3 |
|
// |
4 |
|
// Track |
5 |
|
// |
6 |
< |
// This will be re-written :-) |
6 |
> |
// We store the CMSSW track parameterization |
7 |
> |
// Parameters associated to the 5D curvilinear covariance matrix: |
8 |
> |
// (qoverp, lambda, phi, dxy, dsz) |
9 |
> |
// defined as: |
10 |
> |
// qoverp = q / abs(p) = signed inverse of momentum [1/GeV] |
11 |
> |
// lambda = pi/2 - polar angle at the given point |
12 |
> |
// phi = azimuth angle at the given point |
13 |
> |
// dxy = -vx*sin(phi) + vy*cos(phi) [cm] |
14 |
> |
// dsz = vz*cos(lambda) - (vx*cos(phi)+vy*sin(phi))*sin(lambda) [cm] |
15 |
> |
// (See http://cmslxr.fnal.gov/lxr/source/DataFormats/TrackReco/interface/TrackBase.h) |
16 |
> |
// |
17 |
> |
// Format for fHits: (We do not use anything resembling reco::HitPattern from CMSSW because that |
18 |
> |
// data format requires 800 bits per track!) |
19 |
> |
// There is a one to one mapping between bits and tracker layers, where layers are enumerated |
20 |
> |
// seperately in the PXB, PXF, TIB, TID, TOB, TEC and r-phi and stereo modules are treated as |
21 |
> |
// seperate layers in those detectors which have them |
22 |
> |
// (TIB L1,L2, TID L1,L2,L3, TOB L1,L2, TEC L1,L2,L3,L4,L5,L6,L7,L8,L9). |
23 |
> |
// |
24 |
> |
// A bit value of 1 indicates a hit in the corresponding layer, and 0 indicates no hit. |
25 |
> |
// |
26 |
> |
// Note that currently this only stores information about hits in the Tracker, |
27 |
> |
// but muon chamber information will likely be added as well. |
28 |
> |
// |
29 |
> |
// Bit-Layer assignments (starting from bit 0): |
30 |
> |
// Bit 0: PXB L1 |
31 |
> |
// Bit 1: PXB L2 |
32 |
> |
// Bit 2: PXB L3 |
33 |
> |
// Bit 3: PXF L1 |
34 |
> |
// Bit 4: PXF L2 |
35 |
> |
// Bit 5: TIB L1 r-phi |
36 |
> |
// Bit 6: TIB L1 stereo |
37 |
> |
// Bit 7: TIB L2 r-phi |
38 |
> |
// Bit 8: TIB L2 stereo |
39 |
> |
// Bit 9: TIB L3 r-phi |
40 |
> |
// Bit 10: TIB L4 r-phi |
41 |
> |
// Bit 11: TID L1 r-phi |
42 |
> |
// Bit 12: TID L1 stereo |
43 |
> |
// Bit 13: TID L2 r-phi |
44 |
> |
// Bit 14: TID L2 stereo |
45 |
> |
// Bit 15: TID L3 r-phi |
46 |
> |
// Bit 16: TID L3 stereo |
47 |
> |
// Bit 17: TOB L1 r-phi |
48 |
> |
// Bit 18: TOB L1 stereo |
49 |
> |
// Bit 19: TOB L2 r-phi |
50 |
> |
// Bit 20: TOB L2 stereo |
51 |
> |
// Bit 21: TOB L3 r-phi |
52 |
> |
// Bit 22: TOB L4 r-phi |
53 |
> |
// Bit 23: TOB L5 r-phi |
54 |
> |
// Bit 24: TOB L6 r-phi |
55 |
> |
// Bit 25: TEC L1 r-phi |
56 |
> |
// Bit 26: TEC L1 stereo |
57 |
> |
// Bit 27: TEC L2 r-phi |
58 |
> |
// Bit 28: TEC L2 stereo |
59 |
> |
// Bit 29: TEC L3 r-phi |
60 |
> |
// Bit 30: TEC L3 stereo |
61 |
> |
// Bit 31: TEC L4 r-phi |
62 |
> |
// Bit 32: TEC L4 stereo |
63 |
> |
// Bit 33: TEC L5 r-phi |
64 |
> |
// Bit 34: TEC L5 stereo |
65 |
> |
// Bit 35: TEC L6 r-phi |
66 |
> |
// Bit 36: TEC L6 stereo |
67 |
> |
// Bit 37: TEC L7 r-phi |
68 |
> |
// Bit 38: TEC L7 stereo |
69 |
> |
// Bit 39: TEC L8 r-phi |
70 |
> |
// Bit 40: TEC L8 stereo |
71 |
> |
// Bit 41: TEC L9 r-phi |
72 |
> |
// Bit 42: TEC L9 stereo |
73 |
|
// |
74 |
|
// Authors: C.Loizides, J.Bendavid, C.Paus |
75 |
|
//-------------------------------------------------------------------------------------------------- |
76 |
|
|
77 |
< |
#ifndef DATATREE_TRACK_H |
78 |
< |
#define DATATREE_TRACK_H |
77 |
> |
#ifndef MITANA_DATATREE_TRACK_H |
78 |
> |
#define MITANA_DATATREE_TRACK_H |
79 |
|
|
80 |
|
#include "MitAna/DataTree/interface/DataObject.h" |
81 |
+ |
#include "MitAna/DataTree/interface/SuperCluster.h" |
82 |
+ |
#include "MitAna/DataTree/interface/MCParticle.h" |
83 |
+ |
#include "MitAna/DataTree/interface/BitMask.h" |
84 |
+ |
#include "MitAna/DataTree/interface/BaseVertex.h" |
85 |
+ |
#include "MitAna/DataTree/interface/Types.h" |
86 |
|
|
87 |
|
namespace mithep |
88 |
|
{ |
89 |
|
class Track : public DataObject |
90 |
|
{ |
91 |
|
public: |
92 |
< |
Track() {} |
93 |
< |
Track(Double_t phi, Double_t d0, Double_t pt, Double_t dz, Double_t theta) : |
94 |
< |
fPhi(phi), fD0(d0), fPt(pt), fDz(dz), fTheta(theta) {} |
92 |
> |
enum EHitLayer { |
93 |
> |
PXB1, |
94 |
> |
PXB2, |
95 |
> |
PXB3, |
96 |
> |
PXF1, |
97 |
> |
PXF2, |
98 |
> |
TIB1, |
99 |
> |
TIB1S, |
100 |
> |
TIB2, |
101 |
> |
TIB2S, |
102 |
> |
TIB3, |
103 |
> |
TIB4, |
104 |
> |
TID1, |
105 |
> |
TID1S, |
106 |
> |
TID2, |
107 |
> |
TID2S, |
108 |
> |
TID3, |
109 |
> |
TID3S, |
110 |
> |
TOB1, |
111 |
> |
TOB1S, |
112 |
> |
TOB2, |
113 |
> |
TOB2S, |
114 |
> |
TOB3, |
115 |
> |
TOB4, |
116 |
> |
TOB5, |
117 |
> |
TOB6, |
118 |
> |
TEC1, |
119 |
> |
TEC1S, |
120 |
> |
TEC2, |
121 |
> |
TEC2S, |
122 |
> |
TEC3, |
123 |
> |
TEC3S, |
124 |
> |
TEC4, |
125 |
> |
TEC4S, |
126 |
> |
TEC5, |
127 |
> |
TEC5S, |
128 |
> |
TEC6, |
129 |
> |
TEC6S, |
130 |
> |
TEC7, |
131 |
> |
TEC7S, |
132 |
> |
TEC8, |
133 |
> |
TEC8S, |
134 |
> |
TEC9, |
135 |
> |
TEC9S |
136 |
> |
}; |
137 |
> |
|
138 |
> |
Track() : fQOverP(0), fQOverPErr(0), fLambda(0), fLambdaErr(0), |
139 |
> |
fPhi0(0), fPhi0Err(0), fDxy(0), fDxyErr(0), fDsz(0), fDszErr(0), |
140 |
> |
fChi2(0), fNdof(0), fEtaEcal(0), fPhiEcal(0) {} |
141 |
> |
Track(Double_t qOverP, Double_t lambda, Double_t phi0, Double_t dxy, Double_t dsz) : |
142 |
> |
fQOverP(qOverP), fQOverPErr(0), fLambda(lambda), fLambdaErr(0), |
143 |
> |
fPhi0(phi0), fPhi0Err(0), fDxy(dxy), fDxyErr(0), fDsz(dsz), fDszErr(0), |
144 |
> |
fChi2(0), fNdof(0), fEtaEcal(0), fPhiEcal(0) {} |
145 |
|
~Track() {} |
146 |
|
|
147 |
< |
void SetHelix (Double_t phi, Double_t d0, Double_t pt, Double_t dz, Double_t theta); |
148 |
< |
void SetErrors(Double_t phiErr, Double_t d0Err, Double_t ptErr, Double_t dzErr, |
149 |
< |
Double_t thetaErr); |
150 |
< |
|
151 |
< |
Double_t Phi() const { return fPhi; } |
152 |
< |
Double_t D0() const { return fD0; } |
153 |
< |
Double_t Pt() const { return fPt; } |
154 |
< |
Double_t Dz() const { return fDz; } |
155 |
< |
Double_t Theta() const { return fTheta; } |
156 |
< |
|
157 |
< |
Double_t PhiErr() const { return fPhiErr; } |
158 |
< |
Double_t D0Err() const { return fD0Err; } |
159 |
< |
Double_t PtErr() const { return fPtErr; } |
160 |
< |
Double_t DzErr() const { return fDzErr; } |
161 |
< |
Double_t ThetaErr() const { return fThetaErr; } |
162 |
< |
|
163 |
< |
Int_t Charge() const { return fCharge; } |
164 |
< |
|
165 |
< |
void SetCharge(Int_t charge) { fCharge = charge; } |
166 |
< |
|
147 |
> |
Int_t Charge() const { return (fQOverP>0) ? 1 : -1; } |
148 |
> |
Double_t Chi2() const { return fChi2; } |
149 |
> |
Double_t RChi2() const { return fChi2/(Double_t)fNdof; } |
150 |
> |
void ClearHit(EHitLayer l) { fHits.ClearBit(l); } |
151 |
> |
Double_t D0() const { return -fDxy; } |
152 |
> |
Double_t D0Corrected(const BaseVertex &iVertex) const; |
153 |
> |
Double_t D0Err() const { return fDxyErr; } |
154 |
> |
Double_t Dsz() const { return fDsz; } |
155 |
> |
Double_t DszErr() const { return fDszErr; } |
156 |
> |
Double_t Dxy() const { return fDxy; } |
157 |
> |
Double_t DxyErr() const { return fDxyErr; } |
158 |
> |
Double_t E(Double_t m) const { return TMath::Sqrt(E2(m)); } |
159 |
> |
Double_t E2(Double_t m) const { return P2()+m*m; } |
160 |
> |
Double_t Eta() const { return Mom().Eta(); } |
161 |
> |
Double_t EtaEcal() const { return fEtaEcal; } |
162 |
> |
Bool_t Hit(EHitLayer l) const { return fHits.TestBit(l); } |
163 |
> |
const BitMask48 &Hits() const { return fHits; } |
164 |
> |
Double_t Lambda() const { return fLambda; } |
165 |
> |
Double_t LambdaErr() const { return fLambdaErr; } |
166 |
> |
const MCParticle *MCPart() const { return fMCParticleRef.Obj(); } |
167 |
> |
const ThreeVectorC &Mom() const; |
168 |
> |
FourVectorM Mom4(Double_t m) const { return FourVectorM(Pt(),Eta(),Phi(),E(m)); } |
169 |
> |
UInt_t Ndof() const { return fNdof; } |
170 |
> |
UInt_t NHits() const { return fHits.NBitsSet(); } |
171 |
> |
UInt_t NStereoHits() const { return StereoHits().NBitsSet(); } |
172 |
> |
EObjType ObjType() const { return kTrack; } |
173 |
> |
Double_t P2() const { return 1./fQOverP/fQOverP; } |
174 |
> |
Double_t P() const { return TMath::Abs(1./fQOverP); } |
175 |
> |
Double_t Phi() const { return fPhi0; } |
176 |
> |
Double_t Phi0() const { return fPhi0; } |
177 |
> |
Double_t Phi0Err() const { return fPhi0Err; } |
178 |
> |
Double_t PhiEcal() const { return fPhiEcal; } |
179 |
> |
Double_t Prob() const { return TMath::Prob(fChi2,fNdof); } |
180 |
> |
Double_t Pt() const { return Mom().Rho(); } |
181 |
> |
Double_t Px() const { return Mom().X(); } |
182 |
> |
Double_t Py() const { return Mom().Y(); } |
183 |
> |
Double_t Pz() const { return Mom().Z(); } |
184 |
> |
Double_t QOverP() const { return fQOverP; } |
185 |
> |
Double_t QOverPErr() const { return fQOverPErr; } |
186 |
> |
Double_t Theta() const { return (TMath::PiOver2() - fLambda); } |
187 |
> |
Double_t Z0() const { return fDsz/TMath::Cos(fLambda); } |
188 |
> |
const SuperCluster *SCluster() const { return fSuperClusterRef.Obj(); } |
189 |
> |
const BitMask48 StereoHits() const { return (fHits & StereoLayers()); } |
190 |
> |
void SetChi2(Double_t chi2) { fChi2 = chi2; } |
191 |
> |
void SetErrors(Double_t qOverPErr, Double_t lambdaErr, Double_t phi0Err, |
192 |
> |
Double_t dXyErr, Double_t dSzErr); |
193 |
> |
void SetEtaEcal(Double_t eta) { fEtaEcal = eta; } |
194 |
> |
void SetHelix (Double_t qOverP, Double_t lambda, Double_t phi0, |
195 |
> |
Double_t dXy, Double_t dSz); |
196 |
> |
void SetHit(EHitLayer l) { fHits.SetBit(l); } |
197 |
> |
void SetHits(const BitMask48 &hits) { fHits = hits; } |
198 |
> |
void SetNdof(UInt_t dof) { fNdof = dof; } |
199 |
> |
void SetMCPart(const MCParticle *p) { fMCParticleRef = p; } |
200 |
> |
void SetPhiEcal(Double_t phi) { fPhiEcal = phi; } |
201 |
> |
void SetSCluster(const SuperCluster* sc) { fSuperClusterRef = sc; } |
202 |
> |
|
203 |
> |
static |
204 |
> |
const BitMask48 StereoLayers(); |
205 |
> |
|
206 |
|
protected: |
207 |
< |
Double_t fPhi; // azimuthal angle |
208 |
< |
Double_t fD0; // raw impact parameter |
209 |
< |
Double_t fPt; // transverse momentum |
210 |
< |
Double_t fDz; // z-displacement |
211 |
< |
Double_t fTheta; // polar angle |
212 |
< |
Double_t fPhiErr; // uncertainy on phi |
213 |
< |
Double_t fD0Err; // uncertainty on D0 |
214 |
< |
Double_t fPtErr; // uncertainty on pt |
215 |
< |
Double_t fDzErr; // uncertainty on dz |
216 |
< |
Double_t fThetaErr; // uncertainty on theta |
217 |
< |
Int_t fCharge; // electric charge of reconstructed track |
207 |
> |
void ClearMom() const { fCacheMomFlag.ClearCache(); } |
208 |
> |
void GetMom() const; |
209 |
> |
|
210 |
> |
BitMask48 fHits; //storage for mostly hit information |
211 |
> |
Double32_t fQOverP; //signed inverse of momentum [1/GeV] |
212 |
> |
Double32_t fQOverPErr; //error of q/p |
213 |
> |
Double32_t fLambda; //pi/2 - polar angle at the reference point |
214 |
> |
Double32_t fLambdaErr; //error of lambda |
215 |
> |
Double32_t fPhi0; //azimuth angle at the given point |
216 |
> |
Double32_t fPhi0Err; //error of azimuthal angle |
217 |
> |
Double32_t fDxy; //transverse distance to reference point [cm] |
218 |
> |
Double32_t fDxyErr; //error of transverse distance |
219 |
> |
Double32_t fDsz; //longitudinal distance to reference point [cm] |
220 |
> |
Double32_t fDszErr; //error of longitudinal distance |
221 |
> |
Double32_t fChi2; //chi squared of track fit |
222 |
> |
UInt_t fNdof; //degree-of-freedom of track fit |
223 |
> |
Double32_t fEtaEcal; //eta of track at Ecal front face |
224 |
> |
Double32_t fPhiEcal; //phi of track at Ecal front face |
225 |
> |
Ref<SuperCluster> fSuperClusterRef; //superCluster crossed by track |
226 |
> |
Ref<MCParticle> fMCParticleRef; //reference to sim particle (for monte carlo) |
227 |
> |
mutable CacheFlag fCacheMomFlag; //||cache validity flag for momentum |
228 |
> |
mutable ThreeVectorC fCachedMom; //!cached momentum vector |
229 |
|
|
230 |
< |
ClassDef(Track, 1) // Track class |
230 |
> |
ClassDef(Track, 1) // Track class |
231 |
|
}; |
232 |
|
} |
233 |
|
|
234 |
|
//-------------------------------------------------------------------------------------------------- |
235 |
+ |
inline void mithep::Track::GetMom() const |
236 |
+ |
{ |
237 |
+ |
// Compute three momentum. |
238 |
+ |
|
239 |
+ |
Double_t pt = TMath::Abs(TMath::Cos(fLambda)/fQOverP); |
240 |
+ |
Double_t eta = - TMath::Log(TMath::Tan(Theta()/2.)); |
241 |
+ |
fCachedMom.SetCoordinates(pt,eta,Phi()); |
242 |
+ |
} |
243 |
+ |
|
244 |
+ |
//-------------------------------------------------------------------------------------------------- |
245 |
+ |
inline const mithep::ThreeVectorC &mithep::Track::Mom() const |
246 |
+ |
{ |
247 |
+ |
// Return cached momentum value. |
248 |
+ |
|
249 |
+ |
if (!fCacheMomFlag.IsValid()) { |
250 |
+ |
GetMom(); |
251 |
+ |
fCacheMomFlag.SetValid(); |
252 |
+ |
} |
253 |
+ |
return fCachedMom; |
254 |
+ |
} |
255 |
+ |
|
256 |
+ |
//-------------------------------------------------------------------------------------------------- |
257 |
+ |
inline Double_t mithep::Track::D0Corrected(const BaseVertex &iVertex) const |
258 |
+ |
{ |
259 |
+ |
// Return corrected d0 with respect to primary vertex or beamspot. |
260 |
+ |
|
261 |
+ |
Double_t lXM = -TMath::Sin(Phi()) * D0(); |
262 |
+ |
Double_t lYM = TMath::Cos(Phi()) * D0(); |
263 |
+ |
Double_t lDX = (lXM + iVertex.X()); |
264 |
+ |
Double_t lDY = (lYM + iVertex.Y()); |
265 |
+ |
Double_t d0Corr = (Px()*lDY - Py()*lDX)/Pt(); |
266 |
+ |
|
267 |
+ |
return d0Corr; |
268 |
+ |
} |
269 |
+ |
|
270 |
+ |
//-------------------------------------------------------------------------------------------------- |
271 |
|
inline |
272 |
< |
void mithep::Track::SetHelix(Double_t phi, Double_t d0, Double_t pt, Double_t dz, Double_t theta) |
272 |
> |
void mithep::Track::SetHelix(Double_t qOverP, Double_t lambda, Double_t phi0, |
273 |
> |
Double_t dxy, Double_t dsz) |
274 |
|
{ |
275 |
< |
fPhi = phi; |
276 |
< |
fD0 = d0; |
277 |
< |
fPt = pt; |
278 |
< |
fDz = dz; |
279 |
< |
fTheta = theta; |
275 |
> |
// Set helix parameters. |
276 |
> |
|
277 |
> |
fQOverP = qOverP; |
278 |
> |
fLambda = lambda; |
279 |
> |
fPhi0 = phi0; |
280 |
> |
fDxy = dxy; |
281 |
> |
fDsz = dsz; |
282 |
> |
ClearMom(); |
283 |
|
} |
284 |
|
|
285 |
|
//-------------------------------------------------------------------------------------------------- |
286 |
|
inline |
287 |
< |
void mithep::Track::SetErrors(Double_t phiErr, Double_t d0Err, Double_t ptErr, Double_t dzErr, |
288 |
< |
Double_t thetaErr) |
287 |
> |
void mithep::Track::SetErrors(Double_t qOverPErr, Double_t lambdaErr, Double_t phi0Err, |
288 |
> |
Double_t dxyErr, Double_t dszErr) |
289 |
|
{ |
290 |
< |
fPhiErr = phiErr; |
291 |
< |
fD0Err = d0Err; |
292 |
< |
fPtErr = ptErr; |
293 |
< |
fDzErr = dzErr; |
294 |
< |
fThetaErr = thetaErr; |
290 |
> |
// Set helix errors. |
291 |
> |
|
292 |
> |
fQOverPErr = qOverPErr; |
293 |
> |
fLambdaErr = lambdaErr; |
294 |
> |
fPhi0Err = phi0Err; |
295 |
> |
fDxyErr = dxyErr; |
296 |
> |
fDszErr = dszErr; |
297 |
> |
} |
298 |
> |
|
299 |
> |
//-------------------------------------------------------------------------------------------------- |
300 |
> |
inline |
301 |
> |
const mithep::BitMask48 mithep::Track::StereoLayers() |
302 |
> |
{ |
303 |
> |
// Build and return BitMask of stereo layers |
304 |
> |
|
305 |
> |
mithep::BitMask48 stereoLayers; |
306 |
> |
stereoLayers.SetBit(mithep::Track::TIB1S); |
307 |
> |
stereoLayers.SetBit(mithep::Track::TIB2S); |
308 |
> |
stereoLayers.SetBit(mithep::Track::TID1S); |
309 |
> |
stereoLayers.SetBit(mithep::Track::TID2S); |
310 |
> |
stereoLayers.SetBit(mithep::Track::TID3S); |
311 |
> |
stereoLayers.SetBit(mithep::Track::TOB1S); |
312 |
> |
stereoLayers.SetBit(mithep::Track::TOB2S); |
313 |
> |
stereoLayers.SetBit(mithep::Track::TEC1S); |
314 |
> |
stereoLayers.SetBit(mithep::Track::TEC2S); |
315 |
> |
stereoLayers.SetBit(mithep::Track::TEC3S); |
316 |
> |
stereoLayers.SetBit(mithep::Track::TEC4S); |
317 |
> |
stereoLayers.SetBit(mithep::Track::TEC5S); |
318 |
> |
stereoLayers.SetBit(mithep::Track::TEC6S); |
319 |
> |
stereoLayers.SetBit(mithep::Track::TEC7S); |
320 |
> |
stereoLayers.SetBit(mithep::Track::TEC8S); |
321 |
> |
stereoLayers.SetBit(mithep::Track::TEC9S); |
322 |
> |
return stereoLayers; |
323 |
|
} |
324 |
|
#endif |