ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitAna/DataTree/interface/Track.h
(Generate patch)

Comparing UserCode/MitAna/DataTree/interface/Track.h (file contents):
Revision 1.7 by loizides, Wed Jun 18 19:08:14 2008 UTC vs.
Revision 1.33 by bendavid, Tue Feb 17 15:09:45 2009 UTC

# Line 3 | Line 3
3   //
4   // Track
5   //
6 < // This will be re-written :-)
6 > // We store the CMSSW track parameterization
7 > // Parameters associated to the 5D curvilinear covariance matrix:
8 > // (qoverp, lambda, phi, dxy, dsz)
9 > // defined as:
10 > // qoverp = q / abs(p) = signed inverse of momentum [1/GeV]
11 > // lambda = pi/2 - polar angle at the given point
12 > // phi = azimuth angle at the given point
13 > // dxy = -vx*sin(phi) + vy*cos(phi) [cm]
14 > // dsz = vz*cos(lambda) - (vx*cos(phi)+vy*sin(phi))*sin(lambda) [cm]
15 > // (See http://cmslxr.fnal.gov/lxr/source/DataFormats/TrackReco/interface/TrackBase.h)
16 > //
17 > // Format for fHits: (We do not use anything resembling reco::HitPattern from CMSSW because that
18 > // data format requires 800 bits per track!)
19 > // There is a one to one mapping between bits and tracker layers, where layers are enumerated
20 > // seperately in the PXB, PXF, TIB, TID, TOB, TEC and r-phi and stereo modules are treated as
21 > // seperate layers in those detectors which have them
22 > // (TIB L1,L2, TID L1,L2,L3, TOB L1,L2, TEC L1,L2,L3,L4,L5,L6,L7,L8,L9).
23 > //
24 > // A bit value of 1 indicates a hit in the corresponding layer, and 0 indicates no hit.
25 > //
26 > // Note that currently this only stores information about hits in the Tracker,
27 > // but muon chamber information will likely be added as well.
28 > //
29 > // Bit-Layer assignments (starting from bit 0):
30 > // Bit  0: PXB L1
31 > // Bit  1: PXB L2
32 > // Bit  2: PXB L3
33 > // Bit  3: PXF L1
34 > // Bit  4: PXF L2
35 > // Bit  5: TIB L1 r-phi
36 > // Bit  6: TIB L1 stereo
37 > // Bit  7: TIB L2 r-phi
38 > // Bit  8: TIB L2 stereo
39 > // Bit  9: TIB L3 r-phi
40 > // Bit 10: TIB L4 r-phi
41 > // Bit 11: TID L1 r-phi
42 > // Bit 12: TID L1 stereo
43 > // Bit 13: TID L2 r-phi
44 > // Bit 14: TID L2 stereo
45 > // Bit 15: TID L3 r-phi
46 > // Bit 16: TID L3 stereo
47 > // Bit 17: TOB L1 r-phi
48 > // Bit 18: TOB L1 stereo
49 > // Bit 19: TOB L2 r-phi
50 > // Bit 20: TOB L2 stereo
51 > // Bit 21: TOB L3 r-phi
52 > // Bit 22: TOB L4 r-phi
53 > // Bit 23: TOB L5 r-phi
54 > // Bit 24: TOB L6 r-phi
55 > // Bit 25: TEC L1 r-phi
56 > // Bit 26: TEC L1 stereo
57 > // Bit 27: TEC L2 r-phi
58 > // Bit 28: TEC L2 stereo
59 > // Bit 29: TEC L3 r-phi
60 > // Bit 30: TEC L3 stereo
61 > // Bit 31: TEC L4 r-phi
62 > // Bit 32: TEC L4 stereo
63 > // Bit 33: TEC L5 r-phi
64 > // Bit 34: TEC L5 stereo
65 > // Bit 35: TEC L6 r-phi
66 > // Bit 36: TEC L6 stereo
67 > // Bit 37: TEC L7 r-phi
68 > // Bit 38: TEC L7 stereo
69 > // Bit 39: TEC L8 r-phi
70 > // Bit 40: TEC L8 stereo
71 > // Bit 41: TEC L9 r-phi
72 > // Bit 42: TEC L9 stereo
73   //
74   // Authors: C.Loizides, J.Bendavid, C.Paus
75   //--------------------------------------------------------------------------------------------------
76  
77 < #ifndef DATATREE_TRACK_H
78 < #define DATATREE_TRACK_H
77 > #ifndef MITANA_DATATREE_TRACK_H
78 > #define MITANA_DATATREE_TRACK_H
79  
80   #include "MitAna/DataTree/interface/DataObject.h"
81 + #include "MitAna/DataTree/interface/SuperCluster.h"
82 + #include "MitAna/DataTree/interface/MCParticle.h"
83 + #include "MitAna/DataTree/interface/BitMask.h"
84 + #include "MitAna/DataTree/interface/BaseVertex.h"
85 + #include "MitAna/DataTree/interface/Types.h"
86  
87   namespace mithep
88   {
89    class Track : public DataObject
90    {
91      public:
92 <      Track() {}
93 <      Track(Double_t phi, Double_t d0, Double_t pt, Double_t dz, Double_t theta) :
94 <        fPhi(phi), fD0(d0), fPt(pt), fDz(dz), fTheta(theta) {}
92 >      enum EHitLayer {
93 >        PXB1,
94 >        PXB2,
95 >        PXB3,
96 >        PXF1,
97 >        PXF2,
98 >        TIB1,
99 >        TIB1S,
100 >        TIB2,
101 >        TIB2S,
102 >        TIB3,
103 >        TIB4,
104 >        TID1,
105 >        TID1S,
106 >        TID2,
107 >        TID2S,
108 >        TID3,
109 >        TID3S,
110 >        TOB1,
111 >        TOB1S,
112 >        TOB2,
113 >        TOB2S,
114 >        TOB3,
115 >        TOB4,
116 >        TOB5,
117 >        TOB6,
118 >        TEC1,
119 >        TEC1S,
120 >        TEC2,
121 >        TEC2S,
122 >        TEC3,
123 >        TEC3S,
124 >        TEC4,
125 >        TEC4S,
126 >        TEC5,
127 >        TEC5S,
128 >        TEC6,
129 >        TEC6S,
130 >        TEC7,
131 >        TEC7S,
132 >        TEC8,
133 >        TEC8S,
134 >        TEC9,
135 >        TEC9S
136 >      };
137 >
138 >      Track() : fQOverP(0), fQOverPErr(0), fLambda(0), fLambdaErr(0),
139 >                fPhi0(0), fPhi0Err(0), fDxy(0), fDxyErr(0), fDsz(0), fDszErr(0),
140 >                fChi2(0), fNdof(0), fEtaEcal(0), fPhiEcal(0) {}
141 >      Track(Double_t qOverP, Double_t lambda, Double_t phi0, Double_t dxy, Double_t dsz) :
142 >                fQOverP(qOverP), fQOverPErr(0), fLambda(lambda), fLambdaErr(0),
143 >                fPhi0(phi0), fPhi0Err(0), fDxy(dxy), fDxyErr(0), fDsz(dsz), fDszErr(0),
144 >                fChi2(0), fNdof(0), fEtaEcal(0), fPhiEcal(0) {}
145        ~Track() {}
146  
147 <      void      SetHelix (Double_t phi, Double_t d0, Double_t pt, Double_t dz, Double_t theta);
148 <      void      SetErrors(Double_t phiErr, Double_t d0Err, Double_t ptErr, Double_t dzErr,
149 <                          Double_t thetaErr);
150 <      
151 <      Double_t  Phi()      const { return fPhi; }
152 <      Double_t  D0()       const { return fD0; }
153 <      Double_t  Pt()       const { return fPt; }
154 <      Double_t  Dz()       const { return fDz; }
155 <      Double_t  Theta()    const { return fTheta; }
156 <      
157 <      Double_t  PhiErr()   const { return fPhiErr; }
158 <      Double_t  D0Err()    const { return fD0Err; }
159 <      Double_t  PtErr()    const { return fPtErr; }
160 <      Double_t  DzErr()    const { return fDzErr; }
161 <      Double_t  ThetaErr() const { return fThetaErr; }
162 <      
163 <      Int_t     Charge()   const { return fCharge; }
164 <      
165 <      void      SetCharge(Int_t charge) { fCharge = charge; }
166 <      
147 >      Int_t               Charge()         const { return (fQOverP>0) ? 1 : -1; }
148 >      Double_t            Chi2()           const { return fChi2; }
149 >      Double_t            RChi2()          const { return fChi2/(Double_t)fNdof; }
150 >      void                ClearHit(EHitLayer l)  { fHits.ClearBit(l); }
151 >      Double_t            D0()             const { return -fDxy; }
152 >      Double_t            D0Corrected(const BaseVertex *iVertex) const;
153 >      Double_t            D0Err()          const { return fDxyErr; }
154 >      Double_t            Dsz()            const { return fDsz; }
155 >      Double_t            DszErr()         const { return fDszErr; }
156 >      Double_t            Dxy()            const { return fDxy; }
157 >      Double_t            DxyErr()         const { return fDxyErr; }
158 >      Double_t            E(Double_t m)    const { return TMath::Sqrt(E2(m)); }
159 >      Double_t            E2(Double_t m)   const { return P2()+m*m; }
160 >      Double_t            Eta()            const { return Mom().Eta(); }
161 >      Double_t            EtaEcal()        const { return fEtaEcal; }
162 >      Bool_t              Hit(EHitLayer l) const { return fHits.TestBit(l); }
163 >      const BitMask48    &Hits()           const { return fHits; }
164 >      Double_t            Lambda()         const { return fLambda; }
165 >      Double_t            LambdaErr()      const { return fLambdaErr; }
166 >      const MCParticle   *MCPart()         const { return fMCParticleRef.Obj(); }
167 >      ThreeVector         Mom()            const { return ThreeVector(Px(),Py(),Pz()); }
168 >      FourVector          Mom4(Double_t m) const { return FourVector(Px(),Py(),Pz(),E(m)); }
169 >      UInt_t              Ndof()           const { return fNdof; }
170 >      UInt_t              NHits()          const { return fHits.NBitsSet(); }
171 >      UInt_t              NStereoHits()    const { return StereoHits().NBitsSet(); }
172 >      EObjType            ObjType()        const { return kTrack; }      
173 >      Double_t            P2()             const { return P()*P(); }
174 >      Double_t            P()              const { return TMath::Abs(1./fQOverP); }
175 >      Double_t            Phi()            const { return fPhi0; }
176 >      Double_t            Phi0()           const { return fPhi0; }
177 >      Double_t            Phi0Err()        const { return fPhi0Err; }
178 >      Double_t            PhiEcal()        const { return fPhiEcal; }
179 >      Double_t            Prob()           const { return TMath::Prob(fChi2,fNdof); }
180 >      Double_t            Pt()             const { return TMath::Abs(TMath::Cos(fLambda)/fQOverP); }
181 >      Double_t            Px()             const { return Pt()*TMath::Cos(fPhi0); }      
182 >      Double_t            Py()             const { return Pt()*TMath::Sin(fPhi0); }
183 >      Double_t            Pz()             const { return P()*TMath::Sin(fLambda); }
184 >      Double_t            QOverP()         const { return fQOverP; }
185 >      Double_t            QOverPErr()      const { return fQOverPErr; }
186 >      Double_t            Theta()          const { return (TMath::PiOver2() - fLambda); }
187 >      Double_t            Z0()             const { return fDsz/TMath::Cos(fLambda); }
188 >      const SuperCluster *SCluster()       const { return fSuperClusterRef.Obj();   }
189 >      const BitMask48     StereoHits()     const { return (fHits & StereoLayers()); }
190 >      void                SetChi2(Double_t chi2)   { fChi2 = chi2; }
191 >      void                SetErrors(Double_t qOverPErr, Double_t lambdaErr, Double_t phi0Err,
192 >                                    Double_t dXyErr, Double_t dSzErr);
193 >      void                SetEtaEcal(Double_t eta) { fEtaEcal = eta; }
194 >      void                SetHelix (Double_t qOverP, Double_t lambda, Double_t phi0,
195 >                                    Double_t dXy, Double_t dSz);
196 >      void                SetHit(EHitLayer l)      { fHits.SetBit(l); }
197 >      void                SetHits(const BitMask48 &hits) { fHits = hits; }
198 >      void                SetNdof(UInt_t dof)      { fNdof = dof; }
199 >      void                SetMCPart(const MCParticle *p) { fMCParticleRef = p; }
200 >      void                SetPhiEcal(Double_t phi) { fPhiEcal = phi; }
201 >      void                SetSCluster(const SuperCluster* sc) { fSuperClusterRef = sc; }
202 >
203 >      static
204 >      const BitMask48    StereoLayers();
205 >
206      protected:
207 <      Double_t fPhi;      // azimuthal angle
208 <      Double_t fD0;       // raw impact parameter
209 <      Double_t fPt;       // transverse momentum
210 <      Double_t fDz;       // z-displacement
211 <      Double_t fTheta;    // polar angle
212 <      Double_t fPhiErr;   // uncertainy on phi
213 <      Double_t fD0Err;    // uncertainty on D0
214 <      Double_t fPtErr;    // uncertainty on pt
215 <      Double_t fDzErr;    // uncertainty on dz
216 <      Double_t fThetaErr; // uncertainty on theta
217 <      Int_t    fCharge;   // electric charge of reconstructed track
207 >      BitMask48           fHits;                //storage for mostly hit information
208 >      Double_t            fQOverP;              //signed inverse of momentum [1/GeV]
209 >      Double_t            fQOverPErr;           //error of q/p
210 >      Double_t            fLambda;              //pi/2 - polar angle at the reference point
211 >      Double_t            fLambdaErr;           //error of lambda
212 >      Double_t            fPhi0;                //azimuth angle at the given point
213 >      Double_t            fPhi0Err;             //error of azimuthal angle
214 >      Double_t            fDxy;                 //transverse distance to reference point [cm]
215 >      Double_t            fDxyErr;              //error of transverse distance
216 >      Double_t            fDsz;                 //longitudinal distance to reference point [cm]
217 >      Double_t            fDszErr;              //error of longitudinal distance
218 >      Double_t            fChi2;                //chi squared of track fit
219 >      UInt_t              fNdof;                //degree-of-freedom of track fit
220 >      Double32_t          fEtaEcal;             //eta of track at Ecal front face
221 >      Double32_t          fPhiEcal;             //phi of track at Ecal front face
222 >      Ref<SuperCluster>   fSuperClusterRef;     //superCluster crossed by track
223 >      Ref<MCParticle>     fMCParticleRef;       //reference to sim particle (for monte carlo)
224                
225 <      ClassDef(Track, 1) // Track class
225 >    ClassDef(Track, 2) // Track class
226    };
227   }
228  
229   //--------------------------------------------------------------------------------------------------
230 + inline Double_t mithep::Track::D0Corrected(const BaseVertex *iVertex) const
231 + {
232 +  // Return corrected d0 with respect to primary vertex or beamspot.
233 +
234 +  Double_t lXM =  -TMath::Sin(Phi()) * D0();
235 +  Double_t lYM =   TMath::Cos(Phi()) * D0();
236 +  Double_t lDX = (lXM + iVertex->X());
237 +  Double_t lDY = (lYM + iVertex->Y());
238 +  Double_t d0Corr = (Px()*lDY - Py()*lDX)/Pt();
239 +  
240 +  return d0Corr;
241 + }
242 +
243 + //--------------------------------------------------------------------------------------------------
244   inline
245 < void mithep::Track::SetHelix(Double_t phi, Double_t d0, Double_t pt, Double_t dz, Double_t theta)
245 > void mithep::Track::SetHelix(Double_t qOverP, Double_t lambda, Double_t phi0,
246 >                                   Double_t dxy, Double_t dsz)
247   {
248 <  fPhi   = phi;
249 <  fD0    = d0;
250 <  fPt    = pt;
251 <  fDz    = dz;
252 <  fTheta = theta;
248 >  // Set helix parameters.
249 >
250 >  fQOverP = qOverP;
251 >  fLambda = lambda;
252 >  fPhi0   = phi0;
253 >  fDxy    = dxy;
254 >  fDsz    = dsz;
255   }
256  
257   //--------------------------------------------------------------------------------------------------
258   inline
259 < void mithep::Track::SetErrors(Double_t phiErr, Double_t d0Err, Double_t ptErr, Double_t dzErr,
260 <                              Double_t thetaErr)
259 > void mithep::Track::SetErrors(Double_t qOverPErr, Double_t lambdaErr, Double_t phi0Err,
260 >                                   Double_t dxyErr, Double_t dszErr)
261   {
262 <  fPhiErr   = phiErr;
263 <  fD0Err    = d0Err;
264 <  fPtErr    = ptErr;
265 <  fDzErr    = dzErr;
266 <  fThetaErr = thetaErr;
262 >  // Set helix errors.
263 >
264 >  fQOverPErr = qOverPErr;
265 >  fLambdaErr = lambdaErr;
266 >  fPhi0Err   = phi0Err;
267 >  fDxyErr    = dxyErr;
268 >  fDszErr    = dszErr;
269 > }
270 >
271 > //--------------------------------------------------------------------------------------------------
272 > inline
273 > const mithep::BitMask48 mithep::Track::StereoLayers()
274 > {
275 >  // Build and return BitMask of stereo layers
276 >
277 >  mithep::BitMask48 stereoLayers;
278 >  stereoLayers.SetBit(mithep::Track::TIB1S);
279 >  stereoLayers.SetBit(mithep::Track::TIB2S);
280 >  stereoLayers.SetBit(mithep::Track::TID1S);
281 >  stereoLayers.SetBit(mithep::Track::TID2S);
282 >  stereoLayers.SetBit(mithep::Track::TID3S);
283 >  stereoLayers.SetBit(mithep::Track::TOB1S);
284 >  stereoLayers.SetBit(mithep::Track::TOB2S);
285 >  stereoLayers.SetBit(mithep::Track::TEC1S);
286 >  stereoLayers.SetBit(mithep::Track::TEC2S);
287 >  stereoLayers.SetBit(mithep::Track::TEC3S);
288 >  stereoLayers.SetBit(mithep::Track::TEC4S);
289 >  stereoLayers.SetBit(mithep::Track::TEC5S);
290 >  stereoLayers.SetBit(mithep::Track::TEC6S);
291 >  stereoLayers.SetBit(mithep::Track::TEC7S);
292 >  stereoLayers.SetBit(mithep::Track::TEC8S);
293 >  stereoLayers.SetBit(mithep::Track::TEC9S);
294 >  return stereoLayers;
295   }
296   #endif

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines