ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitAna/DataTree/interface/Electron.h
Revision: 1.37
Committed: Fri Oct 30 14:16:00 2009 UTC (15 years, 6 months ago) by bendavid
Content type: text/plain
Branch: MAIN
Changes since 1.36: +19 -2 lines
Log Message:
Add support for explicitly stored electron charge, backwards compatibility using schema evolution

File Contents

# Content
1 //--------------------------------------------------------------------------------------------------
2 // $Id: Electron.h,v 1.36 2009/08/07 20:12:50 ceballos Exp $
3 //
4 // Electron
5 //
6 // This class holds information about reconstructed electrons from CMSSW.
7 //
8 // Authors: C.Loizides, J.Bendavid, S.Xie
9 //--------------------------------------------------------------------------------------------------
10
11 #ifndef MITANA_DATATREE_ELECTRON_H
12 #define MITANA_DATATREE_ELECTRON_H
13
14 #include "MitAna/DataTree/interface/SuperCluster.h"
15 #include "MitAna/DataTree/interface/ChargedParticle.h"
16 #include "MitAna/DataCont/interface/Ref.h"
17
18 namespace mithep
19 {
20 class Electron : public ChargedParticle
21 {
22 public:
23 Electron() :
24 fCharge(0),
25 fESuperClusterOverP(0), fESeedClusterOverPout(0), fDeltaEtaSuperClTrkAtVtx(0),
26 fDeltaEtaSeedClTrkAtCalo(0), fDeltaPhiSuperClTrkAtVtx(0),
27 fDeltaPhiSeedClTrkAtCalo(0), fFBrem(0), fHadronicOverEm(0), fHcalDepth1OverEcal(0),
28 fHcalDepth2OverEcal(0), fNumberOfClusters(0), fE15(0), fE25Max(0),
29 fE55(0), fCovEtaEta(0), fCoviEtaiEta(0),
30 fCaloIsolation(0), fHcalJurassicIsolation(0),
31 fHcalDepth1TowerSumEtDr04(0), fHcalDepth2TowerSumEtDr04(0),
32 fEcalJurassicIsolation(0), fTrackIsolationDr04(0), fCaloTowerIsolation(0),
33 fHcalDepth1TowerSumEtDr03(0), fHcalDepth2TowerSumEtDr03(0),
34 fEcalRecHitSumEtDr03(0), fTrackIsolation(0), fPassLooseID(0),
35 fPassTightID(0), fIDLikelihood(0), fPIn(0), fPOut(0), fFracSharedHits(0),
36 fMva(0), fIsEnergyScaleCorrected(0), fIsMomentumCorrected(0),
37 fClassification(0), fIsEB(), fIsEE(0), fIsEBEEGap(0), fIsEBEtaGap(0),
38 fIsEBPhiGap(0), fIsEEDeeGap(0), fIsEERingGap(0),
39 fIsEcalDriven(0), fIsTrackerDriven(0) {}
40
41 const Track *BestTrk() const;
42 Double_t CaloIsolation() const { return fCaloIsolation; } // *DEPRECATED*
43 Int_t Classification() const { return fClassification; }
44 Double_t CovEtaEta() const { return fCovEtaEta; }
45 Double_t CoviEtaiEta() const { return fCoviEtaiEta; }
46 Double_t DeltaEtaSuperClusterTrackAtVtx() const
47 { return fDeltaEtaSuperClTrkAtVtx; }
48 Double_t DeltaEtaSeedClusterTrackAtCalo() const
49 { return fDeltaEtaSeedClTrkAtCalo; }
50 Double_t DeltaPhiSuperClusterTrackAtVtx() const
51 { return fDeltaPhiSuperClTrkAtVtx; }
52 Double_t DeltaPhiSeedClusterTrackAtCalo() const
53 { return fDeltaPhiSeedClTrkAtCalo; }
54 Double_t E15() const { return fE15; }
55 Double_t E25Max() const { return fE25Max; }
56 Double_t E55() const { return fE55; }
57 Double_t ESuperClusterOverP() const { return fESuperClusterOverP; }
58 Double_t ESeedClusterOverPout() const { return fESeedClusterOverPout; }
59 Double_t ESeedClusterOverPIn() const;
60 Double_t FBrem() const { return fFBrem; }
61 Double_t FBremOld() const { return (PIn() - POut())/PIn(); }
62 Double_t FracSharedHits() const { return fFracSharedHits; }
63 const Track *GsfTrk() const { return fGsfTrackRef.Obj(); }
64 Double_t HadronicOverEm() const { return fHadronicOverEm; }
65 Double_t HcalDepth1OverEcal() const { return fHcalDepth1OverEcal; }
66 Double_t HcalDepth2OverEcal() const { return fHcalDepth2OverEcal; }
67 Bool_t HasGsfTrk() const { return fGsfTrackRef.IsValid(); }
68 Bool_t HasTrackerTrk() const { return fTrackerTrackRef.IsValid(); }
69 Bool_t HasSuperCluster() const { return fSuperClusterRef.IsValid(); }
70 Double_t HcalIsolation() const { return fHcalJurassicIsolation; } // *DEPRECATED*
71 Double_t IDLikelihood() const { return fIDLikelihood; }
72 Bool_t IsEnergyScaleCorrected() const { return fIsEnergyScaleCorrected; }
73 Bool_t IsMomentumCorrected() const { return fIsMomentumCorrected; }
74 Bool_t IsEB() const { return fIsEB; }
75 Bool_t IsEE() const { return fIsEE; }
76 Bool_t IsEBEEGap() const { return fIsEBEEGap; }
77 Bool_t IsEBEtaGap() const { return fIsEBEtaGap; }
78 Bool_t IsEBPhiGap() const { return fIsEBPhiGap; }
79 Bool_t IsEEDeeGap() const { return fIsEEDeeGap; }
80 Bool_t IsEERingGap() const { return fIsEERingGap; }
81 Bool_t IsEcalDriven() const { return fIsEcalDriven; }
82 Bool_t IsTrackerDriven() const { return fIsTrackerDriven; }
83 Double_t Mva() const { return fMva; }
84 Double_t NumberOfClusters() const { return fNumberOfClusters; }
85 EObjType ObjType() const { return kElectron; }
86 Double_t PassLooseID() const { return fPassLooseID; }
87 Double_t PassTightID() const { return fPassTightID; }
88 Double_t PIn() const { return fPIn; }
89 Double_t POut() const { return fPOut; }
90 const SuperCluster *SCluster() const { return fSuperClusterRef.Obj(); }
91
92 Double_t EcalRecHitIsoDr04() const { return fEcalJurassicIsolation; }
93 Double_t HcalTowerSumEtDr04() const { return HcalDepth1TowerSumEtDr04() +
94 HcalDepth2TowerSumEtDr04(); }
95 Double_t HcalDepth1TowerSumEtDr04() const { return fHcalDepth1TowerSumEtDr04; }
96 Double_t HcalDepth2TowerSumEtDr04() const { return fHcalDepth2TowerSumEtDr04; }
97 Double_t TrackIsolationDr04() const { return fTrackIsolationDr04; }
98 Double_t EcalRecHitIsoDr03() const { return fEcalRecHitSumEtDr03; }
99 Double_t HcalTowerSumEtDr03() const { return fCaloTowerIsolation; }
100 Double_t HcalDepth1TowerSumEtDr03() const { return fHcalDepth1TowerSumEtDr03; }
101 Double_t HcalDepth2TowerSumEtDr03() const { return fHcalDepth2TowerSumEtDr03; }
102 Double_t TrackIsolationDr03() const { return fTrackIsolation; }
103
104
105 void SetCharge(Char_t x) { fCharge = x; }
106 void SetClassification(Int_t x) { fClassification = x; }
107 void SetCovEtaEta(Double_t CovEtaEta) { fCovEtaEta = CovEtaEta; }
108 void SetCoviEtaiEta(Double_t CoviEtaiEta) { fCoviEtaiEta = CoviEtaiEta; }
109 void SetDeltaEtaSuperClusterTrackAtVtx(Double_t x)
110 { fDeltaEtaSuperClTrkAtVtx = x; }
111 void SetDeltaEtaSeedClusterTrackAtCalo(Double_t x)
112 { fDeltaEtaSeedClTrkAtCalo = x; }
113 void SetDeltaPhiSuperClusterTrackAtVtx(Double_t x)
114 { fDeltaPhiSuperClTrkAtVtx = x; }
115 void SetDeltaPhiSeedClusterTrackAtCalo(Double_t x)
116 { fDeltaPhiSeedClTrkAtCalo = x; }
117 void SetE15(Double_t x) { fE15 = x; }
118 void SetE25Max(Double_t x) { fE25Max = x; }
119 void SetE55(Double_t x) { fE55 = x; }
120 void SetESeedClusterOverPout(Double_t x) { fESeedClusterOverPout = x; }
121 void SetESuperClusterOverP(Double_t x) { fESuperClusterOverP = x; }
122 void SetFBrem(Double_t x) { fFBrem = x; }
123 void SetFracSharedHits(Double_t x) { fFracSharedHits = x; }
124 void SetGsfTrk(const Track* t)
125 { fGsfTrackRef = t; ClearCharge(); }
126 void SetHadronicOverEm(Double_t x) { fHadronicOverEm = x; }
127 void SetHcalDepth1OverEcal(Double_t x) { fHcalDepth1OverEcal = x; }
128 void SetHcalDepth2OverEcal(Double_t x) { fHcalDepth2OverEcal = x; }
129 void SetIDLikelihood(Double_t likelihood) { fIDLikelihood = likelihood; }
130 void SetIsEnergyScaleCorrected(Bool_t x) { fIsEnergyScaleCorrected = x; }
131 void SetIsMomentumCorrected(Bool_t x) { fIsMomentumCorrected = x; }
132 void SetNumberOfClusters(Double_t x) { fNumberOfClusters = x; }
133 void SetPIn(Double_t PIn) { fPIn = PIn; }
134 void SetPOut(Double_t POut) { fPOut = POut; }
135 void SetPassLooseID(Double_t passLooseID) { fPassLooseID = passLooseID; }
136 void SetPassTightID(Double_t passTightID) { fPassTightID = passTightID; }
137 void SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi);
138 void SetSuperCluster(const SuperCluster* sc)
139 { fSuperClusterRef = sc; }
140 void SetTrackerTrk(const Track* t)
141 { fTrackerTrackRef = t; ClearCharge(); }
142 void SetEcalRecHitIsoDr04(Double_t x) { fEcalJurassicIsolation = x; }
143 void SetHcalDepth1TowerSumEtDr04(Double_t x) { fHcalDepth1TowerSumEtDr04 = x; }
144 void SetHcalDepth2TowerSumEtDr04(Double_t x) { fHcalDepth2TowerSumEtDr04 = x; }
145 void SetTrackIsolationDr04(Double_t x) { fTrackIsolationDr04 = x; }
146 void SetEcalRecHitIsoDr03(Double_t x) { fEcalRecHitSumEtDr03 = x; }
147 void SetHcalTowerSumEtDr03(Double_t x) { fCaloTowerIsolation = x; }
148 void SetHcalDepth1TowerSumEtDr03(Double_t x) { fHcalDepth1TowerSumEtDr03 = x; }
149 void SetHcalDepth2TowerSumEtDr03(Double_t x) { fHcalDepth2TowerSumEtDr03 = x; }
150 void SetTrackIsolationDr03(Double_t x) { fTrackIsolation = x; }
151 void SetMva(Double_t x) { fMva = x; }
152 void SetIsEB(Bool_t b) { fIsEB = b; }
153 void SetIsEE(Bool_t b) { fIsEE = b; }
154 void SetIsEBEEGap(Bool_t b) { fIsEBEEGap = b; }
155 void SetIsEBEtaGap(Bool_t b) { fIsEBEtaGap = b; }
156 void SetIsEBPhiGap(Bool_t b) { fIsEBPhiGap = b; }
157 void SetIsEEDeeGap(Bool_t b) { fIsEEDeeGap = b; }
158 void SetIsEERingGap(Bool_t b) { fIsEERingGap = b; }
159 void SetIsEcalDriven(Bool_t b) { fIsEcalDriven = b; }
160 void SetIsTrackerDriven(Bool_t b) { fIsTrackerDriven = b; }
161
162
163 const Track *TrackerTrk() const { return fTrackerTrackRef.Obj(); }
164 const Track *Trk() const { return BestTrk(); }
165
166 protected:
167 Double_t GetCharge() const;
168 Double_t GetMass() const { return 0.51099892e-3; }
169 void GetMom() const;
170
171 Vect3C fMom; //stored three-momentum
172 Char_t fCharge; //stored charge - filled with -99 when reading old files
173 Ref<Track> fGsfTrackRef; //gsf track reference
174 Ref<Track> fTrackerTrackRef; //tracker track reference
175 Ref<SuperCluster> fSuperClusterRef; //reference to SuperCluster
176 Double32_t fESuperClusterOverP; //[0,0,14]super cluster e over p ratio
177 Double32_t fESeedClusterOverPout; //[0,0,14]seed cluster e over p mom
178 Double32_t fDeltaEtaSuperClTrkAtVtx; //[0,0,14]delta eta of super cluster with trk
179 Double32_t fDeltaEtaSeedClTrkAtCalo; //[0,0,14]delta eta of seeed cluster with trk
180 Double32_t fDeltaPhiSuperClTrkAtVtx; //[0,0,14]delta phi of super cluster with trk
181 Double32_t fDeltaPhiSeedClTrkAtCalo; //[0,0,14]delta phi of seeed cluster with trk
182 Double32_t fFBrem; //[0,0,14]brem fraction
183 Double32_t fHadronicOverEm; //[0,0,14]hadronic over em fraction *DEPRECATED*
184 Double32_t fHcalDepth1OverEcal; //[0,0,14]hadronic over em fraction depth1
185 Double32_t fHcalDepth2OverEcal; //[0,0,14]hadronic over em fraction depth2
186 Double32_t fNumberOfClusters; //[0,0,14]number of associated clusters
187 Double32_t fE15; //[0,0,14]1x5 crystal energy
188 Double32_t fE25Max; //[0,0,14]2x5 crystal energy (max of two possible sums)
189 Double32_t fE55; //[0,0,14]5x5 crystal energy
190 Double32_t fCovEtaEta; //[0,0,14]variance eta-eta
191 Double32_t fCoviEtaiEta; //[0,0,14]covariance eta-eta (in crystals)
192 Double32_t fCaloIsolation; //[0,0,14](non-jura) ecal isolation based on rechits dR 0.3 *DEPRECATED*
193 Double32_t fHcalJurassicIsolation; //[0,0,14]hcal jura iso dR 0.4 *DEPRECATED*
194 Double32_t fHcalDepth1TowerSumEtDr04; //[0,0,14]hcal depth1 tower based isolation dR 0.4
195 Double32_t fHcalDepth2TowerSumEtDr04; //[0,0,14]hcal depth2 tower based isolation dR 0.4
196 Double32_t fEcalJurassicIsolation; //[0,0,14]ecal jura iso dR 0.4 *RENAMING*
197 Double32_t fTrackIsolationDr04; //[0,0,14]isolation based on tracks dR 0.4
198 Double32_t fCaloTowerIsolation; //[0,0,14]hcal tower based isolation dR 0.3 *DEPRECATED*
199 Double32_t fHcalDepth1TowerSumEtDr03; //[0,0,14]hcal depth1 tower based isolation dR 0.3
200 Double32_t fHcalDepth2TowerSumEtDr03; //[0,0,14]hcal depth2 tower based isolation dR 0.3
201 Double32_t fEcalRecHitSumEtDr03; //[0,0,14]ecal jura iso dR 0.3
202 Double32_t fTrackIsolation; //[0,0,14]isolation based on tracks dR 0.3 *RENAMING*
203 Double32_t fPassLooseID; //[0,0,14]pass loose id
204 Double32_t fPassTightID; //[0,0,14]pass tight id
205 Double32_t fIDLikelihood; //[0,0,14]likelihood value
206 Double32_t fPIn; //[0,0,14]momentum at vtx
207 Double32_t fPOut; //[0,0,14]momentum at ecal surface
208 Double32_t fFracSharedHits; //[0,0,14]fraction of shared hits btw gsf and std. track
209 Double32_t fMva; //[0,0,14] pflow mva output
210 Bool_t fIsEnergyScaleCorrected; //class dependent escale correction
211 Bool_t fIsMomentumCorrected; //class dependent E-p combination
212 Int_t fClassification; //classification (see GsfElectron.h)
213 Bool_t fIsEB; //is ECAL barrel
214 Bool_t fIsEE; //is ECAL Endcap
215 Bool_t fIsEBEEGap; //is in barrel-endcap gap
216 Bool_t fIsEBEtaGap; //is in EB eta module gap
217 Bool_t fIsEBPhiGap; //is in EB phi module gap
218 Bool_t fIsEEDeeGap; //is in EE dee gap
219 Bool_t fIsEERingGap; //is in EE ring gap
220 Bool_t fIsEcalDriven; //is std. egamma electron
221 Bool_t fIsTrackerDriven; //is pflow track-seeded electron
222
223 ClassDef(Electron, 3) // Electron class
224 };
225 }
226
227 //--------------------------------------------------------------------------------------------------
228 inline const mithep::Track *mithep::Electron::BestTrk() const
229 {
230 // Return "best" track.
231
232 if (HasGsfTrk())
233 return GsfTrk();
234 else if (HasTrackerTrk())
235 return TrackerTrk();
236
237 return 0;
238 }
239
240 //--------------------------------------------------------------------------------------------------
241 inline Double_t mithep::Electron::GetCharge() const
242 {
243 // Return stored charge, unless it is set to invalid (-99),
244 // in that case get charge from track as before
245
246 if (fCharge==-99)
247 return mithep::ChargedParticle::GetCharge();
248 else
249 return fCharge;
250
251 }
252
253 //--------------------------------------------------------------------------------------------------
254 inline void mithep::Electron::GetMom() const
255 {
256 // Get momentum of the electron. We use an explicitly stored three vector, with the pdg mass,
257 // since the momentum vector may be computed non-trivially in cmssw
258
259 fCachedMom.SetCoordinates(fMom.Rho(),fMom.Eta(),fMom.Phi(),GetMass());
260 }
261
262 //-------------------------------------------------------------------------------------------------
263 inline Double_t mithep::Electron::ESeedClusterOverPIn() const
264 {
265 // Return energy of the SuperCluster seed divided by the magnitude
266 // of the track momentum at the vertex.
267
268 return SCluster()->Seed()->Energy() / PIn();
269 }
270
271 //-------------------------------------------------------------------------------------------------
272 inline void mithep::Electron::SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi)
273 {
274 // Set three-vector
275
276 fMom.Set(pt,eta,phi);
277 ClearMom();
278 }
279 #endif