ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitAna/DataTree/interface/Electron.h
Revision: 1.19
Committed: Wed Nov 12 18:56:24 2008 UTC (16 years, 5 months ago) by peveraer
Content type: text/plain
Branch: MAIN
CVS Tags: Mit_006
Changes since 1.18: +4 -1 lines
Log Message:
Added sigmaiEtaiEta

File Contents

# Content
1 //--------------------------------------------------------------------------------------------------
2 // $Id: Electron.h,v 1.18 2008/09/12 12:44:57 bendavid Exp $
3 //
4 // Electron
5 //
6 // Details to be worked out...
7 //
8 // Authors: C.Loizides, J.Bendavid, S.Xie
9 //--------------------------------------------------------------------------------------------------
10
11 #ifndef DATATREE_ELECTRON_H
12 #define DATATREE_ELECTRON_H
13
14 #include "MitAna/DataTree/interface/SuperCluster.h"
15 #include "MitAna/DataTree/interface/ChargedParticle.h"
16
17 namespace mithep
18 {
19 class Electron : public ChargedParticle
20 {
21 public:
22 Electron() {}
23 ~Electron() {}
24
25 const Track *BestTrk() const;
26 const Track *GsfTrk() const;
27 const Track *TrackerTrk() const;
28 const SuperCluster *SCluster() const;
29 FourVector Mom() const;
30 const Track *Trk() const { return BestTrk(); }
31 Double_t E() const;
32 Double_t P() const;
33 Double_t Pt() const;
34 Double_t Px() const;
35 Double_t Py() const;
36 Double_t Pz() const;
37
38 Double_t Mass() const { return 0.51099892e-3; }
39 Double_t ESuperClusterOverP() const { return fESuperClusterOverP; }
40 Double_t ESeedClusterOverPout() const { return fESeedClusterOverPout; }
41 Double_t ESeedClusterOverPIn() const;
42 Double_t PIn() const { return fPIn; }
43 Double_t POut() const { return fPOut; }
44 Double_t DeltaEtaSuperClusterTrackAtVtx() const { return fDeltaEtaSuperClTrkAtVtx; }
45 Double_t DeltaEtaSeedClusterTrackAtCalo() const { return fDeltaEtaSeedClTrkAtCalo; }
46 Double_t DeltaPhiSuperClusterTrackAtVtx() const { return fDeltaPhiSuperClTrkAtVtx; }
47 Double_t DeltaPhiSeedClusterTrackAtCalo() const { return fDeltaPhiSeedClTrkAtCalo; }
48 Double_t HadronicOverEm() const { return fHadronicOverEm; }
49 Double_t IsEnergyScaleCorrected() const { return fIsEnergyScaleCorrected; }
50 Double_t IsMomentumCorrected() const { return fIsMomentumCorrected; }
51 Double_t NumberOfClusters() const { return fNumberOfClusters; }
52 Double_t Classification() const { return fClassification; }
53 Double_t E33() const { return fE33; }
54 Double_t E55() const { return fE55; }
55 Double_t CovEtaEta() const { return fCovEtaEta; }
56 Double_t CovEtaPhi() const { return fCovEtaPhi; }
57 Double_t CovPhiPhi() const { return fCovPhiPhi; }
58 Double_t CoviEtaiEta() const { return fCoviEtaiEta; }
59 Double_t CaloIsolation() const { return fCaloIsolation; }
60 Double_t CaloTowerIsolation() const { return fCaloTowerIsolation; }
61 Double_t TrackIsolation() const { return fTrackIsolation; }
62 Double_t EcalJurassicIsolation() const { return fEcalJurassicIsolation; }
63 Double_t HcalJurassicIsolation() const { return fHcalJurassicIsolation; }
64
65 Double_t PassLooseID() const { return fPassLooseID; }
66 Double_t PassTightID() const { return fPassTightID; }
67 Double_t IDLikelihood() const { return fIDLikelihood; }
68
69 void SetGsfTrk(Track* t) { fGsfTrackRef = t; }
70 void SetTrackerTrk(Track* t) { fTrackerTrackRef = t; }
71 void SetSuperCluster(SuperCluster* sc) { fSuperClusterRef = sc; }
72 void SetESuperClusterOverP(Double_t x) { fESuperClusterOverP = x; }
73 void SetESeedClusterOverPout(Double_t x) { fESeedClusterOverPout = x; }
74 void SetPIn(Double_t PIn) { fPIn = PIn; }
75 void SetPOut(Double_t POut) { fPOut = POut; }
76 void SetDeltaEtaSuperClusterTrackAtVtx(Double_t x) { fDeltaEtaSuperClTrkAtVtx = x; }
77 void SetDeltaEtaSeedClusterTrackAtCalo(Double_t x) { fDeltaEtaSeedClTrkAtCalo = x; }
78 void SetDeltaPhiSuperClusterTrackAtVtx(Double_t x) { fDeltaPhiSuperClTrkAtVtx = x; }
79 void SetDeltaPhiSeedClusterTrackAtCalo(Double_t x) { fDeltaPhiSeedClTrkAtCalo = x; }
80 void SetHadronicOverEm(Double_t x) { fHadronicOverEm = x; }
81 void SetIsEnergyScaleCorrected(Double_t x) { fIsEnergyScaleCorrected = x; }
82 void SetIsMomentumCorrected(Double_t x) { fIsMomentumCorrected = x; }
83 void SetNumberOfClusters(Double_t x) { fNumberOfClusters = x; }
84 void SetClassification(Double_t x) { fClassification = x; }
85 void SetE33(Double_t E33) { fE33 = E33; }
86 void SetE55(Double_t E55) { fE55 = E55; }
87 void SetCovEtaEta(Double_t CovEtaEta) { fCovEtaEta = CovEtaEta; }
88 void SetCovEtaPhi(Double_t CovEtaPhi) { fCovEtaPhi = CovEtaPhi; }
89 void SetCovPhiPhi(Double_t CovPhiPhi) { fCovPhiPhi = CovPhiPhi; }
90 void SetCoviEtaiEta(Double_t CoviEtaiEta) { fCoviEtaiEta = CoviEtaiEta; }
91 void SetCaloIsolation(Double_t CaloIsolation) { fCaloIsolation = CaloIsolation; }
92 void SetCaloTowerIsolation(Double_t TowerIso) { fCaloTowerIsolation = TowerIso; }
93 void SetTrackIsolation(Double_t TrackIsolation) { fTrackIsolation = TrackIsolation;}
94 void SetEcalJurassicIsolation(Double_t iso ) { fEcalJurassicIsolation = iso; }
95 void SetHcalJurassicIsolation(Double_t iso ) { fHcalJurassicIsolation = iso; }
96 void SetPassLooseID(Double_t passLooseID) { fPassLooseID = passLooseID; }
97 void SetPassTightID(Double_t passTightID) { fPassTightID = passTightID; }
98 void SetIDLikelihood(Double_t likelihood) { fIDLikelihood = likelihood; }
99
100 protected:
101 TRef fGsfTrackRef; //global combined track reference
102 TRef fTrackerTrackRef; //tracker track reference
103 TRef fSuperClusterRef; //superCluster
104
105 Double_t fESuperClusterOverP;
106 Double_t fESeedClusterOverPout;
107 Double_t fDeltaEtaSuperClTrkAtVtx;
108 Double_t fDeltaEtaSeedClTrkAtCalo;
109 Double_t fDeltaPhiSuperClTrkAtVtx;
110 Double_t fDeltaPhiSeedClTrkAtCalo;
111 Double_t fHadronicOverEm;
112 Double_t fIsEnergyScaleCorrected;
113 Double_t fIsMomentumCorrected;
114 Double_t fNumberOfClusters;
115 Double_t fClassification;
116 Double_t fE33;
117 Double_t fE55;
118 Double_t fCovEtaEta;
119 Double_t fCoviEtaiEta;
120 Double_t fCovEtaPhi;
121 Double_t fCovPhiPhi;
122 Double_t fCaloIsolation;
123 Double_t fCaloTowerIsolation;
124 Double_t fTrackIsolation;
125 Double_t fEcalJurassicIsolation;
126 Double_t fHcalJurassicIsolation;
127 Double_t fPassLooseID;
128 Double_t fPassTightID;
129 Double_t fIDLikelihood;
130 Double_t fPIn;
131 Double_t fPOut;
132
133 ClassDef(Electron, 1) // Electron class
134 };
135 }
136
137 //--------------------------------------------------------------------------------------------------
138 inline const mithep::Track *mithep::Electron::BestTrk() const
139 {
140 // Return "best" track.
141
142 if (GsfTrk())
143 return GsfTrk();
144 else if (TrackerTrk())
145 return TrackerTrk();
146
147 return 0;
148 }
149
150 //--------------------------------------------------------------------------------------------------
151 inline const mithep::Track *mithep::Electron::GsfTrk() const
152 {
153 // Return global combined track.
154
155 return static_cast<const Track*>(fGsfTrackRef.GetObject());
156 }
157
158 //--------------------------------------------------------------------------------------------------
159 inline const mithep::Track *mithep::Electron::TrackerTrk() const
160 {
161 // Return tracker track.
162
163 return static_cast<const Track*>(fTrackerTrackRef.GetObject());
164 }
165 //--------------------------------------------------------------------------------------------------
166 inline const mithep::SuperCluster *mithep::Electron::SCluster() const
167 {
168 // Return Super cluster
169
170 return static_cast<const SuperCluster*>(fSuperClusterRef.GetObject());
171 }
172
173 //-------------------------------------------------------------------------------------------------
174 inline mithep::FourVector mithep::Electron::Mom() const
175 {
176 // Return Momentum of the electron. We use the direction of the
177 // Track and the Energy of the Super Cluster
178
179 return FourVector(Px(), Py(), Pz(), E());
180 }
181
182 //-------------------------------------------------------------------------------------------------
183 inline Double_t mithep::Electron::ESeedClusterOverPIn() const
184 {
185 // Return Energy of the SuperCluster Seed Divided by the magnitude
186 // of the track momentum at the vertex
187
188 return SCluster()->Seed()->Energy() / PIn();
189 }
190
191 //-------------------------------------------------------------------------------------------------
192 inline Double_t mithep::Electron::E() const
193 {
194 // Return Energy of the SuperCluster if present
195 // or else return energy derived from the track
196
197 const mithep::SuperCluster *sc = SCluster();
198 if (sc)
199 return sc->Energy();
200 else
201 return TMath::Sqrt(Trk()->P()*Trk()->P() + Mass()*Mass());
202 }
203
204 //-------------------------------------------------------------------------------------------------
205 inline Double_t mithep::Electron::P() const
206 {
207 // Return momentum derived from the SuperCluster if present
208 // or else return momentum from the track
209
210 const mithep::SuperCluster *sc = SCluster();
211 if (sc)
212 return TMath::Sqrt(sc->Energy()*sc->Energy() - Mass()*Mass());
213 else
214 return Trk()->P();
215 }
216
217 //-------------------------------------------------------------------------------------------------
218 inline Double_t mithep::Electron::Px() const
219 {
220 return Pt()*TMath::Cos(Trk()->Phi());
221 }
222
223 //-------------------------------------------------------------------------------------------------
224 inline Double_t mithep::Electron::Py() const
225 {
226 return Pt()*TMath::Sin(Trk()->Phi());
227 }
228
229 //-------------------------------------------------------------------------------------------------
230 inline Double_t mithep::Electron::Pz() const
231 {
232 return P()*TMath::Sin(Trk()->Lambda());
233 }
234
235 //-------------------------------------------------------------------------------------------------
236 inline Double_t mithep::Electron::Pt() const
237 {
238 return TMath::Abs(P()*TMath::Cos(Trk()->Lambda()));
239 }
240 #endif