ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitAna/DataTree/interface/Track.h
Revision: 1.33
Committed: Tue Feb 17 15:09:45 2009 UTC (16 years, 2 months ago) by bendavid
Content type: text/plain
Branch: MAIN
Changes since 1.32: +7 -26 lines
Log Message:
Switched to templated Ref class

File Contents

# Content
1 //--------------------------------------------------------------------------------------------------
2 // $Id: Track.h,v 1.32 2009/01/22 14:21:32 loizides Exp $
3 //
4 // Track
5 //
6 // We store the CMSSW track parameterization
7 // Parameters associated to the 5D curvilinear covariance matrix:
8 // (qoverp, lambda, phi, dxy, dsz)
9 // defined as:
10 // qoverp = q / abs(p) = signed inverse of momentum [1/GeV]
11 // lambda = pi/2 - polar angle at the given point
12 // phi = azimuth angle at the given point
13 // dxy = -vx*sin(phi) + vy*cos(phi) [cm]
14 // dsz = vz*cos(lambda) - (vx*cos(phi)+vy*sin(phi))*sin(lambda) [cm]
15 // (See http://cmslxr.fnal.gov/lxr/source/DataFormats/TrackReco/interface/TrackBase.h)
16 //
17 // Format for fHits: (We do not use anything resembling reco::HitPattern from CMSSW because that
18 // data format requires 800 bits per track!)
19 // There is a one to one mapping between bits and tracker layers, where layers are enumerated
20 // seperately in the PXB, PXF, TIB, TID, TOB, TEC and r-phi and stereo modules are treated as
21 // seperate layers in those detectors which have them
22 // (TIB L1,L2, TID L1,L2,L3, TOB L1,L2, TEC L1,L2,L3,L4,L5,L6,L7,L8,L9).
23 //
24 // A bit value of 1 indicates a hit in the corresponding layer, and 0 indicates no hit.
25 //
26 // Note that currently this only stores information about hits in the Tracker,
27 // but muon chamber information will likely be added as well.
28 //
29 // Bit-Layer assignments (starting from bit 0):
30 // Bit 0: PXB L1
31 // Bit 1: PXB L2
32 // Bit 2: PXB L3
33 // Bit 3: PXF L1
34 // Bit 4: PXF L2
35 // Bit 5: TIB L1 r-phi
36 // Bit 6: TIB L1 stereo
37 // Bit 7: TIB L2 r-phi
38 // Bit 8: TIB L2 stereo
39 // Bit 9: TIB L3 r-phi
40 // Bit 10: TIB L4 r-phi
41 // Bit 11: TID L1 r-phi
42 // Bit 12: TID L1 stereo
43 // Bit 13: TID L2 r-phi
44 // Bit 14: TID L2 stereo
45 // Bit 15: TID L3 r-phi
46 // Bit 16: TID L3 stereo
47 // Bit 17: TOB L1 r-phi
48 // Bit 18: TOB L1 stereo
49 // Bit 19: TOB L2 r-phi
50 // Bit 20: TOB L2 stereo
51 // Bit 21: TOB L3 r-phi
52 // Bit 22: TOB L4 r-phi
53 // Bit 23: TOB L5 r-phi
54 // Bit 24: TOB L6 r-phi
55 // Bit 25: TEC L1 r-phi
56 // Bit 26: TEC L1 stereo
57 // Bit 27: TEC L2 r-phi
58 // Bit 28: TEC L2 stereo
59 // Bit 29: TEC L3 r-phi
60 // Bit 30: TEC L3 stereo
61 // Bit 31: TEC L4 r-phi
62 // Bit 32: TEC L4 stereo
63 // Bit 33: TEC L5 r-phi
64 // Bit 34: TEC L5 stereo
65 // Bit 35: TEC L6 r-phi
66 // Bit 36: TEC L6 stereo
67 // Bit 37: TEC L7 r-phi
68 // Bit 38: TEC L7 stereo
69 // Bit 39: TEC L8 r-phi
70 // Bit 40: TEC L8 stereo
71 // Bit 41: TEC L9 r-phi
72 // Bit 42: TEC L9 stereo
73 //
74 // Authors: C.Loizides, J.Bendavid, C.Paus
75 //--------------------------------------------------------------------------------------------------
76
77 #ifndef MITANA_DATATREE_TRACK_H
78 #define MITANA_DATATREE_TRACK_H
79
80 #include "MitAna/DataTree/interface/DataObject.h"
81 #include "MitAna/DataTree/interface/SuperCluster.h"
82 #include "MitAna/DataTree/interface/MCParticle.h"
83 #include "MitAna/DataTree/interface/BitMask.h"
84 #include "MitAna/DataTree/interface/BaseVertex.h"
85 #include "MitAna/DataTree/interface/Types.h"
86
87 namespace mithep
88 {
89 class Track : public DataObject
90 {
91 public:
92 enum EHitLayer {
93 PXB1,
94 PXB2,
95 PXB3,
96 PXF1,
97 PXF2,
98 TIB1,
99 TIB1S,
100 TIB2,
101 TIB2S,
102 TIB3,
103 TIB4,
104 TID1,
105 TID1S,
106 TID2,
107 TID2S,
108 TID3,
109 TID3S,
110 TOB1,
111 TOB1S,
112 TOB2,
113 TOB2S,
114 TOB3,
115 TOB4,
116 TOB5,
117 TOB6,
118 TEC1,
119 TEC1S,
120 TEC2,
121 TEC2S,
122 TEC3,
123 TEC3S,
124 TEC4,
125 TEC4S,
126 TEC5,
127 TEC5S,
128 TEC6,
129 TEC6S,
130 TEC7,
131 TEC7S,
132 TEC8,
133 TEC8S,
134 TEC9,
135 TEC9S
136 };
137
138 Track() : fQOverP(0), fQOverPErr(0), fLambda(0), fLambdaErr(0),
139 fPhi0(0), fPhi0Err(0), fDxy(0), fDxyErr(0), fDsz(0), fDszErr(0),
140 fChi2(0), fNdof(0), fEtaEcal(0), fPhiEcal(0) {}
141 Track(Double_t qOverP, Double_t lambda, Double_t phi0, Double_t dxy, Double_t dsz) :
142 fQOverP(qOverP), fQOverPErr(0), fLambda(lambda), fLambdaErr(0),
143 fPhi0(phi0), fPhi0Err(0), fDxy(dxy), fDxyErr(0), fDsz(dsz), fDszErr(0),
144 fChi2(0), fNdof(0), fEtaEcal(0), fPhiEcal(0) {}
145 ~Track() {}
146
147 Int_t Charge() const { return (fQOverP>0) ? 1 : -1; }
148 Double_t Chi2() const { return fChi2; }
149 Double_t RChi2() const { return fChi2/(Double_t)fNdof; }
150 void ClearHit(EHitLayer l) { fHits.ClearBit(l); }
151 Double_t D0() const { return -fDxy; }
152 Double_t D0Corrected(const BaseVertex *iVertex) const;
153 Double_t D0Err() const { return fDxyErr; }
154 Double_t Dsz() const { return fDsz; }
155 Double_t DszErr() const { return fDszErr; }
156 Double_t Dxy() const { return fDxy; }
157 Double_t DxyErr() const { return fDxyErr; }
158 Double_t E(Double_t m) const { return TMath::Sqrt(E2(m)); }
159 Double_t E2(Double_t m) const { return P2()+m*m; }
160 Double_t Eta() const { return Mom().Eta(); }
161 Double_t EtaEcal() const { return fEtaEcal; }
162 Bool_t Hit(EHitLayer l) const { return fHits.TestBit(l); }
163 const BitMask48 &Hits() const { return fHits; }
164 Double_t Lambda() const { return fLambda; }
165 Double_t LambdaErr() const { return fLambdaErr; }
166 const MCParticle *MCPart() const { return fMCParticleRef.Obj(); }
167 ThreeVector Mom() const { return ThreeVector(Px(),Py(),Pz()); }
168 FourVector Mom4(Double_t m) const { return FourVector(Px(),Py(),Pz(),E(m)); }
169 UInt_t Ndof() const { return fNdof; }
170 UInt_t NHits() const { return fHits.NBitsSet(); }
171 UInt_t NStereoHits() const { return StereoHits().NBitsSet(); }
172 EObjType ObjType() const { return kTrack; }
173 Double_t P2() const { return P()*P(); }
174 Double_t P() const { return TMath::Abs(1./fQOverP); }
175 Double_t Phi() const { return fPhi0; }
176 Double_t Phi0() const { return fPhi0; }
177 Double_t Phi0Err() const { return fPhi0Err; }
178 Double_t PhiEcal() const { return fPhiEcal; }
179 Double_t Prob() const { return TMath::Prob(fChi2,fNdof); }
180 Double_t Pt() const { return TMath::Abs(TMath::Cos(fLambda)/fQOverP); }
181 Double_t Px() const { return Pt()*TMath::Cos(fPhi0); }
182 Double_t Py() const { return Pt()*TMath::Sin(fPhi0); }
183 Double_t Pz() const { return P()*TMath::Sin(fLambda); }
184 Double_t QOverP() const { return fQOverP; }
185 Double_t QOverPErr() const { return fQOverPErr; }
186 Double_t Theta() const { return (TMath::PiOver2() - fLambda); }
187 Double_t Z0() const { return fDsz/TMath::Cos(fLambda); }
188 const SuperCluster *SCluster() const { return fSuperClusterRef.Obj(); }
189 const BitMask48 StereoHits() const { return (fHits & StereoLayers()); }
190 void SetChi2(Double_t chi2) { fChi2 = chi2; }
191 void SetErrors(Double_t qOverPErr, Double_t lambdaErr, Double_t phi0Err,
192 Double_t dXyErr, Double_t dSzErr);
193 void SetEtaEcal(Double_t eta) { fEtaEcal = eta; }
194 void SetHelix (Double_t qOverP, Double_t lambda, Double_t phi0,
195 Double_t dXy, Double_t dSz);
196 void SetHit(EHitLayer l) { fHits.SetBit(l); }
197 void SetHits(const BitMask48 &hits) { fHits = hits; }
198 void SetNdof(UInt_t dof) { fNdof = dof; }
199 void SetMCPart(const MCParticle *p) { fMCParticleRef = p; }
200 void SetPhiEcal(Double_t phi) { fPhiEcal = phi; }
201 void SetSCluster(const SuperCluster* sc) { fSuperClusterRef = sc; }
202
203 static
204 const BitMask48 StereoLayers();
205
206 protected:
207 BitMask48 fHits; //storage for mostly hit information
208 Double_t fQOverP; //signed inverse of momentum [1/GeV]
209 Double_t fQOverPErr; //error of q/p
210 Double_t fLambda; //pi/2 - polar angle at the reference point
211 Double_t fLambdaErr; //error of lambda
212 Double_t fPhi0; //azimuth angle at the given point
213 Double_t fPhi0Err; //error of azimuthal angle
214 Double_t fDxy; //transverse distance to reference point [cm]
215 Double_t fDxyErr; //error of transverse distance
216 Double_t fDsz; //longitudinal distance to reference point [cm]
217 Double_t fDszErr; //error of longitudinal distance
218 Double_t fChi2; //chi squared of track fit
219 UInt_t fNdof; //degree-of-freedom of track fit
220 Double32_t fEtaEcal; //eta of track at Ecal front face
221 Double32_t fPhiEcal; //phi of track at Ecal front face
222 Ref<SuperCluster> fSuperClusterRef; //superCluster crossed by track
223 Ref<MCParticle> fMCParticleRef; //reference to sim particle (for monte carlo)
224
225 ClassDef(Track, 2) // Track class
226 };
227 }
228
229 //--------------------------------------------------------------------------------------------------
230 inline Double_t mithep::Track::D0Corrected(const BaseVertex *iVertex) const
231 {
232 // Return corrected d0 with respect to primary vertex or beamspot.
233
234 Double_t lXM = -TMath::Sin(Phi()) * D0();
235 Double_t lYM = TMath::Cos(Phi()) * D0();
236 Double_t lDX = (lXM + iVertex->X());
237 Double_t lDY = (lYM + iVertex->Y());
238 Double_t d0Corr = (Px()*lDY - Py()*lDX)/Pt();
239
240 return d0Corr;
241 }
242
243 //--------------------------------------------------------------------------------------------------
244 inline
245 void mithep::Track::SetHelix(Double_t qOverP, Double_t lambda, Double_t phi0,
246 Double_t dxy, Double_t dsz)
247 {
248 // Set helix parameters.
249
250 fQOverP = qOverP;
251 fLambda = lambda;
252 fPhi0 = phi0;
253 fDxy = dxy;
254 fDsz = dsz;
255 }
256
257 //--------------------------------------------------------------------------------------------------
258 inline
259 void mithep::Track::SetErrors(Double_t qOverPErr, Double_t lambdaErr, Double_t phi0Err,
260 Double_t dxyErr, Double_t dszErr)
261 {
262 // Set helix errors.
263
264 fQOverPErr = qOverPErr;
265 fLambdaErr = lambdaErr;
266 fPhi0Err = phi0Err;
267 fDxyErr = dxyErr;
268 fDszErr = dszErr;
269 }
270
271 //--------------------------------------------------------------------------------------------------
272 inline
273 const mithep::BitMask48 mithep::Track::StereoLayers()
274 {
275 // Build and return BitMask of stereo layers
276
277 mithep::BitMask48 stereoLayers;
278 stereoLayers.SetBit(mithep::Track::TIB1S);
279 stereoLayers.SetBit(mithep::Track::TIB2S);
280 stereoLayers.SetBit(mithep::Track::TID1S);
281 stereoLayers.SetBit(mithep::Track::TID2S);
282 stereoLayers.SetBit(mithep::Track::TID3S);
283 stereoLayers.SetBit(mithep::Track::TOB1S);
284 stereoLayers.SetBit(mithep::Track::TOB2S);
285 stereoLayers.SetBit(mithep::Track::TEC1S);
286 stereoLayers.SetBit(mithep::Track::TEC2S);
287 stereoLayers.SetBit(mithep::Track::TEC3S);
288 stereoLayers.SetBit(mithep::Track::TEC4S);
289 stereoLayers.SetBit(mithep::Track::TEC5S);
290 stereoLayers.SetBit(mithep::Track::TEC6S);
291 stereoLayers.SetBit(mithep::Track::TEC7S);
292 stereoLayers.SetBit(mithep::Track::TEC8S);
293 stereoLayers.SetBit(mithep::Track::TEC9S);
294 return stereoLayers;
295 }
296 #endif