28 |
|
const SuperCluster *SCluster() const; |
29 |
|
FourVector Mom() const; |
30 |
|
const Track *Trk() const { return BestTrk(); } |
31 |
< |
Double_t E() const {return SCluster()->Energy(); } |
31 |
> |
Double_t E() const; |
32 |
> |
Double_t P() const; |
33 |
> |
Double_t Pt() const; |
34 |
> |
Double_t Px() const; |
35 |
> |
Double_t Py() const; |
36 |
> |
Double_t Pz() const; |
37 |
|
|
38 |
|
Double_t Mass() const { return 0.51099892e-3; } |
39 |
|
Double_t ESuperClusterOverP() const { return fESuperClusterOverP; } |
55 |
|
Double_t CovEtaEta() const { return fCovEtaEta; } |
56 |
|
Double_t CovEtaPhi() const { return fCovEtaPhi; } |
57 |
|
Double_t CovPhiPhi() const { return fCovPhiPhi; } |
58 |
+ |
Double_t CoviEtaiEta() const { return fCoviEtaiEta; } |
59 |
|
Double_t CaloIsolation() const { return fCaloIsolation; } |
60 |
|
Double_t CaloTowerIsolation() const { return fCaloTowerIsolation; } |
61 |
|
Double_t TrackIsolation() const { return fTrackIsolation; } |
62 |
|
Double_t EcalJurassicIsolation() const { return fEcalJurassicIsolation; } |
63 |
< |
Double_t HcalJurassicIsolation() const { return fHcalJurassicIsolation; } |
58 |
< |
|
63 |
> |
Double_t HcalIsolation() const { return fHcalJurassicIsolation; } |
64 |
|
Double_t PassLooseID() const { return fPassLooseID; } |
65 |
|
Double_t PassTightID() const { return fPassTightID; } |
66 |
|
Double_t IDLikelihood() const { return fIDLikelihood; } |
86 |
|
void SetCovEtaEta(Double_t CovEtaEta) { fCovEtaEta = CovEtaEta; } |
87 |
|
void SetCovEtaPhi(Double_t CovEtaPhi) { fCovEtaPhi = CovEtaPhi; } |
88 |
|
void SetCovPhiPhi(Double_t CovPhiPhi) { fCovPhiPhi = CovPhiPhi; } |
89 |
+ |
void SetCoviEtaiEta(Double_t CoviEtaiEta) { fCoviEtaiEta = CoviEtaiEta; } |
90 |
|
void SetCaloIsolation(Double_t CaloIsolation) { fCaloIsolation = CaloIsolation; } |
91 |
|
void SetCaloTowerIsolation(Double_t TowerIso) { fCaloTowerIsolation = TowerIso; } |
92 |
|
void SetTrackIsolation(Double_t TrackIsolation) { fTrackIsolation = TrackIsolation;} |
93 |
|
void SetEcalJurassicIsolation(Double_t iso ) { fEcalJurassicIsolation = iso; } |
94 |
< |
void SetHcalJurassicIsolation(Double_t iso ) { fHcalJurassicIsolation = iso; } |
94 |
> |
void SetHcalIsolation(Double_t iso ) { fHcalJurassicIsolation = iso; } |
95 |
|
void SetPassLooseID(Double_t passLooseID) { fPassLooseID = passLooseID; } |
96 |
|
void SetPassTightID(Double_t passTightID) { fPassTightID = passTightID; } |
97 |
|
void SetIDLikelihood(Double_t likelihood) { fIDLikelihood = likelihood; } |
115 |
|
Double_t fE33; |
116 |
|
Double_t fE55; |
117 |
|
Double_t fCovEtaEta; |
118 |
+ |
Double_t fCoviEtaiEta; |
119 |
|
Double_t fCovEtaPhi; |
120 |
|
Double_t fCovPhiPhi; |
121 |
|
Double_t fCaloIsolation; |
175 |
|
// Return Momentum of the electron. We use the direction of the |
176 |
|
// Track and the Energy of the Super Cluster |
177 |
|
|
178 |
< |
double P = TMath::Sqrt( E()*E() - Mass()*Mass()); |
172 |
< |
return FourVector(P*sin(Trk()->Theta())*cos(Trk()->Phi()), |
173 |
< |
P*sin(Trk()->Theta())*sin(Trk()->Phi()), P*cos(Trk()->Theta()), E()); |
178 |
> |
return FourVector(Px(), Py(), Pz(), E()); |
179 |
|
} |
180 |
|
|
181 |
+ |
//------------------------------------------------------------------------------------------------- |
182 |
|
inline Double_t mithep::Electron::ESeedClusterOverPIn() const |
183 |
|
{ |
184 |
|
// Return Energy of the SuperCluster Seed Divided by the magnitude |
187 |
|
return SCluster()->Seed()->Energy() / PIn(); |
188 |
|
} |
189 |
|
|
190 |
+ |
//------------------------------------------------------------------------------------------------- |
191 |
+ |
inline Double_t mithep::Electron::E() const |
192 |
+ |
{ |
193 |
+ |
// Return Energy of the SuperCluster if present |
194 |
+ |
// or else return energy derived from the track |
195 |
+ |
|
196 |
+ |
const mithep::SuperCluster *sc = SCluster(); |
197 |
+ |
if (sc) |
198 |
+ |
return sc->Energy(); |
199 |
+ |
else |
200 |
+ |
return TMath::Sqrt(Trk()->P()*Trk()->P() + Mass()*Mass()); |
201 |
+ |
} |
202 |
|
|
203 |
< |
#endif |
203 |
> |
//------------------------------------------------------------------------------------------------- |
204 |
> |
inline Double_t mithep::Electron::P() const |
205 |
> |
{ |
206 |
> |
// Return momentum derived from the SuperCluster if present |
207 |
> |
// or else return momentum from the track |
208 |
> |
|
209 |
> |
const mithep::SuperCluster *sc = SCluster(); |
210 |
> |
if (sc) |
211 |
> |
return TMath::Sqrt(sc->Energy()*sc->Energy() - Mass()*Mass()); |
212 |
> |
else |
213 |
> |
return Trk()->P(); |
214 |
> |
} |
215 |
|
|
216 |
+ |
//------------------------------------------------------------------------------------------------- |
217 |
+ |
inline Double_t mithep::Electron::Px() const |
218 |
+ |
{ |
219 |
+ |
return Pt()*TMath::Cos(Trk()->Phi()); |
220 |
+ |
} |
221 |
+ |
|
222 |
+ |
//------------------------------------------------------------------------------------------------- |
223 |
+ |
inline Double_t mithep::Electron::Py() const |
224 |
+ |
{ |
225 |
+ |
return Pt()*TMath::Sin(Trk()->Phi()); |
226 |
+ |
} |
227 |
+ |
|
228 |
+ |
//------------------------------------------------------------------------------------------------- |
229 |
+ |
inline Double_t mithep::Electron::Pz() const |
230 |
+ |
{ |
231 |
+ |
return P()*TMath::Sin(Trk()->Lambda()); |
232 |
+ |
} |
233 |
+ |
|
234 |
+ |
//------------------------------------------------------------------------------------------------- |
235 |
+ |
inline Double_t mithep::Electron::Pt() const |
236 |
+ |
{ |
237 |
+ |
return TMath::Abs(P()*TMath::Cos(Trk()->Lambda())); |
238 |
+ |
} |
239 |
+ |
#endif |