ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitAna/DataTree/interface/Electron.h
Revision: 1.60
Committed: Sat Sep 1 11:37:40 2012 UTC (12 years, 8 months ago) by sixie
Content type: text/plain
Branch: MAIN
CVS Tags: Mit_032, Mit_031, Mit_030, Mit_029c, Mit_029b, Mit_030_pre1, Mit_029a, HEAD
Changes since 1.59: +2 -1 lines
Log Message:
add accessor for electron track momentum error

File Contents

# User Rev Content
1 bendavid 1.1 //--------------------------------------------------------------------------------------------------
2 sixie 1.60 // $Id: Electron.h,v 1.59 2012/08/09 21:15:46 paus Exp $
3 bendavid 1.1 //
4 paus 1.3 // Electron
5 bendavid 1.1 //
6 loizides 1.29 // This class holds information about reconstructed electrons from CMSSW.
7 bendavid 1.1 //
8 paus 1.55 // Authors: C.Paus, G.Ceballos, C.Loizides, J.Bendavid, S.Xie
9 bendavid 1.1 //--------------------------------------------------------------------------------------------------
10    
11 loizides 1.23 #ifndef MITANA_DATATREE_ELECTRON_H
12     #define MITANA_DATATREE_ELECTRON_H
13 loizides 1.6
14 sixie 1.13 #include "MitAna/DataTree/interface/SuperCluster.h"
15 bendavid 1.11 #include "MitAna/DataTree/interface/ChargedParticle.h"
16 bendavid 1.24 #include "MitAna/DataCont/interface/Ref.h"
17 loizides 1.6
18 bendavid 1.1 namespace mithep
19     {
20 bendavid 1.11 class Electron : public ChargedParticle
21 bendavid 1.1 {
22     public:
23 loizides 1.34 Electron() :
24 bendavid 1.38 fCharge(-99), fScPixCharge(0),
25 loizides 1.34 fESuperClusterOverP(0), fESeedClusterOverPout(0), fDeltaEtaSuperClTrkAtVtx(0),
26     fDeltaEtaSeedClTrkAtCalo(0), fDeltaPhiSuperClTrkAtVtx(0),
27     fDeltaPhiSeedClTrkAtCalo(0), fFBrem(0), fHadronicOverEm(0), fHcalDepth1OverEcal(0),
28 bendavid 1.35 fHcalDepth2OverEcal(0), fNumberOfClusters(0), fE15(0), fE25Max(0),
29     fE55(0), fCovEtaEta(0), fCoviEtaiEta(0),
30 loizides 1.34 fCaloIsolation(0), fHcalJurassicIsolation(0),
31     fHcalDepth1TowerSumEtDr04(0), fHcalDepth2TowerSumEtDr04(0),
32     fEcalJurassicIsolation(0), fTrackIsolationDr04(0), fCaloTowerIsolation(0),
33     fHcalDepth1TowerSumEtDr03(0), fHcalDepth2TowerSumEtDr03(0),
34     fEcalRecHitSumEtDr03(0), fTrackIsolation(0), fPassLooseID(0),
35     fPassTightID(0), fIDLikelihood(0), fPIn(0), fPOut(0), fFracSharedHits(0),
36 bendavid 1.40 fMva(0), fD0PV(0), fD0PVErr(0), fIp3dPV(0), fIp3dPVErr(0),
37     fD0PVBS(0), fD0PVBSErr(0), fIp3dPVBS(0), fIp3dPVBSErr(0),
38 bendavid 1.44 fD0PVCkf(0), fD0PVCkfErr(0), fIp3dPVCkf(0), fIp3dPVCkfErr(0),
39     fD0PVBSCkf(0), fD0PVBSCkfErr(0), fIp3dPVBSCkf(0), fIp3dPVBSCkfErr(0),
40 bendavid 1.47 fD0PVUB(0), fD0PVUBErr(0), fIp3dPVUB(0), fIp3dPVUBErr(0),
41     fD0PVUBBS(0), fD0PVUBBSErr(0), fIp3dPVUBBS(0), fIp3dPVUBBSErr(0),
42     fD0PVUBCkf(0), fD0PVUBCkfErr(0), fIp3dPVUBCkf(0), fIp3dPVUBCkfErr(0),
43     fD0PVUBBSCkf(0), fD0PVUBBSCkfErr(0), fIp3dPVUBBSCkf(0), fIp3dPVUBBSCkfErr(0),
44 bendavid 1.41 fGsfPVCompatibility(0), fGsfPVBSCompatibility(0),
45     fGsfPVCompatibilityMatched(0), fGsfPVBSCompatibilityMatched(0),
46 bendavid 1.40 fConvPartnerDCotTheta(0), fConvPartnerDist(0), fConvPartnerRadius(0),
47 bendavid 1.46 fPFChargedHadronIso(0), fPFNeutralHadronIso(0), fPFPhotonIso(0),
48 bendavid 1.45 fConvFlag(0), fIsEnergyScaleCorrected(0), fIsMomentumCorrected(0),
49 loizides 1.34 fClassification(0), fIsEB(), fIsEE(0), fIsEBEEGap(0), fIsEBEtaGap(0),
50     fIsEBPhiGap(0), fIsEEDeeGap(0), fIsEERingGap(0),
51 bendavid 1.52 fIsEcalDriven(0), fIsTrackerDriven(0), fMatchesVertexConversion(0),
52 paus 1.55 fHadOverEmTow(0), fHCalIsoTowDr03(0), fHCalIsoTowDr04(0),
53 paus 1.59 fEcalEnergy(0), fEcalEnergyError(0), fTrackMomentumError(0) {}
54 loizides 1.29
55 paus 1.48 const Track *BestTrk() const;
56     Double_t D0PV() const { return fD0PV; }
57     Double_t D0PVErr() const { return fD0PVErr; }
58     Double_t D0PVSignificance() const { return fD0PV/fD0PVErr; }
59     Double_t Ip3dPV() const { return fIp3dPV; }
60     Double_t Ip3dPVErr() const { return fIp3dPVErr; }
61     Double_t Ip3dPVSignificance() const { return fIp3dPV/fIp3dPVErr; }
62     Double_t D0PVBS() const { return fD0PVBS; }
63     Double_t D0PVBSErr() const { return fD0PVBSErr; }
64     Double_t D0PVBSSignificance() const { return fD0PVBS/fD0PVBSErr; }
65     Double_t Ip3dPVBS() const { return fIp3dPVBS; }
66     Double_t Ip3dPVBSErr() const { return fIp3dPVBSErr; }
67     Double_t Ip3dPVBSSignificance() const { return fIp3dPVBS/fIp3dPVBSErr; }
68     Double_t D0PVCkf() const { return fD0PVCkf; }
69     Double_t D0PVCkfErr() const { return fD0PVCkfErr; }
70     Double_t D0PVCkfSignificance() const { return fD0PVCkf/fD0PVCkfErr; }
71     Double_t Ip3dPVCkf() const { return fIp3dPVCkf; }
72     Double_t Ip3dPVCkfErr() const { return fIp3dPVCkfErr; }
73     Double_t Ip3dPVCkfSignificance() const { return fIp3dPVCkf/fIp3dPVCkfErr; }
74     Double_t D0PVBSCkf() const { return fD0PVBSCkf; }
75     Double_t D0PVBSCkfErr() const { return fD0PVBSCkfErr; }
76     Double_t D0PVBSCkfSignificance() const { return fD0PVBSCkf/fD0PVBSCkfErr; }
77     Double_t Ip3dPVBSCkf() const { return fIp3dPVBSCkf; }
78     Double_t Ip3dPVBSCkfErr() const { return fIp3dPVBSCkfErr; }
79     Double_t Ip3dPVBSCkfSignificance() const { return fIp3dPVBSCkf/fIp3dPVBSCkfErr; }
80     Double_t D0PVUB() const { return fD0PVUB; }
81     Double_t D0PVUBErr() const { return fD0PVUBErr; }
82     Double_t D0PVUBSignificance() const { return fD0PVUB/fD0PVUBErr; }
83     Double_t Ip3dPVUB() const { return fIp3dPVUB; }
84     Double_t Ip3dPVUBErr() const { return fIp3dPVUBErr; }
85     Double_t Ip3dPVUBSignificance() const { return fIp3dPVUB/fIp3dPVUBErr; }
86     Double_t D0PVUBBS() const { return fD0PVUBBS; }
87     Double_t D0PVUBBSErr() const { return fD0PVUBBSErr; }
88     Double_t D0PVUBBSSignificance() const { return fD0PVUBBS/fD0PVUBBSErr; }
89     Double_t Ip3dPVUBBS() const { return fIp3dPVUBBS; }
90     Double_t Ip3dPVUBBSErr() const { return fIp3dPVUBBSErr; }
91     Double_t Ip3dPVUBBSSignificance() const { return fIp3dPVUBBS/fIp3dPVUBBSErr; }
92     Double_t D0PVUBCkf() const { return fD0PVUBCkf; }
93     Double_t D0PVUBCkfErr() const { return fD0PVUBCkfErr; }
94     Double_t D0PVUBCkfSignificance() const { return fD0PVUBCkf/fD0PVUBCkfErr; }
95     Double_t Ip3dPVUBCkf() const { return fIp3dPVUBCkf; }
96     Double_t Ip3dPVUBCkfErr() const { return fIp3dPVUBCkfErr; }
97     Double_t Ip3dPVUBCkfSignificance() const { return fIp3dPVUBCkf/fIp3dPVUBCkfErr; }
98     Double_t D0PVUBBSCkf() const { return fD0PVUBBSCkf; }
99     Double_t D0PVUBBSCkfErr() const { return fD0PVUBBSCkfErr; }
100     Double_t D0PVUBBSCkfSignificance() const { return fD0PVUBBSCkf/fD0PVUBBSCkfErr; }
101     Double_t Ip3dPVUBBSCkf() const { return fIp3dPVUBBSCkf; }
102     Double_t Ip3dPVUBBSCkfErr() const { return fIp3dPVUBBSCkfErr; }
103 bendavid 1.47 Double_t Ip3dPVUBBSCkfSignificance() const { return fIp3dPVUBBSCkf/fIp3dPVUBBSCkfErr; }
104 paus 1.48 Double_t GsfPVCompatibility() const { return fGsfPVCompatibility; }
105     Double_t GsfPVBSCompatibility() const { return fGsfPVBSCompatibility; }
106     Double_t GsfPVCompatibilityMatched() const { return fGsfPVCompatibilityMatched; }
107     Double_t GsfPVBSCompatibilityMatched() const { return fGsfPVBSCompatibilityMatched; }
108     Double_t ConvPartnerDCotTheta() const { return fConvPartnerDCotTheta; }
109     Double_t ConvPartnerDist() const { return fConvPartnerDist; }
110     Double_t ConvPartnerRadius() const { return fConvPartnerRadius; }
111     Int_t ConvFlag() const { return fConvFlag; }
112     Double_t CaloIsolation() const { return fCaloIsolation; } // *DEPRECATED*
113     Int_t Classification() const { return fClassification; }
114     Double_t CovEtaEta() const { return fCovEtaEta; }
115     Double_t CoviEtaiEta() const { return fCoviEtaiEta; }
116     Double_t DeltaEtaSuperClusterTrackAtVtx() const { return fDeltaEtaSuperClTrkAtVtx; }
117     Double_t DeltaEtaSeedClusterTrackAtCalo() const { return fDeltaEtaSeedClTrkAtCalo; }
118     Double_t DeltaPhiSuperClusterTrackAtVtx() const { return fDeltaPhiSuperClTrkAtVtx; }
119     Double_t DeltaPhiSeedClusterTrackAtCalo() const { return fDeltaPhiSeedClTrkAtCalo; }
120     Double_t E15() const { return fE15; }
121     Double_t E25Max() const { return fE25Max; }
122     Double_t E55() const { return fE55; }
123     Double_t ESuperClusterOverP() const { return fESuperClusterOverP; }
124     Double_t ESeedClusterOverPout() const { return fESeedClusterOverPout; }
125 sixie 1.51 Double_t EEleClusterOverPout() const { return fEEleClusterOverPout; }
126 paus 1.48 Double_t ESeedClusterOverPIn() const;
127     Double_t FBrem() const { return fFBrem; }
128     Double_t FBremOld() const { return (PIn() - POut())/PIn(); }
129     Double_t FracSharedHits() const { return fFracSharedHits; }
130     const Track *GsfTrk() const { return fGsfTrackRef.Obj(); }
131     Double_t HadronicOverEm() const { return fHadronicOverEm; }
132     Double_t HcalDepth1OverEcal() const { return fHcalDepth1OverEcal; }
133     Double_t HcalDepth2OverEcal() const { return fHcalDepth2OverEcal; }
134     Bool_t HasGsfTrk() const { return fGsfTrackRef.IsValid(); }
135     Bool_t HasTrackerTrk() const { return fTrackerTrackRef.IsValid(); }
136     Bool_t HasSuperCluster() const { return fSuperClusterRef.IsValid(); }
137     Double_t HcalIsolation() const { return fHcalJurassicIsolation; } // *DEPRECATED*
138     Double_t IDLikelihood() const { return fIDLikelihood; }
139     Bool_t IsEnergyScaleCorrected() const { return fIsEnergyScaleCorrected; }
140     Bool_t IsMomentumCorrected() const { return fIsMomentumCorrected; }
141     Bool_t IsEB() const { return fIsEB; }
142     Bool_t IsEE() const { return fIsEE; }
143     Bool_t IsEBEEGap() const { return fIsEBEEGap; }
144     Bool_t IsEBEtaGap() const { return fIsEBEtaGap; }
145     Bool_t IsEBPhiGap() const { return fIsEBPhiGap; }
146     Bool_t IsEEDeeGap() const { return fIsEEDeeGap; }
147     Bool_t IsEERingGap() const { return fIsEERingGap; }
148     Bool_t IsEcalDriven() const { return fIsEcalDriven; }
149     Bool_t IsTrackerDriven() const { return fIsTrackerDriven; }
150     Double_t Mva() const { return fMva; }
151     Double_t NumberOfClusters() const { return fNumberOfClusters; }
152     EObjType ObjType() const { return kElectron; }
153     Double_t PassLooseID() const { return fPassLooseID; }
154     Double_t PassTightID() const { return fPassTightID; }
155     Double_t PIn() const { return fPIn; }
156     Double_t POut() const { return fPOut; }
157     const SuperCluster *SCluster() const { return fSuperClusterRef.Obj(); }
158 paus 1.53 const SuperCluster *PFSCluster() const { return fPFSuperClusterRef.Obj(); }
159 paus 1.48 Double_t ScPixCharge() const { return fScPixCharge; }
160    
161     Double_t EcalRecHitIsoDr04() const { return fEcalJurassicIsolation; }
162     Double_t HcalTowerSumEtDr04() const { return HcalDepth1TowerSumEtDr04() +
163     HcalDepth2TowerSumEtDr04(); }
164     Double_t HcalDepth1TowerSumEtDr04() const { return fHcalDepth1TowerSumEtDr04; }
165     Double_t HcalDepth2TowerSumEtDr04() const { return fHcalDepth2TowerSumEtDr04; }
166     Double_t TrackIsolationDr04() const { return fTrackIsolationDr04; }
167     Double_t EcalRecHitIsoDr03() const { return fEcalRecHitSumEtDr03; }
168     Double_t HcalTowerSumEtDr03() const { return fCaloTowerIsolation; }
169     Double_t HcalDepth1TowerSumEtDr03() const { return fHcalDepth1TowerSumEtDr03; }
170     Double_t HcalDepth2TowerSumEtDr03() const { return fHcalDepth2TowerSumEtDr03; }
171     Double_t TrackIsolationDr03() const { return fTrackIsolation; }
172     Double_t PFChargedHadronIso() const { return fPFChargedHadronIso; }
173     Double_t PFNeutralHadronIso() const { return fPFNeutralHadronIso; }
174     Double_t PFPhotonIso() const { return fPFPhotonIso; }
175     Bool_t MatchesVertexConversion() const { return fMatchesVertexConversion; }
176     UInt_t NAmbiguousGsfTracks() const { return fAmbiguousGsfTracks.Entries(); }
177 bendavid 1.43 Bool_t HasAmbiguousGsfTrack(const Track *t) const { return fAmbiguousGsfTracks.HasObject(t); }
178 paus 1.48 const Track *AmbiguousGsfTrack(UInt_t i) const { return fAmbiguousGsfTracks.At(i); }
179 sixie 1.51 Int_t CTFTrkNLayersWithMeasurement() const { return fCTFTrkNLayersWithMeasurement; }
180 paus 1.55 Double_t HadOverEmTow() const { return fHadOverEmTow; }
181     Double_t HcalIsoTowDr03() const { return fHCalIsoTowDr03; }
182     Double_t HcalIsoTowDr04() const { return fHCalIsoTowDr04; }
183     Double_t EcalEnergy() const { return fEcalEnergy; }
184     Double_t EcalEnergyError() const { return fEcalEnergyError; }
185 sixie 1.60 Double_t TrackMomentumError() const { return fTrackMomentumError; }
186 sixie 1.51
187 paus 1.48 void AddAmbiguousGsfTrack(const Track *t) { fAmbiguousGsfTracks.Add(t); }
188     void SetCharge(Char_t x) { fCharge = x; ClearCharge(); }
189     void SetScPixCharge(Char_t x) { fScPixCharge = x; }
190     void SetD0PV(Double_t x) { fD0PV = x; }
191     void SetD0PVErr(Double_t x) { fD0PVErr = x; }
192     void SetIp3dPV(Double_t x) { fIp3dPV = x; }
193     void SetIp3dPVErr(Double_t x) { fIp3dPVErr = x; }
194     void SetD0PVBS(Double_t x) { fD0PVBS = x; }
195     void SetD0PVBSErr(Double_t x) { fD0PVBSErr = x; }
196     void SetIp3dPVBS(Double_t x) { fIp3dPVBS = x; }
197     void SetIp3dPVBSErr(Double_t x) { fIp3dPVBSErr = x; }
198     void SetD0PVCkf(Double_t x) { fD0PVCkf = x; }
199     void SetD0PVCkfErr(Double_t x) { fD0PVCkfErr = x; }
200     void SetIp3dPVCkf(Double_t x) { fIp3dPVCkf = x; }
201     void SetIp3dPVCkfErr(Double_t x) { fIp3dPVCkfErr = x; }
202     void SetD0PVBSCkf(Double_t x) { fD0PVBSCkf = x; }
203     void SetD0PVBSCkfErr(Double_t x) { fD0PVBSCkfErr = x; }
204     void SetIp3dPVBSCkf(Double_t x) { fIp3dPVBSCkf = x; }
205     void SetIp3dPVBSCkfErr(Double_t x) { fIp3dPVBSCkfErr = x; }
206     void SetD0PVUB(Double_t x) { fD0PVUB = x; }
207     void SetD0PVUBErr(Double_t x) { fD0PVUBErr = x; }
208     void SetIp3dPVUB(Double_t x) { fIp3dPVUB = x; }
209     void SetIp3dPVUBErr(Double_t x) { fIp3dPVUBErr = x; }
210     void SetD0PVUBBS(Double_t x) { fD0PVUBBS = x; }
211     void SetD0PVUBBSErr(Double_t x) { fD0PVUBBSErr = x; }
212     void SetIp3dPVUBBS(Double_t x) { fIp3dPVUBBS = x; }
213     void SetIp3dPVUBBSErr(Double_t x) { fIp3dPVUBBSErr = x; }
214     void SetD0PVUBCkf(Double_t x) { fD0PVUBCkf = x; }
215     void SetD0PVUBCkfErr(Double_t x) { fD0PVUBCkfErr = x; }
216     void SetIp3dPVUBCkf(Double_t x) { fIp3dPVUBCkf = x; }
217     void SetIp3dPVUBCkfErr(Double_t x) { fIp3dPVUBCkfErr = x; }
218     void SetD0PVUBBSCkf(Double_t x) { fD0PVUBBSCkf = x; }
219     void SetD0PVUBBSCkfErr(Double_t x) { fD0PVUBBSCkfErr = x; }
220     void SetIp3dPVUBBSCkf(Double_t x) { fIp3dPVUBBSCkf = x; }
221     void SetIp3dPVUBBSCkfErr(Double_t x) { fIp3dPVUBBSCkfErr = x; }
222     void SetGsfPVCompatibility(Double_t x) { fGsfPVCompatibility = x; }
223     void SetGsfPVBSCompatibility(Double_t x) { fGsfPVBSCompatibility = x; }
224     void SetGsfPVCompatibilityMatched(Double_t x) { fGsfPVCompatibilityMatched = x; }
225 bendavid 1.41 void SetGsfPVBSCompatibilityMatched(Double_t x) { fGsfPVBSCompatibilityMatched = x; }
226 paus 1.48 void SetConvPartnerDCotTheta(Double_t x) { fConvPartnerDCotTheta = x; }
227     void SetConvPartnerDist(Double_t x) { fConvPartnerDist = x; }
228     void SetConvPartnerRadius(Double_t x) { fConvPartnerRadius = x; }
229     void SetConvFlag(Int_t n) { fConvFlag = n; }
230     void SetClassification(Int_t x) { fClassification = x; }
231     void SetCovEtaEta(Double_t x) { fCovEtaEta = x; }
232     void SetCoviEtaiEta(Double_t x) { fCoviEtaiEta = x; }
233 loizides 1.27 void SetDeltaEtaSuperClusterTrackAtVtx(Double_t x)
234 paus 1.48 { fDeltaEtaSuperClTrkAtVtx = x; }
235 loizides 1.27 void SetDeltaEtaSeedClusterTrackAtCalo(Double_t x)
236 paus 1.48 { fDeltaEtaSeedClTrkAtCalo = x; }
237 loizides 1.27 void SetDeltaPhiSuperClusterTrackAtVtx(Double_t x)
238 paus 1.48 { fDeltaPhiSuperClTrkAtVtx = x; }
239 loizides 1.27 void SetDeltaPhiSeedClusterTrackAtCalo(Double_t x)
240 paus 1.48 { fDeltaPhiSeedClTrkAtCalo = x; }
241     void SetE15(Double_t x) { fE15 = x; }
242     void SetE25Max(Double_t x) { fE25Max = x; }
243     void SetE55(Double_t x) { fE55 = x; }
244     void SetESeedClusterOverPout(Double_t x) { fESeedClusterOverPout = x; }
245 sixie 1.51 void SetEEleClusterOverPout(Double_t x) { fEEleClusterOverPout = x; }
246 paus 1.48 void SetESuperClusterOverP(Double_t x) { fESuperClusterOverP = x; }
247     void SetFBrem(Double_t x) { fFBrem = x; }
248     void SetFracSharedHits(Double_t x) { fFracSharedHits = x; }
249 loizides 1.29 void SetGsfTrk(const Track* t)
250 bendavid 1.31 { fGsfTrackRef = t; ClearCharge(); }
251 paus 1.48 void SetHadronicOverEm(Double_t x) { fHadronicOverEm = x; }
252     void SetHcalDepth1OverEcal(Double_t x) { fHcalDepth1OverEcal = x; }
253     void SetHcalDepth2OverEcal(Double_t x) { fHcalDepth2OverEcal = x; }
254     void SetIDLikelihood(Double_t x) { fIDLikelihood = x; }
255     void SetIsEnergyScaleCorrected(Bool_t x) { fIsEnergyScaleCorrected = x; }
256     void SetIsMomentumCorrected(Bool_t x) { fIsMomentumCorrected = x; }
257     void SetNumberOfClusters(Double_t x) { fNumberOfClusters = x; }
258     void SetPIn(Double_t pIn) { fPIn = pIn; }
259     void SetPOut(Double_t pOut) { fPOut = pOut; }
260     void SetPassLooseID(Double_t passLooseID) { fPassLooseID = passLooseID; }
261     void SetPassTightID(Double_t passTightID) { fPassTightID = passTightID; }
262 bendavid 1.31 void SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi);
263     void SetSuperCluster(const SuperCluster* sc)
264     { fSuperClusterRef = sc; }
265 paus 1.53 void SetPFSuperCluster(const SuperCluster* sc)
266     { fPFSuperClusterRef = sc; }
267 loizides 1.29 void SetTrackerTrk(const Track* t)
268 bendavid 1.31 { fTrackerTrackRef = t; ClearCharge(); }
269 bendavid 1.42 void SetConvPartnerTrk(const Track *t)
270     { fConvPartnerTrackRef = t; }
271 paus 1.48 void SetEcalRecHitIsoDr04(Double_t x) { fEcalJurassicIsolation = x; }
272 bendavid 1.33 void SetHcalDepth1TowerSumEtDr04(Double_t x) { fHcalDepth1TowerSumEtDr04 = x; }
273     void SetHcalDepth2TowerSumEtDr04(Double_t x) { fHcalDepth2TowerSumEtDr04 = x; }
274 paus 1.48 void SetTrackIsolationDr04(Double_t x) { fTrackIsolationDr04 = x; }
275     void SetEcalRecHitIsoDr03(Double_t x) { fEcalRecHitSumEtDr03 = x; }
276     void SetHcalTowerSumEtDr03(Double_t x) { fCaloTowerIsolation = x; }
277 bendavid 1.33 void SetHcalDepth1TowerSumEtDr03(Double_t x) { fHcalDepth1TowerSumEtDr03 = x; }
278     void SetHcalDepth2TowerSumEtDr03(Double_t x) { fHcalDepth2TowerSumEtDr03 = x; }
279 paus 1.48 void SetTrackIsolationDr03(Double_t x) { fTrackIsolation = x; }
280     void SetPFChargedHadronIso(Double_t x) { fPFChargedHadronIso = x; }
281     void SetPFNeutralHadronIso(Double_t x) { fPFNeutralHadronIso = x; }
282     void SetPFPhotonIso(Double_t x) { fPFPhotonIso = x; }
283     void SetMva(Double_t x) { fMva = x; }
284     void SetIsEB(Bool_t b) { fIsEB = b; }
285     void SetIsEE(Bool_t b) { fIsEE = b; }
286     void SetIsEBEEGap(Bool_t b) { fIsEBEEGap = b; }
287     void SetIsEBEtaGap(Bool_t b) { fIsEBEtaGap = b; }
288     void SetIsEBPhiGap(Bool_t b) { fIsEBPhiGap = b; }
289     void SetIsEEDeeGap(Bool_t b) { fIsEEDeeGap = b; }
290     void SetIsEERingGap(Bool_t b) { fIsEERingGap = b; }
291     void SetIsEcalDriven(Bool_t b) { fIsEcalDriven = b; }
292     void SetIsTrackerDriven(Bool_t b) { fIsTrackerDriven = b; }
293 bendavid 1.42 void SetMatchesVertexConversion(Bool_t b) { fMatchesVertexConversion = b; }
294     void SetConversionXYZ(Double_t x, Double_t y, Double_t z)
295     { fConvPosition.SetXYZ(x,y,z); }
296 sixie 1.51 void SetCTFTrkNLayersWithMeasurement(Int_t x){ fCTFTrkNLayersWithMeasurement = x; }
297 paus 1.55 void SetHadOverEmTow(Double_t x) { fHadOverEmTow = x; }
298     void SetHCalIsoTowDr03(Double_t x) { fHCalIsoTowDr03 = x; }
299     void SetHCalIsoTowDr04(Double_t x) { fHCalIsoTowDr04 = x; }
300     void SetEcalEnergy(Double_t e) { fEcalEnergy = e; }
301     void SetEcalEnergyError(Double_t e) { fEcalEnergyError = e; }
302 paus 1.58 void SetTrackMomentumError(Double_t e) { fTrackMomentumError = e; }
303 bendavid 1.33
304 paus 1.48 const Track *TrackerTrk() const { return fTrackerTrackRef.Obj(); }
305     const Track *Trk() const { return BestTrk(); }
306 bendavid 1.42 const Track *ConvPartnerTrk() const { return fConvPartnerTrackRef.Obj(); }
307 sixie 1.13
308 paus 1.49 // Some structural tools
309 paus 1.50 void Mark(UInt_t i=1) const;
310 paus 1.49
311 loizides 1.8 protected:
312 bendavid 1.37 Double_t GetCharge() const;
313 paus 1.48 Double_t GetMass() const { return 0.51099892e-3; }
314 loizides 1.27 void GetMom() const;
315 loizides 1.25
316 bendavid 1.31 Vect3C fMom; //stored three-momentum
317 bendavid 1.37 Char_t fCharge; //stored charge - filled with -99 when reading old files
318 bendavid 1.38 Char_t fScPixCharge; //charge from supercluster-pixel matching
319 loizides 1.27 Ref<Track> fGsfTrackRef; //gsf track reference
320     Ref<Track> fTrackerTrackRef; //tracker track reference
321 bendavid 1.42 Ref<Track> fConvPartnerTrackRef; //conversion partner track reference
322 loizides 1.27 Ref<SuperCluster> fSuperClusterRef; //reference to SuperCluster
323 loizides 1.29 Double32_t fESuperClusterOverP; //[0,0,14]super cluster e over p ratio
324     Double32_t fESeedClusterOverPout; //[0,0,14]seed cluster e over p mom
325     Double32_t fDeltaEtaSuperClTrkAtVtx; //[0,0,14]delta eta of super cluster with trk
326     Double32_t fDeltaEtaSeedClTrkAtCalo; //[0,0,14]delta eta of seeed cluster with trk
327     Double32_t fDeltaPhiSuperClTrkAtVtx; //[0,0,14]delta phi of super cluster with trk
328     Double32_t fDeltaPhiSeedClTrkAtCalo; //[0,0,14]delta phi of seeed cluster with trk
329 bendavid 1.33 Double32_t fFBrem; //[0,0,14]brem fraction
330     Double32_t fHadronicOverEm; //[0,0,14]hadronic over em fraction *DEPRECATED*
331     Double32_t fHcalDepth1OverEcal; //[0,0,14]hadronic over em fraction depth1
332     Double32_t fHcalDepth2OverEcal; //[0,0,14]hadronic over em fraction depth2
333 loizides 1.29 Double32_t fNumberOfClusters; //[0,0,14]number of associated clusters
334 bendavid 1.33 Double32_t fE15; //[0,0,14]1x5 crystal energy
335     Double32_t fE25Max; //[0,0,14]2x5 crystal energy (max of two possible sums)
336 loizides 1.29 Double32_t fE55; //[0,0,14]5x5 crystal energy
337     Double32_t fCovEtaEta; //[0,0,14]variance eta-eta
338     Double32_t fCoviEtaiEta; //[0,0,14]covariance eta-eta (in crystals)
339 bendavid 1.33 Double32_t fCaloIsolation; //[0,0,14](non-jura) ecal isolation based on rechits dR 0.3 *DEPRECATED*
340     Double32_t fHcalJurassicIsolation; //[0,0,14]hcal jura iso dR 0.4 *DEPRECATED*
341     Double32_t fHcalDepth1TowerSumEtDr04; //[0,0,14]hcal depth1 tower based isolation dR 0.4
342     Double32_t fHcalDepth2TowerSumEtDr04; //[0,0,14]hcal depth2 tower based isolation dR 0.4
343     Double32_t fEcalJurassicIsolation; //[0,0,14]ecal jura iso dR 0.4 *RENAMING*
344     Double32_t fTrackIsolationDr04; //[0,0,14]isolation based on tracks dR 0.4
345     Double32_t fCaloTowerIsolation; //[0,0,14]hcal tower based isolation dR 0.3 *DEPRECATED*
346     Double32_t fHcalDepth1TowerSumEtDr03; //[0,0,14]hcal depth1 tower based isolation dR 0.3
347     Double32_t fHcalDepth2TowerSumEtDr03; //[0,0,14]hcal depth2 tower based isolation dR 0.3
348     Double32_t fEcalRecHitSumEtDr03; //[0,0,14]ecal jura iso dR 0.3
349     Double32_t fTrackIsolation; //[0,0,14]isolation based on tracks dR 0.3 *RENAMING*
350 loizides 1.29 Double32_t fPassLooseID; //[0,0,14]pass loose id
351     Double32_t fPassTightID; //[0,0,14]pass tight id
352     Double32_t fIDLikelihood; //[0,0,14]likelihood value
353     Double32_t fPIn; //[0,0,14]momentum at vtx
354     Double32_t fPOut; //[0,0,14]momentum at ecal surface
355 bendavid 1.33 Double32_t fFracSharedHits; //[0,0,14]fraction of shared hits btw gsf and std. track
356     Double32_t fMva; //[0,0,14] pflow mva output
357 bendavid 1.44 Double32_t fD0PV; //[0,0,14]transverse impact parameter to signal PV (gsf track)
358     Double32_t fD0PVErr; //[0,0,14]transverse impact parameter uncertainty to signal PV (gsf track)
359     Double32_t fIp3dPV; //[0,0,14]3d impact parameter to signal PV (gsf track)
360     Double32_t fIp3dPVErr; //[0,0,14]3d impact parameter uncertainty to signal PV (gsf track)
361     Double32_t fD0PVBS; //[0,0,14]transverse impact parameter to signal PV w/ bs constraint (gsf track)
362     Double32_t fD0PVBSErr; //[0,0,14]transverse impact parameter uncertainty to signal PV w/ bs constraint (gsf track)
363     Double32_t fIp3dPVBS; //[0,0,14]3d impact parameter to signal PV w/ bs constraint (gsf track)
364     Double32_t fIp3dPVBSErr; //[0,0,14]3d impact parameter uncertainty to signal PV w/ bs constraint (gsf track)
365 paus 1.55 Double32_t fD0PVCkf; //[0,0,14]transverse impact parameter to signal PV (ckf track)
366     Double32_t fD0PVCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PV (ckf track)
367     Double32_t fIp3dPVCkf; //[0,0,14]3d impact parameter to signal PV (ckf track)
368     Double32_t fIp3dPVCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PV (ckf track)
369     Double32_t fD0PVBSCkf; //[0,0,14]transverse impact parameter to signal PV w/ bs constraint (ckf track)
370     Double32_t fD0PVBSCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PV w/ bs constraint (ckf track)
371     Double32_t fIp3dPVBSCkf; //[0,0,14]3d impact parameter to signal PV w/ bs constraint (ckf track)
372     Double32_t fIp3dPVBSCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PV w/ bs constraint (ckf track)
373     Double32_t fD0PVUB; //[0,0,14]transverse impact parameter to signal PVUB (gsf track)
374     Double32_t fD0PVUBErr; //[0,0,14]transverse impact parameter uncertainty to signal PVUB (gsf track)
375     Double32_t fIp3dPVUB; //[0,0,14]3d impact parameter to signal PVUB (gsf track)
376     Double32_t fIp3dPVUBErr; //[0,0,14]3d impact parameter uncertainty to signal PVUB (gsf track)
377     Double32_t fD0PVUBBS; //[0,0,14]transverse impact parameter to signal PVUB w/ bs constraint (gsf track)
378     Double32_t fD0PVUBBSErr; //[0,0,14]transverse impact parameter uncertainty to signal PVUB w/ bs constraint (gsf track)
379     Double32_t fIp3dPVUBBS; //[0,0,14]3d impact parameter to signal PVUB w/ bs constraint (gsf track)
380     Double32_t fIp3dPVUBBSErr; //[0,0,14]3d impact parameter uncertainty to signal PVUB w/ bs constraint (gsf track)
381     Double32_t fD0PVUBCkf; //[0,0,14]transverse impact parameter to signal PVUB (ckf track)
382     Double32_t fD0PVUBCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PVUB (ckf track)
383     Double32_t fIp3dPVUBCkf; //[0,0,14]3d impact parameter to signal PVUB (ckf track)
384     Double32_t fIp3dPVUBCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PVUB (ckf track)
385     Double32_t fD0PVUBBSCkf; //[0,0,14]transverse impact parameter to signal PVUB w/ bs constraint (ckf track)
386     Double32_t fD0PVUBBSCkfErr; //[0,0,14]transverse impact parameter uncertainty to signal PVUB w/ bs constraint (ckf track)
387     Double32_t fIp3dPVUBBSCkf; //[0,0,14]3d impact parameter to signal PVUB w/ bs constraint (ckf track)
388     Double32_t fIp3dPVUBBSCkfErr; //[0,0,14]3d impact parameter uncertainty to signal PVUB w/ bs constraint (ckf track)
389 bendavid 1.41 Double32_t fGsfPVCompatibility; //[0,0,14]gsf compatibility with signal PV
390     Double32_t fGsfPVBSCompatibility; //[0,0,14]gsf compatibility with signal PV w/ bs constraint
391     Double32_t fGsfPVCompatibilityMatched; //[0,0,14]gsf compatibility with signal PV (matching ckf track excluded from vertex)
392     Double32_t fGsfPVBSCompatibilityMatched; //[0,0,14]gsf compatibility with signal PV w/ bs constraint (matching ckf track excluded from vertex)
393 bendavid 1.40 Double32_t fConvPartnerDCotTheta; //[0,0,14]delta cot theta to nearest conversion partner track
394     Double32_t fConvPartnerDist; //[0,0,14]distance in x-y plane to nearest conversion partner track
395     Double32_t fConvPartnerRadius; //[0,0,14]radius of helix intersection with conversion partner track
396 bendavid 1.46 Double32_t fPFChargedHadronIso; //[0,0,14]pf isolation, charged hadrons
397     Double32_t fPFNeutralHadronIso; //[0,0,14]pf isolation, neutral hadrons
398     Double32_t fPFPhotonIso; //[0,0,14]pf isolation, photons
399 bendavid 1.45 Int_t fConvFlag; //conversion flag indicating which track combination was used
400 bendavid 1.42 Vect3C fConvPosition;
401 loizides 1.29 Bool_t fIsEnergyScaleCorrected; //class dependent escale correction
402     Bool_t fIsMomentumCorrected; //class dependent E-p combination
403     Int_t fClassification; //classification (see GsfElectron.h)
404 bendavid 1.33 Bool_t fIsEB; //is ECAL barrel
405     Bool_t fIsEE; //is ECAL Endcap
406     Bool_t fIsEBEEGap; //is in barrel-endcap gap
407     Bool_t fIsEBEtaGap; //is in EB eta module gap
408     Bool_t fIsEBPhiGap; //is in EB phi module gap
409     Bool_t fIsEEDeeGap; //is in EE dee gap
410     Bool_t fIsEERingGap; //is in EE ring gap
411     Bool_t fIsEcalDriven; //is std. egamma electron
412     Bool_t fIsTrackerDriven; //is pflow track-seeded electron
413 bendavid 1.42 Bool_t fMatchesVertexConversion;
414 bendavid 1.43 RefArray<Track> fAmbiguousGsfTracks; //ambiguous gsf tracks for this electron
415 sixie 1.51 Double_t fEEleClusterOverPout; //energy of the electron cluster
416     Int_t fCTFTrkNLayersWithMeasurement; //number of tracker layers from associated ctf trk
417 paus 1.55 Double32_t fHadOverEmTow; //[0,0,14]per-tower definition of hadronic/em energy fraction
418     Double32_t fHCalIsoTowDr03; //[0,0,14]hcal isolation matched to per tower h/e definition
419     Double32_t fHCalIsoTowDr04; //[0,0,14]hcal isolation matched to per tower h/e definition
420     Double32_t fEcalEnergy; //[0,0,14]corrected Ecal energy
421     Double32_t fEcalEnergyError; //[0,0,14]corrected Ecal energy error
422 paus 1.58 Double32_t fTrackMomentumError; //track momentum error
423 paus 1.55 Ref<SuperCluster> fPFSuperClusterRef; //reference to Particle Flow SuperCluster
424 sixie 1.13
425 paus 1.55 ClassDef(Electron, 15) // Electron class
426 bendavid 1.1 };
427 loizides 1.4 }
428 loizides 1.8
429 loizides 1.9 //--------------------------------------------------------------------------------------------------
430 paus 1.50 inline void mithep::Electron::Mark(UInt_t ib) const
431 paus 1.49 {
432     // mark myself
433 paus 1.50 mithep::DataObject::Mark(ib);
434 paus 1.49 // mark my dependencies if they are there
435 paus 1.50 if (fSuperClusterRef.IsValid())
436     fSuperClusterRef.Obj()->Mark(ib);
437     if (fGsfTrackRef.IsValid())
438     fGsfTrackRef.Obj()->Mark(ib);
439     if (fTrackerTrackRef.IsValid())
440     fTrackerTrackRef.Obj()->Mark(ib);
441 paus 1.49 if (fConvPartnerTrackRef.IsValid())
442 paus 1.50 fConvPartnerTrackRef.Obj()->Mark(ib);
443     fAmbiguousGsfTracks.Mark(ib);
444 paus 1.49 }
445    
446     //--------------------------------------------------------------------------------------------------
447 loizides 1.10 inline const mithep::Track *mithep::Electron::BestTrk() const
448 loizides 1.9 {
449 loizides 1.10 // Return "best" track.
450    
451 bendavid 1.24 if (HasGsfTrk())
452 loizides 1.10 return GsfTrk();
453 bendavid 1.24 else if (HasTrackerTrk())
454 loizides 1.10 return TrackerTrk();
455 loizides 1.9
456 loizides 1.10 return 0;
457 loizides 1.9 }
458    
459 loizides 1.25 //--------------------------------------------------------------------------------------------------
460 bendavid 1.37 inline Double_t mithep::Electron::GetCharge() const
461     {
462     // Return stored charge, unless it is set to invalid (-99),
463     // in that case get charge from track as before
464    
465     if (fCharge==-99)
466     return mithep::ChargedParticle::GetCharge();
467     else
468     return fCharge;
469    
470     }
471    
472     //--------------------------------------------------------------------------------------------------
473 loizides 1.25 inline void mithep::Electron::GetMom() const
474 sixie 1.14 {
475 bendavid 1.31 // Get momentum of the electron. We use an explicitly stored three vector, with the pdg mass,
476     // since the momentum vector may be computed non-trivially in cmssw
477 sixie 1.14
478 bendavid 1.31 fCachedMom.SetCoordinates(fMom.Rho(),fMom.Eta(),fMom.Phi(),GetMass());
479 bendavid 1.18 }
480    
481     //-------------------------------------------------------------------------------------------------
482 loizides 1.25 inline Double_t mithep::Electron::ESeedClusterOverPIn() const
483 bendavid 1.18 {
484 loizides 1.25 // Return energy of the SuperCluster seed divided by the magnitude
485     // of the track momentum at the vertex.
486    
487     return SCluster()->Seed()->Energy() / PIn();
488 bendavid 1.18 }
489 bendavid 1.31
490     //-------------------------------------------------------------------------------------------------
491     inline void mithep::Electron::SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi)
492     {
493     // Set three-vector
494    
495     fMom.Set(pt,eta,phi);
496     ClearMom();
497     }
498 loizides 1.8 #endif