ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitAna/DataTree/interface/Track.h
Revision: 1.42
Committed: Mon Jul 13 11:00:32 2009 UTC (15 years, 9 months ago) by loizides
Content type: text/plain
Branch: MAIN
Changes since 1.41: +1 -2 lines
Log Message:
Include files checked.

File Contents

# Content
1 //--------------------------------------------------------------------------------------------------
2 // $Id: Track.h,v 1.41 2009/04/28 10:05:57 pharris Exp $
3 //
4 // Track
5 //
6 // We store the CMSSW track parameterization
7 // Parameters associated to the 5D curvilinear covariance matrix:
8 // (qoverp, lambda, phi, dxy, dsz)
9 // defined as:
10 // qoverp = q / abs(p) = signed inverse of momentum [1/GeV]
11 // lambda = pi/2 - polar angle at the given point
12 // phi = azimuth angle at the given point
13 // dxy = -vx*sin(phi) + vy*cos(phi) [cm]
14 // dsz = vz*cos(lambda) - (vx*cos(phi)+vy*sin(phi))*sin(lambda) [cm]
15 // (See http://cmslxr.fnal.gov/lxr/source/DataFormats/TrackReco/interface/TrackBase.h)
16 //
17 // Format for fHits: (We do not use anything resembling reco::HitPattern from CMSSW because that
18 // data format requires 800 bits per track!)
19 // There is a one to one mapping between bits and tracker layers, where layers are enumerated
20 // seperately in the PXB, PXF, TIB, TID, TOB, TEC and r-phi and stereo modules are treated as
21 // seperate layers in those detectors which have them
22 // (TIB L1,L2, TID L1,L2,L3, TOB L1,L2, TEC L1,L2,L3,L4,L5,L6,L7,L8,L9).
23 //
24 // A bit value of 1 indicates a hit in the corresponding layer, and 0 indicates no hit.
25 //
26 // Note that currently this only stores information about hits in the Tracker,
27 // but muon chamber information will likely be added as well.
28 //
29 // Bit-Layer assignments (starting from bit 0):
30 // Bit 0: PXB L1
31 // Bit 1: PXB L2
32 // Bit 2: PXB L3
33 // Bit 3: PXF L1
34 // Bit 4: PXF L2
35 // Bit 5: TIB L1 r-phi
36 // Bit 6: TIB L1 stereo
37 // Bit 7: TIB L2 r-phi
38 // Bit 8: TIB L2 stereo
39 // Bit 9: TIB L3 r-phi
40 // Bit 10: TIB L4 r-phi
41 // Bit 11: TID L1 r-phi
42 // Bit 12: TID L1 stereo
43 // Bit 13: TID L2 r-phi
44 // Bit 14: TID L2 stereo
45 // Bit 15: TID L3 r-phi
46 // Bit 16: TID L3 stereo
47 // Bit 17: TOB L1 r-phi
48 // Bit 18: TOB L1 stereo
49 // Bit 19: TOB L2 r-phi
50 // Bit 20: TOB L2 stereo
51 // Bit 21: TOB L3 r-phi
52 // Bit 22: TOB L4 r-phi
53 // Bit 23: TOB L5 r-phi
54 // Bit 24: TOB L6 r-phi
55 // Bit 25: TEC L1 r-phi
56 // Bit 26: TEC L1 stereo
57 // Bit 27: TEC L2 r-phi
58 // Bit 28: TEC L2 stereo
59 // Bit 29: TEC L3 r-phi
60 // Bit 30: TEC L3 stereo
61 // Bit 31: TEC L4 r-phi
62 // Bit 32: TEC L4 stereo
63 // Bit 33: TEC L5 r-phi
64 // Bit 34: TEC L5 stereo
65 // Bit 35: TEC L6 r-phi
66 // Bit 36: TEC L6 stereo
67 // Bit 37: TEC L7 r-phi
68 // Bit 38: TEC L7 stereo
69 // Bit 39: TEC L8 r-phi
70 // Bit 40: TEC L8 stereo
71 // Bit 41: TEC L9 r-phi
72 // Bit 42: TEC L9 stereo
73 //
74 // Authors: C.Loizides, J.Bendavid, C.Paus
75 //--------------------------------------------------------------------------------------------------
76
77 #ifndef MITANA_DATATREE_TRACK_H
78 #define MITANA_DATATREE_TRACK_H
79
80 #include "MitAna/DataCont/interface/BitMask.h"
81 #include "MitAna/DataTree/interface/BaseVertex.h"
82 #include "MitAna/DataTree/interface/DataObject.h"
83 #include "MitAna/DataTree/interface/MCParticle.h"
84 #include "MitAna/DataTree/interface/SuperCluster.h"
85
86 namespace mithep
87 {
88 class Track : public DataObject
89 {
90 public:
91 enum EHitLayer {
92 PXB1,
93 PXB2,
94 PXB3,
95 PXF1,
96 PXF2,
97 TIB1,
98 TIB1S,
99 TIB2,
100 TIB2S,
101 TIB3,
102 TIB4,
103 TID1,
104 TID1S,
105 TID2,
106 TID2S,
107 TID3,
108 TID3S,
109 TOB1,
110 TOB1S,
111 TOB2,
112 TOB2S,
113 TOB3,
114 TOB4,
115 TOB5,
116 TOB6,
117 TEC1,
118 TEC1S,
119 TEC2,
120 TEC2S,
121 TEC3,
122 TEC3S,
123 TEC4,
124 TEC4S,
125 TEC5,
126 TEC5S,
127 TEC6,
128 TEC6S,
129 TEC7,
130 TEC7S,
131 TEC8,
132 TEC8S,
133 TEC9,
134 TEC9S
135 };
136
137 Track() : fQOverP(0), fQOverPErr(0), fLambda(0), fLambdaErr(0),
138 fPhi0(0), fPhi0Err(0), fDxy(0), fDxyErr(0), fDsz(0), fDszErr(0),
139 fChi2(0), fNdof(0), fEtaEcal(0), fPhiEcal(0) {}
140 Track(Double_t qOverP, Double_t lambda, Double_t phi0, Double_t dxy, Double_t dsz) :
141 fQOverP(qOverP), fQOverPErr(0), fLambda(lambda), fLambdaErr(0),
142 fPhi0(phi0), fPhi0Err(0), fDxy(dxy), fDxyErr(0), fDsz(dsz), fDszErr(0),
143 fChi2(0), fNdof(0), fEtaEcal(0), fPhiEcal(0) {}
144 ~Track() {}
145
146 Int_t Charge() const { return (fQOverP>0) ? 1 : -1; }
147 Double_t Chi2() const { return fChi2; }
148 void ClearHit(EHitLayer l) { fHits.ClearBit(l); }
149 Double_t D0() const { return -fDxy; }
150 Double_t D0Corrected(const BaseVertex &iVertex) const;
151 Double_t D0Err() const { return fDxyErr; }
152 Double_t Dsz() const { return fDsz; }
153 Double_t DszErr() const { return fDszErr; }
154 Double_t Dxy() const { return fDxy; }
155 Double_t DxyErr() const { return fDxyErr; }
156 Double_t E(Double_t m) const { return TMath::Sqrt(E2(m)); }
157 Double_t E2(Double_t m) const { return P2()+m*m; }
158 Double_t Eta() const { return Mom().Eta(); }
159 Double_t EtaEcal() const { return fEtaEcal; }
160 Bool_t Hit(EHitLayer l) const { return fHits.TestBit(l); }
161 const BitMask48 &Hits() const { return fHits; }
162 Double_t Lambda() const { return fLambda; }
163 Double_t LambdaErr() const { return fLambdaErr; }
164 const MCParticle *MCPart() const { return fMCParticleRef.Obj(); }
165 const ThreeVectorC &Mom() const;
166 FourVectorM Mom4(Double_t m) const { return FourVectorM(Pt(),Eta(),Phi(),m); }
167 UShort_t Ndof() const { return fNdof; }
168 UInt_t NHits() const { return fHits.NBitsSet(); }
169 UInt_t NStereoHits() const { return StereoHits().NBitsSet(); }
170 EObjType ObjType() const { return kTrack; }
171 Double_t P2() const { return 1./fQOverP/fQOverP; }
172 Double_t P() const { return TMath::Abs(1./fQOverP); }
173 Double_t Phi() const { return fPhi0; }
174 Double_t Phi0() const { return fPhi0; }
175 Double_t Phi0Err() const { return fPhi0Err; }
176 Double_t PhiEcal() const { return fPhiEcal; }
177 Double_t Prob() const { return TMath::Prob(fChi2,fNdof); }
178 Double_t Pt() const { return Mom().Rho(); }
179 Double_t Px() const { return Mom().X(); }
180 Double_t Py() const { return Mom().Y(); }
181 Double_t Pz() const { return Mom().Z(); }
182 Double_t QOverP() const { return fQOverP; }
183 Double_t QOverPErr() const { return fQOverPErr; }
184 Double_t RChi2() const { return fChi2/(Double_t)fNdof; }
185 Double_t Theta() const { return (TMath::PiOver2() - fLambda); }
186 const SuperCluster *SCluster() const { return fSuperClusterRef.Obj(); }
187 const BitMask48 StereoHits() const { return (fHits & StereoLayers()); }
188 void SetChi2(Double_t chi2) { fChi2 = chi2; }
189 void SetErrors(Double_t qOverPErr, Double_t lambdaErr, Double_t phi0Err,
190 Double_t dXyErr, Double_t dSzErr);
191 void SetEtaEcal(Double_t eta) { fEtaEcal = eta; }
192 void SetHelix (Double_t qOverP, Double_t lambda, Double_t phi0,
193 Double_t dXy, Double_t dSz);
194 void SetHit(EHitLayer l) { fHits.SetBit(l); }
195 void SetHits(const BitMask48 &hits) { fHits = hits; }
196 void SetNdof(UShort_t dof) { fNdof = dof; }
197 void SetMCPart(const MCParticle *p) { fMCParticleRef = p; }
198 void SetPhiEcal(Double_t phi) { fPhiEcal = phi; }
199 void SetSCluster(const SuperCluster* sc) { fSuperClusterRef = sc; }
200 Double_t Z0() const { return fDsz/TMath::Cos(fLambda); }
201
202 static
203 const BitMask48 StereoLayers();
204
205 protected:
206 void ClearMom() const { fCacheMomFlag.ClearCache(); }
207 void GetMom() const;
208
209 BitMask48 fHits; //storage for mostly hit information
210 Double32_t fQOverP; //[0,0,14]signed inverse of momentum [1/GeV]
211 Double32_t fQOverPErr; //[0,0,14]error of q/p
212 Double32_t fLambda; //[0,0,14]pi/2 - polar angle at the reference point
213 Double32_t fLambdaErr; //[0,0,14]error of lambda
214 Double32_t fPhi0; //[0,0,14]azimuth angle at the given point
215 Double32_t fPhi0Err; //[0,0,14]error of azimuthal angle
216 Double32_t fDxy; //[0,0,14]trans. distance to reference point [cm]
217 Double32_t fDxyErr; //[0,0,14]error of transverse distance
218 Double32_t fDsz; //[0,0,14]long. distance to reference point [cm]
219 Double32_t fDszErr; //[0,0,14]error of longitudinal distance
220 Double32_t fChi2; //[0,0,12]chi squared of track fit
221 UShort_t fNdof; //degree-of-freedom of track fit
222 Double32_t fEtaEcal; //[0,0,12]eta of track at Ecal front face
223 Double32_t fPhiEcal; //[0,0,12]phi of track at Ecal front face
224 Ref<SuperCluster> fSuperClusterRef; //superCluster crossed by track
225 Ref<MCParticle> fMCParticleRef; //reference to sim particle (for monte carlo)
226 mutable CacheFlag fCacheMomFlag; //||cache validity flag for momentum
227 mutable ThreeVectorC fCachedMom; //!cached momentum vector
228
229 ClassDef(Track, 1) // Track class
230 };
231 }
232
233 //--------------------------------------------------------------------------------------------------
234 inline void mithep::Track::GetMom() const
235 {
236 // Compute three momentum.
237
238 Double_t pt = TMath::Abs(TMath::Cos(fLambda)/fQOverP);
239 Double_t eta = - TMath::Log(TMath::Tan(Theta()/2.));
240 fCachedMom.SetCoordinates(pt,eta,Phi());
241 }
242
243 //--------------------------------------------------------------------------------------------------
244 inline const mithep::ThreeVectorC &mithep::Track::Mom() const
245 {
246 // Return cached momentum value.
247
248 if (!fCacheMomFlag.IsValid()) {
249 GetMom();
250 fCacheMomFlag.SetValid();
251 }
252 return fCachedMom;
253 }
254
255 //--------------------------------------------------------------------------------------------------
256 inline Double_t mithep::Track::D0Corrected(const BaseVertex &iVertex) const
257 {
258 // Return corrected d0 with respect to primary vertex or beamspot.
259
260 Double_t lXM = -TMath::Sin(Phi()) * D0();
261 Double_t lYM = TMath::Cos(Phi()) * D0();
262 Double_t lDX = (lXM + iVertex.X());
263 Double_t lDY = (lYM + iVertex.Y());
264 Double_t d0Corr = (Px()*lDY - Py()*lDX)/Pt();
265
266 return d0Corr;
267 }
268
269 //--------------------------------------------------------------------------------------------------
270 inline
271 void mithep::Track::SetHelix(Double_t qOverP, Double_t lambda, Double_t phi0,
272 Double_t dxy, Double_t dsz)
273 {
274 // Set helix parameters.
275
276 fQOverP = qOverP;
277 fLambda = lambda;
278 fPhi0 = phi0;
279 fDxy = dxy;
280 fDsz = dsz;
281 ClearMom();
282 }
283
284 //--------------------------------------------------------------------------------------------------
285 inline
286 void mithep::Track::SetErrors(Double_t qOverPErr, Double_t lambdaErr, Double_t phi0Err,
287 Double_t dxyErr, Double_t dszErr)
288 {
289 // Set helix errors.
290
291 fQOverPErr = qOverPErr;
292 fLambdaErr = lambdaErr;
293 fPhi0Err = phi0Err;
294 fDxyErr = dxyErr;
295 fDszErr = dszErr;
296 }
297
298 //--------------------------------------------------------------------------------------------------
299 inline
300 const mithep::BitMask48 mithep::Track::StereoLayers()
301 {
302 // Build and return BitMask of stereo layers.
303
304 mithep::BitMask48 stereoLayers;
305 stereoLayers.SetBit(mithep::Track::TIB1S);
306 stereoLayers.SetBit(mithep::Track::TIB2S);
307 stereoLayers.SetBit(mithep::Track::TID1S);
308 stereoLayers.SetBit(mithep::Track::TID2S);
309 stereoLayers.SetBit(mithep::Track::TID3S);
310 stereoLayers.SetBit(mithep::Track::TOB1S);
311 stereoLayers.SetBit(mithep::Track::TOB2S);
312 stereoLayers.SetBit(mithep::Track::TEC1S);
313 stereoLayers.SetBit(mithep::Track::TEC2S);
314 stereoLayers.SetBit(mithep::Track::TEC3S);
315 stereoLayers.SetBit(mithep::Track::TEC4S);
316 stereoLayers.SetBit(mithep::Track::TEC5S);
317 stereoLayers.SetBit(mithep::Track::TEC6S);
318 stereoLayers.SetBit(mithep::Track::TEC7S);
319 stereoLayers.SetBit(mithep::Track::TEC8S);
320 stereoLayers.SetBit(mithep::Track::TEC9S);
321 return stereoLayers;
322 }
323 #endif