronIso(0), fPFNeutralHadronIso(0), fPFPhotonIso(0),
48 fConvFlag(0), fIsEnergyScaleCorrected(0), fIsMomentumCorrected(0),
49 fClassification(0), fIsEB(), fIsEE(0), fIsEBEEGap(0), fIsEBEtaGap(0),
50 fIsEBPhiGap(0), fIsEEDeeGap(0), fIsEERingGap(0),
51 fIsEcalDriven(0), fIsTrackerDriven(0), fMatchesVertexConversion(0),
52 fHadOverEmTow(0), fHCalIsoTowDr03(0), fHCalIsoTowDr04(0) {}
53
54 const Track *BestTrk() const;
55 Double_t D0PV() const { return fD0PV; }
56 Double_t D0PVErr() const { return fD0PVErr; }
57 Double_t D0PVSignificance() const { return fD0PV/fD0PVErr; }
58 Double_t Ip3dPV() const { return fIp3dPV; }
59 Double_t Ip3dPVErr() const { return fIp3dPVErr; }
60 Double_t Ip3dPVSignificance() const { return fIp3dPV/fIp3dPVErr; }
61 Double_t D0PVBS() const { return fD0PVBS; }
62 Double_t D0PVBSErr() const { return fD0PVBSErr; }
63 Double_t D0PVBSSignificance() const { return fD0PVBS/fD0PVBSErr; }
64 Double_t Ip3dPVBS() const { return fIp3dPVBS; }
65 Double_t Ip3dPVBSErr() const { return fIp3dPVBSErr; }
66 Double_t Ip3dPVBSSignificance() const { return fIp3dPVBS/fIp3dPVBSErr; }
67 Double_t D0PVCkf() const { return fD0PVCkf; }
68 Double_t D0PVCkfErr() const { return fD0PVCkfErr; }
69 Double_t D0PVCkfSignificance() const { return fD0PVCkf/fD0PVCkfErr; }
70 Double_t Ip3dPVCkf() const { return fIp3dPVCkf; }
71 Double_t Ip3dPVCkfErr() const { return fIp3dPVCkfErr; }
72 Double_t Ip3dPVCkfSignificance() const { return fIp3dPVCkf/fIp3dPVCkfErr; }
73 Double_t D0PVBSCkf() const { return fD0PVBSCkf; }
74 Double_t D0PVBSCkfErr() const { return fD0PVBSCkfErr; }
75 Double_t D0PVBSCkfSignificance() const { return fD0PVBSCkf/fD0PVBSCkfErr; }
76 Double_t Ip3dPVBSCkf() const { return fIp3dPVBSCkf; }
77 Double_t Ip3dPVBSCkfErr() const { return fIp3dPVBSCkfErr; }
78 Double_t Ip3dPVBSCkfSignificance() const { return fIp3dPVBSCkf/fIp3dPVBSCkfErr; }
79 Double_t D0PVUB() const { return fD0PVUB; }
80 Double_t D0PVUBErr() const { return fD0PVUBErr; }
81 Double_t D0PVUBSignificance() const { return fD0PVUB/fD0PVUBErr; }
82 Double_t Ip3dPVUB() const { return fIp3dPVUB; }
83 Double_t Ip3dPVUBErr() const { return fIp3dPVUBErr; }
84 Double_t Ip3dPVUBSignificance() const { return fIp3dPVUB/fIp3dPVUBErr; }
85 Double_t D0PVUBBS() const { return fD0PVUBBS; }
86 Double_t D0PVUBBSErr() const { return fD0PVUBBSErr; }
87 Double_t D0PVUBBSSignificance() const { return fD0PVUBBS/fD0PVUBBSErr; }
88 Double_t Ip3dPVUBBS() const { return fIp3dPVUBBS; }
89 Double_t Ip3dPVUBBSErr() const { return fIp3dPVUBBSErr; }
90 Double_t Ip3dPVUBBSSignificance() const { return fIp3dPVUBBS/fIp3dPVUBBSErr; }
91 Double_t D0PVUBCkf() const { return fD0PVUBCkf; }
92 Double_t D0PVUBCkfErr() const { return fD0PVUBCkfErr; }
93 Double_t D0PVUBCkfSignificance() const { return fD0PVUBCkf/fD0PVUBCkfErr; }
94 Double_t Ip3dPVUBCkf() const { return fIp3dPVUBCkf; }
95 Double_t Ip3dPVUBCkfErr() const { return fIp3dPVUBCkfErr; }
96 Double_t Ip3dPVUBCkfSignificance() const { return fIp3dPVUBCkf/fIp3dPVUBCkfErr; }
97 Double_t D0PVUBBSCkf() const { return fD0PVUBBSCkf; }
98 Double_t D0PVUBBSCkfErr() const { return fD0PVUBBSCkfErr; }
99 Double_t D0PVUBBSCkfSignificance() const { return fD0PVUBBSCkf/fD0PVUBBSCkfErr; }
100 Double_t Ip3dPVUBBSCkf() const { return fIp3dPVUBBSCkf; }
101 Double_t Ip3dPVUBBSCkfErr() const { return fIp3dPVUBBSCkfErr; }
102 Double_t Ip3dPVUBBSCkfSignificance() const { return fIp3dPVUBBSCkf/fIp3dPVUBBSCkfErr; }
103 Double_t GsfPVCompatibility() const { return fGsfPVCompatibility; }
104 Double_t GsfPVBSCompatibility() const { return fGsfPVBSCompatibility; }
105 Double_t GsfPVCompatibilityMatched() const { return fGsfPVCompatibilityMatched; }
106 Double_t GsfPVBSCompatibilityMatched() const { return fGsfPVBSCompatibilityMatched; }
107 Double_t ConvPartnerDCotTheta() const { return fConvPartnerDCotTheta; }
108 Double_t ConvPartnerDist() const { return fConvPartnerDist; }
109 Double_t ConvPartnerRadius() const { return fConvPartnerRadius; }
110 Int_t ConvFlag() const { return fConvFlag; }
111 Double_t CaloIsolation() const { return fCaloIsolation; } // *DEPRECATED*
112 Int_t Classification() const { return fClassification; }
113 Double_t CovEtaEta() const { return fCovEtaEta; }
114 Double_t CoviEtaiEta() const { return fCoviEtaiEta; }
115 Double_t DeltaEtaSuperClusterTrackAtVtx() const { return fDeltaEtaSuperClTrkAtVtx; }
116 Double_t DeltaEtaSeedClusterTrackAtCalo() const { return fDeltaEtaSeedClTrkAtCalo; }
117 Double_t DeltaPhiSuperClusterTrackAtVtx() const { return fDeltaPhiSuperClTrkAtVtx; }
118 Double_t DeltaPhiSeedClusterTrackAtCalo() const { return fDeltaPhiSeedClTrkAtCalo; }
119 Double_t E15() const { return fE15; }
120 Double_t E25Max() const { return fE25Max; }
121 Double_t E55() const { return fE55; }
122 Double_t ESuperClusterOverP() const { return fESuperClusterOverP; }
123 Double_t ESeedClusterOverPout() const { return fESeedClusterOverPout; }
124 Double_t EEleClusterOverPout() const { return fEEleClusterOverPout; }
125 Double_t ESeedClusterOverPIn() const;
126 Double_t FBrem() const { return fFBrem; }
127 Double_t FBremOld() const { return (PIn() - POut())/PIn(); }
128 Double_t FracSharedHits() const { return fFracSharedHits; }
129 const Track *GsfTrk() const { return fGsfTrackRef.Obj(); }
130 Double_t HadronicOverEm() const { return fHadronicOverEm; }
131 Double_t HcalDepth1OverEcal() const { return fHcalDepth1OverEcal; }
132 Double_t HcalDepth2OverEcal() const { return fHcalDepth2OverEcal; }
133 Bool_t HasGsfTrk() const { return fGsfTrackRef.IsValid(); }
134 Bool_t HasTrackerTrk() const { return fTrackerTrackRef.IsValid(); }
135 Bool_t HasSuperCluster() const { return fSuperClusterRef.IsValid(); }
136 Double_t HcalIsolation() const { return fHcalJurassicIsolation; } // *DEPRECATED*
137 Double_t IDLikelihood() const { return fIDLikelihood; }
138 Bool_t IsEnergyScaleCorrected() const { return fIsEnergyScaleCorrected; }
139 Bool_t IsMomentumCorrected() const { return fIsMomentumCorrected; }
140 Bool_t IsEB() const { return fIsEB; }
141 Bool_t IsEE() const { return fIsEE; }
142 Bool_t IsEBEEGap() const { return fIsEBEEGap; }
143 Bool_t IsEBEtaGap() const { return fIsEBEtaGap; }
144 Bool_t IsEBPhiGap() const { return fIsEBPhiGap; }
145 Bool_t IsEEDeeGap() const { return fIsEEDeeGap; }
146 Bool_t IsEERingGap() const { return fIsEERingGap; }
147 Bool_t IsEcalDriven() const { return fIsEcalDriven; }
148 Bool_t IsTrackerDriven() const { return fIsTrackerDriven; }
149 Double_t Mva() const { return fMva; }
150 Double_t NumberOfClusters() const { return fNumberOfClusters; }
151 EObjType ObjType() const { return kElectron; }
152 Double_t PassLooseID() const { return fPassLooseID; }
153 Double_t PassTightID() const { return fPassTightID; }
154 Double_t PIn() const { return fPIn; }
155 Double_t POut() const { return fPOut; }
156 const SuperCluster *SCluster() const { return fSuperClusterRef.Obj(); }
157 Double_t ScPixCharge() const { return fScPixCharge; }
158
159 Double_t EcalRecHitIsoDr04() const { return fEcalJurassicIsolation; }
160 Double_t HcalTowerSumEtDr04() const { return HcalDepth1TowerSumEtDr04() +
161 HcalDepth2TowerSumEtDr04(); }
162 Double_t HcalDepth1TowerSumEtDr04() const { return fHcalDepth1TowerSumEtDr04; }
163 Double_t HcalDepth2TowerSumEtDr04() const { return fHcalDepth2TowerSumEtDr04; }
164 Double_t TrackIsolationDr04() const { return fTrackIsolationDr04; }
165 Double_t EcalRecHitIsoDr03() const { return fEcalRecHitSumEtDr03; }
166 Double_t HcalTowerSumEtDr03() const { return fCaloTowerIsolation; }
167 Double_t HcalDepth1TowerSumEtDr03() const { return fHcalDepth1TowerSumEtDr03; }
168 Double_t HcalDepth2TowerSumEtDr03() const { return fHcalDepth2TowerSumEtDr03; }
169 Double_t TrackIsolationDr03() const { return fTrackIsolation; }
170 Double_t PFChargedHadronIso() const { return fPFChargedHadronIso; }
171 Double_t PFNeutralHadronIso() const { return fPFNeutralHadronIso; }
172 Double_t PFPhotonIso() const { return fPFPhotonIso; }
173 Bool_t MatchesVertexConversion() const { return fMatchesVertexConversion; }
174 UInt_t NAmbiguousGsfTracks() const { return fAmbiguousGsfTracks.Entries(); }
175 Bool_t HasAmbiguousGsfTrack(const Track *t) const { return fAmbiguousGsfTracks.HasObject(t); }
176 const Track *AmbiguousGsfTrack(UInt_t i) const { return fAmbiguousGsfTracks.At(i); }
177 Int_t CTFTrkNLayersWithMeasurement() const { return fCTFTrkNLayersWithMeasurement; }
178 Double_t HadOverEmTow() const { return fHadOverEmTow; }
179 Double_t HcalIsoTowDr03() const { return fHCalIsoTowDr03; }
180 Double_t HcalIsoTowDr04() const { return fHCalIsoTowDr04; }
181
182 void AddAmbiguousGsfTrack(const Track *t) { fAmbiguousGsfTracks.Add(t); }
183 void SetCharge(Char_t x) { fCharge = x; ClearCharge(); }
184 void SetScPixCharge(Char_t x) { fScPixCharge = x; }
185 void SetD0PV(Double_t x) { fD0PV = x; }
186 void SetD0PVErr(Double_t x) { fD0PVErr = x; }
187 void SetIp3dPV(Double_t x) { fIp3dPV = x; }
188 void SetIp3dPVErr(Double_t x) { fIp3dPVErr = x; }
189 void SetD0PVBS(Double_t x) { fD0PVBS = x; }
190 void SetD0PVBSErr(Double_t x) { fD0PVBSErr = x; }
191 void SetIp3dPVBS(Double_t x) { fIp3dPVBS = x; }
192 void SetIp3dPVBSErr(Double_t x) { fIp3dPVBSErr = x; }
193 void SetD0PVCkf(Double_t x) { fD0PVCkf = x; }
194 void SetD0PVCkfErr(Double_t x) { fD0PVCkfErr = x; }
195 void SetIp3dPVCkf(Double_t x) { fIp3dPVCkf = x; }
196 void SetIp3dPVCkfErr(Double_t x) { fIp3dPVCkfErr = x; }
197 void SetD0PVBSCkf(Double_t x) { fD0PVBSCkf = x; }
198 void SetD0PVBSCkfErr(Double_t x) { fD0PVBSCkfErr = x; }
199 void SetIp3dPVBSCkf(Double_t x) { fIp3dPVBSCkf = x; }
200 void SetIp3dPVBSCkfErr(Double_t x) { fIp3dPVBSCkfErr = x; }
201 void SetD0PVUB(Double_t x) { fD0PVUB = x; }
202 void SetD0PVUBErr(Double_t x) { fD0PVUBErr = x; }
203 void SetIp3dPVUB(Double_t x) { fIp3dPVUB = x; }
204 void SetIp3dPVUBErr(Double_t x) { fIp3dPVUBErr = x; }
205 void SetD0PVUBBS(Double_t x) { fD0PVUBBS = x; }
206 void SetD0PVUBBSErr(Double_t x) { fD0PVUBBSErr = x; }
207 void SetIp3dPVUBBS(Double_t x) { fIp3dPVUBBS = x; }
208 void SetIp3dPVUBBSErr(Double_t x) { fIp3dPVUBBSErr = x; }
209 void SetD0PVUBCkf(Double_t x) { fD0PVUBCkf = x; }
210 void SetD0PVUBCkfErr(Double_t x) { fD0PVUBCkfErr = x; }
211 void SetIp3dPVUBCkf(Double_t x) { fIp3dPVUBCkf = x; }
212 void SetIp3dPVUBCkfErr(Double_t x) { fIp3dPVUBCkfErr = x; }
213 void SetD0PVUBBSCkf(Double_t x) { fD0PVUBBSCkf = x; }
214 void SetD0PVUBBSCkfErr(Double_t x) { fD0PVUBBSCkfErr = x; }
215 void SetIp3dPVUBBSCkf(Double_t x) { fIp3dPVUBBSCkf = x; }
216 void SetIp3dPVUBBSCkfErr(Double_t x) { fIp3dPVUBBSCkfErr = x; }
217 void SetGsfPVCompatibility(Double_t x) { fGsfPVCompatibility = x; }
218 void SetGsfPVBSCompatibility(Double_t x) { fGsfPVBSCompatibility = x; }
219 void SetGsfPVCompatibilityMatched(Double_t x) { fGsfPVCompatibilityMatched = x; }
220 void SetGsfPVBSCompatibilityMatched(Double_t x) { fGsfPVBSCompatibilityMatched = x; }
221 void SetConvPartnerDCotTheta(Double_t x) { fConvPartnerDCotTheta = x; }
222 void SetConvPartnerDist(Double_t x) { fConvPartnerDist = x; }
223 void SetConvPartnerRadius(Double_t x) { fConvPartnerRadius = x; }
224 void SetConvFlag(Int_t n) { fConvFlag = n; }
225 void SetClassification(Int_t x) { fClassification = x; }
226 void SetCovEtaEta(Double_t x) { fCovEtaEta = x; }
227 void SetCoviEtaiEta(Double_t x) { fCoviEtaiEta = x; }
228 void SetDeltaEtaSuperClusterTrackAtVtx(Double_t x)
229 { fDeltaEtaSuperClTrkAtVtx = x; }
230 void SetDeltaEtaSeedClusterTrackAtCalo(Double_t x)
231 { fDeltaEtaSeedClTrkAtCalo = x; }
232 void SetDeltaPhiSuperClusterTrackAtVtx(Double_t x)
233 { fDeltaPhiSuperClTrkAtVtx = x; }
234 void SetDeltaPhiSeedClusterTrackAtCalo(Double_t x)
235 { fDeltaPhiSeedClTrkAtCalo = x; }
236 void SetE15(Double_t x) { fE15 = x; }
237 void SetE25Max(Double_t x) { fE25Max = x; }
238 void SetE55(Double_t x) { fE55 = x; }
239 void SetESeedClusterOverPout(Double_t x) { fESeedClusterOverPout = x; }
240 void SetEEleClusterOverPout(Double_t x) { fEEleClusterOverPout = x; }
241 void SetESuperClusterOverP(Double_t x) { fESuperClusterOverP = x; }
242 void SetFBrem(Double_t x) { fFBrem = x; }
243 void SetFracSharedHits(Double_t x) { fFracSharedHits = x; }
244 void SetGsfTrk(const Track* t)
245 { fGsfTrackRef = t; ClearCharge(); }
246 void SetHadronicOverEm(Double_t x) { fHadronicOverEm = x; }
247 void SetHcalDepth1OverEcal(Double_t x) { fHcalDepth1OverEcal = x; }
248 void SetHcalDepth2OverEcal(Double_t x) { fHcalDepth2OverEcal = x; }
249 void SetIDLikelihood(Double_t x) { fIDLikelihood = x; }
250 void SetIsEnergyScaleCorrected(Bool_t x) { fIsEnergyScaleCorrected = x; }
251 void SetIsMomentumCorrected(Bool_t x) { fIsMomentumCorrected = x; }
252 void SetNumberOfClusters(Double_t x) { fNumberOfClusters = x; }
253 void SetPIn(Double_t pIn) { fPIn = pIn; }
254 void SetPOut(Double_t pOut) { fPOut = pOut; }
255 void SetPassLooseID(Double_t passLooseID) { fPassLooseID = passLooseID; }
256 void SetPassTightID(Double_t passTightID) { fPassTightID = passTightID; }
257 void SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi);
258 void SetSuperCluster(const SuperCluster* sc)
259 { fSuperClusterRef = sc; }
260 void SetTrackerTrk(const Track* t)
261 { fTrackerTrackRef = t; ClearCharge(); }
262 void SetConvPartnerTrk(const Track *t)
263 { fConvPartnerTrackRef = t; }
264 void SetEcalRecHitIsoDr04(Double_t x) { fEcalJurassicIsolation = x; }
265 void SetHcalDepth1TowerSumEtDr04(Double_t x) { fHcalDepth1TowerSumEtDr04 = x; }
266 void SetHcalDepth2TowerSumEtDr04(Double_t x) { fHcalDepth2TowerSumEtDr04 = x; }
267 void SetTrackIsolationDr04(Double_t x) { fTrackIsolationDr04 = x; }
268 void SetEcalRecHitIsoDr03(Double_t x) { fEcalRecHitSumEtDr03 = x; }
269 void SetHcalTowerSumEtDr03(Double_t x) { fCaloTowerIsolation = x; }
270 void SetHcalDepth1TowerSumEtDr03(Double_t x) { fHcalDepth1TowerSumEtDr03 = x; }
271 void SetHcalDepth2TowerSumEtDr03(Double_t x) { fHcalDepth2TowerSumEtDr03 = x; }
272 void SetTrackIsolationDr03(Double_t x) { fTrackIsolation = x; }
273 void SetPFChargedHadronIso(Double_t x) { fPFChargedHadronIso = x; }
274 void SetPFNeutralHadronIso(Double_t x) { fPFNeutralHadronIso = x; }
275 void SetPFPhotonIso(Double_t x) { fPFPhotonIso = x; }
276 void SetMva(Double_t x) { fMva = x; }
277 void SetIsEB(Bool_t b) { fIsEB = b; }
278 void SetIsEE(Bool_t b) { fIsEE = b; }
279 void SetIsEBEEGap(Bool_t b) { fIsEBEEGap = b; }
280 void SetIsEBEtaGap(Bool_t b) { fIsEBEtaGap = b; }
281 void SetIsEBPhiGap(Bool_t b) { fIsEBPhiGap = b; }
282 void SetIsEEDeeGap(Bool_t b) { fIsEEDeeGap = b; }
283 void SetIsEERingGap(Bool_t b) { fIsEERingGap = b; }
284 void SetIsEcalDriven(Bool_t b) { fIsEcalDriven = b; }
285 void SetIsTrackerDriven(Bool_t b) { fIsTrackerDriven = b; }
286 void SetMatchesVertexConversion(Bool_t b) { fMatchesVertexConversion = b; }
287 void SetConversionXYZ(Double_t x, Double_t y, Double_t z)
288 { fConvPosition.SetXYZ(x,y,z); }
289 void SetCTFTrkNLayersWithMeasurement(Int_t x){ fCTFTrkNLayersWithMeasurement = x; }
290 void SetHadOverEmTow(Double_t x) { fHadOverEmTow = x; }
291 void SetHCalIsoTowDr03(Double_t x) { fHCalIsoTowDr03 = x; }
292 void SetHCalIsoTowDr04(Double_t x) { fHCalIsoTowDr04 = x; }
293
294 const Track *TrackerTrk() const { return fTrackerTrackRef.Obj(); }
295 const Track *Trk() const { return BestTrk(); }
296 const Track *ConvPartnerTrk() const { return fConvPartnerTrackRef.Obj(); }
297
298 // Some structural tools
299 void Mark(UInt_t i=1) const;
300
301 protected:
302 Double_t GetCharge() const;
303 Double_t GetMass() const { return 0.51099892e-3; }
304 void GetMom() const;
305
306 Vect3C fMom; //stored three-momentum
307 Char_t fCharge; //stored charge - filled with -99 when reading old files
308 Char_t fScPixCharge; //charge from supercluster-pixel matching
309 Ref<Track> fGsfTrackRef; //gsf track reference
310 Ref<Track> fTrackerTrackRef; //tracker track reference
311 Ref<Track> fConvPartnerTrackRef; //conversion partner track reference
312 Ref<SuperCluster> fSuperClusterRef; //reference to SuperCluster
313 Double32_t fESuperClusterOverP; //[0,0,14]super cluster e over p ratio
314 Double32_t fESeedClusterOverPout; //[0,0,14]seed cluster e over p mom
315 Double32_t fDeltaEtaSuperClTrkAtVtx; //[0,0,14]delta eta of super cluster with trk
316 Double32_t fDeltaEtaSeedClTrkAtCalo; //[0,0,14]delta eta of seeed cluster with trk
317 Double32_t fDeltaPhiSuperClTrkAtVtx; //[0,0,14]delta phi of super cluster with trk
318 Double32_t fDeltaPhiSeedClTrkAtCalo; //[0,0,14]delta phi of seeed cluster with trk
319 Double32_t fFBrem; //[0,0,14]brem fraction
320 Double32_t fHadronicOverEm; //[0,0,14]hadronic over em fraction *DEPRECATED*
321 Double32_t fHcalDepth1OverEcal; //[0,0,14]hadronic over em fraction depth1
322 Double32_t fHcalDepth2OverEcal; //[0,0,14]hadronic over em fraction depth2
323 Double32_t fNumberOfClusters; //[0,0,14]number of associated clusters
324 Double32_t fE15; //[0,0,14]1x5 crystal energy
325 Double32_t fE25Max; //[0,0,14]2x5 crystal energy (max of two possible sums)
326 Double32_t fE55; //[0,0,14]5x5 crystal energy
327 Double32_t fCovEtaEta; //[0,0,14]variance eta-eta
328 Double32_t fCoviEtaiEta; //[0,0,14]covariance eta-eta (in crystals)
329 Double32_t fCaloIsolation; //[0,0,14](non-jura) ecal isolation based on rechits dR 0.3 *DEPRECATED*
330 Double32_t fHcalJurassicIsolation; //[0,0,14]hcal jura iso dR 0.4 *DEPRECATED*
331 Double32_t fHcalDepth1TowerSumEtDr04; //[0,0,14]hcal depth1 tower based isolation dR 0.4
332 Double32_t fHcalDepth2TowerSumEtDr04; //[0,0,14]hcal depth2 tower based isolation dR 0.4
333 Double32_t fEcalJurassicIsolation; //[0,0,14]ecal jura iso dR 0.4 *RENAMING*
334 Double32_t fTrackIsolationDr04; //[0,0,14]isolation based on tracks dR 0.4
335 Double32_t fCaloTowerIsolation; //[0,0,14]hcal tower based isolation dR 0.3 *DEPRECATED*
336 Double32_t fHcalDepth1TowerSumEtDr03; //[0,0,14]hcal depth1 tower based isolation dR 0.3
337 Double32_t fHcalDepth2TowerSumEtDr03; //[0,0,14]hcal depth2 tower based isolation dR 0.3
338 Double32_t fEcalRecHitSumEtDr03; //[0,0,14]ecal jura iso dR 0.3
339 Double32_t fTrackIsolation; //[0,0,14]isolation based on tracks dR 0.3 *RENAMING*
340 Double32_t fPassLooseID; //[0,0,14]pass loose id
341 Double32_t fPassTightID; //[0,0,14]pass tight id
342 Double32_t fIDLikelihood; //[0,0,14]likelihood value
343 Double32_t fPIn; //[0,0,14]momentum at vtx
344 Double32_t fPOut; //[0,0,14]momentum at ecal surface
345 Double32_t fFracSharedHits; //[0,0,14]fraction of shared hits btw gsf and std. track
346 Double32_t fMva; //[0,0,14] pflow mva output
347 Double32_t fD0PV; //[0,0,14]transverse impact parameter to signal PV (gsf track)
348 Double32_t fD0PVErr; //[0,0,14]transverse impact parameter uncertainty to signal PV (gsf track)
349 Double32_t fIp3dPV; //[0,0,14]3d impact parameter to signal PV (gsf track)
350 Double32_t fIp3dPVErr; //[0,0,14]3d impact parameter uncertainty to signal PV (gsf track)
351 Double32_t fD0PVBS; //[0,0,14]transverse impact parameter to signal PV w/ bs constraint (gsf track)
352 Double32_t fD0PVBSErr; //[0,0,14]transverse impact parameter uncertainty to signal PV w/ bs constraint (gsf track)
353 Double32_t fIp3dPVBS; //[0,0,14]3d impact parameter to signal PV w/ bs constraint (gsf track)
354 Double32_t fIp3dPVBSErr; //[0,0,14]3d impact parameter uncertainty to signal PV w/ bs constraint (gsf track)
355 Double32_t fD0PVCkf; //[0,0,14]transverse impact parameter to signal PV (ckf track)
356 Double32_t fD0PVCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PV (ckf track)
357 Double32_t fIp3dPVCkf; //[0,0,14]3d impact parameter to signal PV (ckf track)
358 Double32_t fIp3dPVCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PV (ckf track)
359 Double32_t fD0PVBSCkf; //[0,0,14]transverse impact parameter to signal PV w/ bs constraint (ckf track)
360 Double32_t fD0PVBSCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PV w/ bs constraint (ckf track)
361 Double32_t fIp3dPVBSCkf; //[0,0,14]3d impact parameter to signal PV w/ bs constraint (ckf track)
362 Double32_t fIp3dPVBSCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PV w/ bs constraint (ckf track)
363 Double32_t fD0PVUB; //[0,0,14]transverse impact parameter to signal PVUB (gsf track)
364 Double32_t fD0PVUBErr; //[0,0,14]transverse impact parameter uncertainty to signal PVUB (gsf track)
365 Double32_t fIp3dPVUB; //[0,0,14]3d impact parameter to signal PVUB (gsf track)
366 Double32_t fIp3dPVUBErr; //[0,0,14]3d impact parameter uncertainty to signal PVUB (gsf track)
367 Double32_t fD0PVUBBS; //[0,0,14]transverse impact parameter to signal PVUB w/ bs constraint (gsf track)
368 Double32_t fD0PVUBBSErr; //[0,0,14]transverse impact parameter uncertainty to signal PVUB w/ bs constraint (gsf track)
369 Double32_t fIp3dPVUBBS; //[0,0,14]3d impact parameter to signal PVUB w/ bs constraint (gsf track)
370 Double32_t fIp3dPVUBBSErr; //[0,0,14]3d impact parameter uncertainty to signal PVUB w/ bs constraint (gsf track)
371 Double32_t fD0PVUBCkf; //[0,0,14]transverse impact parameter to signal PVUB (ckf track)
372 Double32_t fD0PVUBCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PVUB (ckf track)
373 Double32_t fIp3dPVUBCkf; //[0,0,14]3d impact parameter to signal PVUB (ckf track)
374 Double32_t fIp3dPVUBCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PVUB (ckf track)
375 Double32_t fD0PVUBBSCkf; //[0,0,14]transverse impact parameter to signal PVUB w/ bs constraint (ckf track)
376 Double32_t fD0PVUBBSCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PVUB w/ bs constraint (ckf track)
377 Double32_t fIp3dPVUBBSCkf; //[0,0,14]3d impact parameter to signal PVUB w/ bs constraint (ckf track)
378 Double32_t fIp3dPVUBBSCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PVUB w/ bs constraint (ckf track)
379 Double32_t fGsfPVCompatibility; //[0,0,14]gsf compatibility with signal PV
380 Double32_t fGsfPVBSCompatibility; //[0,0,14]gsf compatibility with signal PV w/ bs constraint
381 Double32_t fGsfPVCompatibilityMatched; //[0,0,14]gsf compatibility with signal PV (matching ckf track excluded from vertex)
382 Double32_t fGsfPVBSCompatibilityMatched; //[0,0,14]gsf compatibility with signal PV w/ bs constraint (matching ckf track excluded from vertex)
383 Double32_t fConvPartnerDCotTheta; //[0,0,14]delta cot theta to nearest conversion partner track
384 Double32_t fConvPartnerDist; //[0,0,14]distance in x-y plane to nearest conversion partner track
385 Double32_t fConvPartnerRadius; //[0,0,14]radius of helix intersection with conversion partner track
386 Double32_t fPFChargedHadronIso; //[0,0,14]pf isolation, charged hadrons
387 Double32_t fPFNeutralHadronIso; //[0,0,14]pf isolation, neutral hadrons
388 Double32_t fPFPhotonIso; //[0,0,14]pf isolation, photons
389 Int_t fConvFlag; //conversion flag indicating which track combination was used
390 Vect3C fConvPosition;
391 Bool_t fIsEnergyScaleCorrected; //class dependent escale correction
392 Bool_t fIsMomentumCorrected; //class dependent E-p combination
393 Int_t fClassification; //classification (see GsfElectron.h)
394 Bool_t fIsEB; //is ECAL barrel
395 Bool_t fIsEE; //is ECAL Endcap
396 Bool_t fIsEBEEGap; //is in barrel-endcap gap
397 Bool_t fIsEBEtaGap; //is in EB eta module gap
398 Bool_t fIsEBPhiGap; //is in EB phi module gap
399 Bool_t fIsEEDeeGap; //is in EE dee gap
400 Bool_t fIsEERingGap; //is in EE ring gap
401 Bool_t fIsEcalDriven; //is std. egamma electron
402 Bool_t fIsTrackerDriven; //is pflow track-seeded electron
403 Bool_t fMatchesVertexConversion;
404 RefArray<Track> fAmbiguousGsfTracks; //ambiguous gsf tracks for this electron
405 Double_t fEEleClusterOverPout; //energy of the electron cluster
406 Int_t fCTFTrkNLayersWithMeasurement; //number of tracker layers from associated ctf trk
407 Double32_t fHadOverEmTow; //[0,0,14]per-tower definition of hadronic/em energy fraction
408 Double32_t fHCalIsoTowDr03; //[0,0,14]hcal isolation matched to per tower h/e definition
409 Double32_t fHCalIsoTowDr04; //[0,0,14]hcal isolation matched to per tower h/e definition
410
411 ClassDef(Electron, 14) // Electron class
412 };
413 }
414
415 //--------------------------------------------------------------------------------------------------
416 inline void mithep::Electron::Mark(UInt_t ib) const
417 {
418 // mark myself
419 mithep::DataObject::Mark(ib);
420 // mark my dependencies if they are there
421 if (fSuperClusterRef.IsValid())
422 fSuperClusterRef.Obj()->Mark(ib);
423 if (fGsfTrackRef.IsValid())
424 fGsfTrackRef.Obj()->Mark(ib);
425 if (fTrackerTrackRef.IsValid())
426 fTrackerTrackRef.Obj()->Mark(ib);
427 if (fConvPartnerTrackRef.IsValid())
428 fConvPartnerTrackRef.Obj()->Mark(ib);
429 fAmbiguousGsfTracks.Mark(ib);
430 }
431
432 //--------------------------------------------------------------------------------------------------
433 inline const mithep::Track *mithep::Electron::BestTrk() const
434 {
435 // Return "best" track.
436
437 if (HasGsfTrk())
438 return GsfTrk();
439 else if (HasTrackerTrk())
440 return TrackerTrk();
441
442 return 0;
443 }
444
445 //--------------------------------------------------------------------------------------------------
446 inline Double_t mithep::Electron::GetCharge() const
447 {
448 // Return stored charge, unless it is set to invalid (-99),
449 // in that case get charge from track as before
450
451 if (fCharge==-99)
452 return mithep::ChargedParticle::GetCharge();
453 else
454 return fCharge;
455
456 }
457
458 //--------------------------------------------------------------------------------------------------
459 inline void mithep::Electron::GetMom() const
460 {
461 // Get momentum of the electron. We use an explicitly stored three vector, with the pdg mass,
462 // since the momentum vector may be computed non-trivially in cmssw
463
464 fCachedMom.SetCoordinates(fMom.Rho(),fMom.Eta(),fMom.Phi(),GetMass());
465 }
466
467 //-------------------------------------------------------------------------------------------------
468 inline Double_t mithep::Electron::ESeedClusterOverPIn() const
469 {
470 // Return energy of the SuperCluster seed divided by the magnitude
471 // of the track momentum at the vertex.
472
473 return SCluster()->Seed()->Energy() / PIn();
474 }
475
476 //-------------------------------------------------------------------------------------------------
477 inline void mithep::Electron::SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi)
478 {
479 // Set three-vector
480
481 fMom.Set(pt,eta,phi);
482 ClearMom();
483 }
484 #endif