1 |
bendavid |
1.1 |
//--------------------------------------------------------------------------------------------------
|
2 |
loizides |
1.4 |
// $Id: PFJet.h,v 1.3 2009/03/18 15:44:32 loizides Exp $
|
3 |
bendavid |
1.1 |
//
|
4 |
|
|
// PFJet
|
5 |
|
|
//
|
6 |
loizides |
1.3 |
// This class holds information about reconstructed jet based on pf candidates.
|
7 |
bendavid |
1.1 |
//
|
8 |
|
|
// Authors: J.Bendavid
|
9 |
|
|
//--------------------------------------------------------------------------------------------------
|
10 |
|
|
|
11 |
|
|
#ifndef MITANA_DATATREE_PFJET_H
|
12 |
|
|
#define MITANA_DATATREE_PFJET_H
|
13 |
|
|
|
14 |
|
|
#include "MitAna/DataTree/interface/Jet.h"
|
15 |
|
|
#include "MitAna/DataCont/interface/RefArray.h"
|
16 |
|
|
#include "MitAna/DataTree/interface/PFCandidate.h"
|
17 |
|
|
|
18 |
|
|
namespace mithep
|
19 |
|
|
{
|
20 |
|
|
class PFJet : public Jet
|
21 |
|
|
{
|
22 |
|
|
public:
|
23 |
|
|
PFJet() : fChargedHadronEnergy(0), fNeutralHadronEnergy(0), fChargedEmEnergy(0),
|
24 |
loizides |
1.3 |
fNeutralEmEnergy(0), fMuonEnergy(0), fChargedMultiplicity(0),
|
25 |
bendavid |
1.1 |
fNeutralMultiplicity(0), fMuonMultiplicity(0) {}
|
26 |
|
|
PFJet(Double_t px, Double_t py, Double_t pz, Double_t e) :
|
27 |
|
|
Jet(px,py,pz,e),
|
28 |
|
|
fChargedHadronEnergy(0), fNeutralHadronEnergy(0), fChargedEmEnergy(0),
|
29 |
loizides |
1.3 |
fNeutralEmEnergy(0), fMuonEnergy(0), fChargedMultiplicity(0),
|
30 |
bendavid |
1.1 |
fNeutralMultiplicity(0), fMuonMultiplicity(0) {}
|
31 |
|
|
|
32 |
loizides |
1.3 |
void AddPFCand(const PFCandidate *p) { fPFCands.Add(p); }
|
33 |
|
|
Double_t ChargedEmEnergy() const { return fChargedEmEnergy; }
|
34 |
|
|
Double_t ChargedHadronEnergy() const { return fChargedHadronEnergy; }
|
35 |
|
|
Double_t MuonEnergy() const { return fMuonEnergy; }
|
36 |
|
|
UInt_t ChargedMultiplicity() const { return fChargedMultiplicity; }
|
37 |
|
|
Bool_t HasPFCand(const PFCandidate *p) const { return fPFCands.HasObject(p); }
|
38 |
|
|
UInt_t NConstituents() const { return NPFCands(); }
|
39 |
|
|
Double_t NeutralEmEnergy() const { return fNeutralEmEnergy; }
|
40 |
|
|
Double_t NeutralHadronEnergy() const { return fNeutralHadronEnergy; }
|
41 |
|
|
UInt_t NeutralMultiplicity() const { return fNeutralMultiplicity; }
|
42 |
loizides |
1.4 |
UInt_t NPFCands() const { return fPFCands.Entries(); }
|
43 |
loizides |
1.3 |
UInt_t MuonMultiplicity() const { return fMuonMultiplicity; }
|
44 |
|
|
EObjType ObjType() const { return kPFJet; }
|
45 |
|
|
const PFCandidate *PFCand(UInt_t i) const { return fPFCands.At(i); }
|
46 |
|
|
void SetChargedEmEnergy(Double_t e) { fChargedEmEnergy = e; }
|
47 |
|
|
void SetChargedHadronEnergy(Double_t e) { fChargedHadronEnergy = e; }
|
48 |
|
|
void SetChargedMuEnergy(Double_t e) { fMuonEnergy = e; }
|
49 |
|
|
void SetChargedMultiplicity(UInt_t n) { fChargedMultiplicity = n; }
|
50 |
|
|
void SetMuonMultiplicity(UInt_t n) { fMuonMultiplicity = n; }
|
51 |
|
|
void SetNeutralEmEnergy(Double_t e) { fNeutralEmEnergy = e; }
|
52 |
|
|
void SetNeutralHadronEnergy(Double_t e) { fNeutralHadronEnergy = e; }
|
53 |
|
|
void SetNeutralMultiplicity(UInt_t n) { fNeutralMultiplicity = n; }
|
54 |
bendavid |
1.1 |
|
55 |
|
|
protected:
|
56 |
|
|
|
57 |
loizides |
1.3 |
Double32_t fChargedHadronEnergy; //[0,0,14]charged hadron energy
|
58 |
|
|
Double32_t fNeutralHadronEnergy; //[0,0,14]neutral hadron energy
|
59 |
|
|
Double32_t fChargedEmEnergy; //[0,0,14]charged em energy
|
60 |
|
|
Double32_t fNeutralEmEnergy; //[0,0,14]neutral em energy
|
61 |
|
|
Double32_t fMuonEnergy; //[0,0,14]muon energy
|
62 |
|
|
UInt_t fChargedMultiplicity; //number of charged constituents
|
63 |
|
|
UInt_t fNeutralMultiplicity; //number of neutral constituents
|
64 |
|
|
UInt_t fMuonMultiplicity; //number of muon constituents
|
65 |
bendavid |
1.1 |
RefArray<PFCandidate> fPFCands; //pf candidates in the jet
|
66 |
|
|
|
67 |
|
|
ClassDef(PFJet, 1) // PFJet class
|
68 |
|
|
};
|
69 |
|
|
}
|
70 |
|
|
#endif
|