ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitAna/DataTree/interface/Track.h
Revision: 1.50
Committed: Mon May 10 15:13:09 2010 UTC (14 years, 11 months ago) by bendavid
Content type: text/plain
Branch: MAIN
CVS Tags: Mit_014, Mit_014pre3, Mit_014pre2, Mit_014pre1
Changes since 1.49: +7 -4 lines
Log Message:
Add PtError

File Contents

# Content
1 //--------------------------------------------------------------------------------------------------
2 // $Id: Track.h,v 1.49 2010/04/04 21:34:27 bendavid Exp $
3 //
4 // Track
5 //
6 // We store the CMSSW track parameterization
7 // Parameters associated to the 5D curvilinear covariance matrix:
8 // (qoverp, lambda, phi, dxy, dsz)
9 // defined as:
10 // qoverp = q / abs(p) = signed inverse of momentum [1/GeV]
11 // lambda = pi/2 - polar angle at the given point
12 // phi = azimuth angle at the given point
13 // dxy = -vx*sin(phi) + vy*cos(phi) [cm]
14 // dsz = vz*cos(lambda) - (vx*cos(phi)+vy*sin(phi))*sin(lambda) [cm]
15 // (See http://cmslxr.fnal.gov/lxr/source/DataFormats/TrackReco/interface/TrackBase.h)
16 //
17 // Format for fHits: (We do not use anything resembling reco::HitPattern from CMSSW because that
18 // data format requires 800 bits per track!)
19 // There is a one to one mapping between bits and tracker layers, where layers are enumerated
20 // seperately in the PXB, PXF, TIB, TID, TOB, TEC and r-phi and stereo modules are treated as
21 // seperate layers in those detectors which have them
22 // (TIB L1,L2, TID L1,L2,L3, TOB L1,L2, TEC L1,L2,L3,L4,L5,L6,L7,L8,L9).
23 //
24 // A bit value of 1 indicates a hit in the corresponding layer, and 0 indicates no hit.
25 //
26 // Note that currently this only stores information about hits in the Tracker,
27 // but muon chamber information will likely be added as well.
28 //
29 // Bit-Layer assignments (starting from bit 0):
30 // Bit 0: PXB L1
31 // Bit 1: PXB L2
32 // Bit 2: PXB L3
33 // Bit 3: PXF L1
34 // Bit 4: PXF L2
35 // Bit 5: TIB L1 r-phi
36 // Bit 6: TIB L1 stereo
37 // Bit 7: TIB L2 r-phi
38 // Bit 8: TIB L2 stereo
39 // Bit 9: TIB L3 r-phi
40 // Bit 10: TIB L4 r-phi
41 // Bit 11: TID L1 r-phi
42 // Bit 12: TID L1 stereo
43 // Bit 13: TID L2 r-phi
44 // Bit 14: TID L2 stereo
45 // Bit 15: TID L3 r-phi
46 // Bit 16: TID L3 stereo
47 // Bit 17: TOB L1 r-phi
48 // Bit 18: TOB L1 stereo
49 // Bit 19: TOB L2 r-phi
50 // Bit 20: TOB L2 stereo
51 // Bit 21: TOB L3 r-phi
52 // Bit 22: TOB L4 r-phi
53 // Bit 23: TOB L5 r-phi
54 // Bit 24: TOB L6 r-phi
55 // Bit 25: TEC L1 r-phi
56 // Bit 26: TEC L1 stereo
57 // Bit 27: TEC L2 r-phi
58 // Bit 28: TEC L2 stereo
59 // Bit 29: TEC L3 r-phi
60 // Bit 30: TEC L3 stereo
61 // Bit 31: TEC L4 r-phi
62 // Bit 32: TEC L4 stereo
63 // Bit 33: TEC L5 r-phi
64 // Bit 34: TEC L5 stereo
65 // Bit 35: TEC L6 r-phi
66 // Bit 36: TEC L6 stereo
67 // Bit 37: TEC L7 r-phi
68 // Bit 38: TEC L7 stereo
69 // Bit 39: TEC L8 r-phi
70 // Bit 40: TEC L8 stereo
71 // Bit 41: TEC L9 r-phi
72 // Bit 42: TEC L9 stereo
73 //
74 // Authors: C.Loizides, J.Bendavid, C.Paus
75 //--------------------------------------------------------------------------------------------------
76
77 #ifndef MITANA_DATATREE_TRACK_H
78 #define MITANA_DATATREE_TRACK_H
79
80 #include "MitAna/DataCont/interface/BitMask.h"
81 #include "MitAna/DataTree/interface/TrackQuality.h"
82 #include "MitAna/DataTree/interface/BaseVertex.h"
83 #include "MitAna/DataTree/interface/DataObject.h"
84 #include "MitAna/DataTree/interface/MCParticle.h"
85 #include "MitAna/DataTree/interface/SuperCluster.h"
86
87 namespace mithep
88 {
89 class Track : public DataObject
90 {
91 public:
92 enum EHitLayer {
93 PXB1,
94 PXB2,
95 PXB3,
96 PXF1,
97 PXF2,
98 TIB1,
99 TIB1S,
100 TIB2,
101 TIB2S,
102 TIB3,
103 TIB4,
104 TID1,
105 TID1S,
106 TID2,
107 TID2S,
108 TID3,
109 TID3S,
110 TOB1,
111 TOB1S,
112 TOB2,
113 TOB2S,
114 TOB3,
115 TOB4,
116 TOB5,
117 TOB6,
118 TEC1,
119 TEC1S,
120 TEC2,
121 TEC2S,
122 TEC3,
123 TEC3S,
124 TEC4,
125 TEC4S,
126 TEC5,
127 TEC5S,
128 TEC6,
129 TEC6S,
130 TEC7,
131 TEC7S,
132 TEC8,
133 TEC8S,
134 TEC9,
135 TEC9S
136 };
137
138 enum ETrackAlgorithm { //taken from DataFormats/TrackReco/interface/TrackBase.h
139 undefAlgorithm=0,
140 ctf=1,
141 rs=2,
142 cosmics=3,
143 iter0=4,
144 iter1=5,
145 iter2=6,
146 iter3=7,
147 iter4=8,
148 iter5=9,
149 iter6=10,
150 iter7=11,
151 iter8=12,
152 iter9=13,
153 iter10=14,
154 outInEcalSeededConv=15,
155 inOutEcalSeededConv=16,
156 nuclInter=17,
157 standAloneMuon=18,
158 globalMuon=19,
159 cosmicStandAloneMuon=20,
160 cosmicGlobalMuon=21,
161 iter1LargeD0=22,
162 iter2LargeD0=23,
163 iter3LargeD0=24,
164 iter4LargeD0=25,
165 iter5LargeD0=26,
166 bTagGhostTracks=27,
167 beamhalo=28,
168 algoSize=29
169 };
170
171
172 Track() : fAlgo(undefAlgorithm), fIsGsf(0), fPtErr(0), fQOverP(0), fQOverPErr(0),
173 fLambda(0), fLambdaErr(0), fPhi0(0), fPhi0Err(0),
174 fDxy(0), fDxyErr(0), fDsz(0), fDszErr(0), fChi2(0),
175 fNdof(0), fEtaEcal(0), fPhiEcal(0) {}
176 Track(Double_t qOverP, Double_t lambda, Double_t phi0, Double_t dxy, Double_t dsz) :
177 fAlgo(undefAlgorithm), fIsGsf(0), fPtErr(0), fQOverP(qOverP), fQOverPErr(0),
178 fLambda(lambda), fLambdaErr(0), fPhi0(phi0), fPhi0Err(0),
179 fDxy(dxy), fDxyErr(0), fDsz(dsz), fDszErr(0), fChi2(0),
180 fNdof(0), fEtaEcal(0), fPhiEcal(0) {}
181 ~Track() {}
182
183 ETrackAlgorithm Algo() const { return fAlgo; }
184 Int_t Charge() const { return (fQOverP>0) ? 1 : -1; }
185 Double_t Chi2() const { return fChi2; }
186 void ClearHit(EHitLayer l) { fHits.ClearBit(l); }
187 Double_t D0() const { return -fDxy; }
188 Double_t D0Corrected(const BaseVertex &iVertex) const;
189 Double_t DzCorrected(const BaseVertex &iVertex) const;
190 Double_t D0Err() const { return fDxyErr; }
191 Double_t Dsz() const { return fDsz; }
192 Double_t DszErr() const { return fDszErr; }
193 Double_t Dxy() const { return fDxy; }
194 Double_t DxyErr() const { return fDxyErr; }
195 Double_t E(Double_t m) const { return TMath::Sqrt(E2(m)); }
196 Double_t E2(Double_t m) const { return P2()+m*m; }
197 Double_t Eta() const { return Mom().Eta(); }
198 Double_t EtaEcal() const { return fEtaEcal; }
199 Bool_t Hit(EHitLayer l) const { return fHits.TestBit(l); }
200 const BitMask48 &Hits() const { return fHits; }
201 const BitMask48 &MissingHits() const { return fMissingHits; }
202 const BitMask48 &ExpectedHitsInner() const { return fExpectedHitsInner; }
203 const BitMask48 &ExpectedHitsOuter() const { return fExpectedHitsOuter; }
204 Bool_t IsGsf() const { return fIsGsf; }
205 Double_t Lambda() const { return fLambda; }
206 Double_t LambdaErr() const { return fLambdaErr; }
207 const MCParticle *MCPart() const { return fMCParticleRef.Obj(); }
208 const ThreeVectorC &Mom() const;
209 FourVectorM Mom4(Double_t m) const { return FourVectorM(Pt(),Eta(),Phi(),m); }
210 UShort_t Ndof() const { return fNdof; }
211 UInt_t NHits() const { return fHits.NBitsSet(); }
212 UInt_t NMissingHits() const { return fMissingHits.NBitsSet(); }
213 UInt_t NExpectedHitsInner() const { return fExpectedHitsInner.NBitsSet(); }
214 UInt_t NExpectedHitsOuter() const { return fExpectedHitsOuter.NBitsSet(); }
215 UInt_t NStereoHits() const { return StereoHits().NBitsSet(); }
216 UInt_t NPixelHits() const { return PixelHits().NBitsSet(); }
217 EObjType ObjType() const { return kTrack; }
218 Double_t P2() const { return 1./fQOverP/fQOverP; }
219 Double_t P() const { return TMath::Abs(1./fQOverP); }
220 Double_t Phi() const { return fPhi0; }
221 Double_t Phi0() const { return fPhi0; }
222 Double_t Phi0Err() const { return fPhi0Err; }
223 Double_t PhiEcal() const { return fPhiEcal; }
224 Double_t Prob() const { return TMath::Prob(fChi2,fNdof); }
225 Double_t Pt() const { return Mom().Rho(); }
226 Double_t PtErr() const { return fPtErr; }
227 Double_t Px() const { return Mom().X(); }
228 Double_t Py() const { return Mom().Y(); }
229 Double_t Pz() const { return Mom().Z(); }
230 Double_t QOverP() const { return fQOverP; }
231 Double_t QOverPErr() const { return fQOverPErr; }
232 Double_t RChi2() const { return fChi2/(Double_t)fNdof; }
233 Double_t Theta() const { return (TMath::PiOver2() - fLambda); }
234 const SuperCluster *SCluster() const { return fSuperClusterRef.Obj(); }
235 const BitMask48 PixelHits() const { return (fHits & PixelLayers()); }
236 const TrackQuality &Quality() const { return fQuality; }
237 TrackQuality &Quality() { return fQuality; }
238 const BitMask48 StereoHits() const { return (fHits & StereoLayers()); }
239 void SetAlgo(ETrackAlgorithm e) { fAlgo = e; }
240 void SetChi2(Double_t chi2) { fChi2 = chi2; }
241 void SetErrors(Double_t qOverPErr, Double_t lambdaErr, Double_t phi0Err,
242 Double_t dXyErr, Double_t dSzErr);
243 void SetEtaEcal(Double_t eta) { fEtaEcal = eta; }
244 void SetHelix (Double_t qOverP, Double_t lambda, Double_t phi0,
245 Double_t dXy, Double_t dSz);
246 void SetPtErr(Double_t ptErr) { fPtErr = ptErr; }
247 void SetHit(EHitLayer l) { fHits.SetBit(l); }
248 void SetHits(const BitMask48 &hits) { fHits = hits; }
249 void SetMissingHits(const BitMask48 &h) { fMissingHits = h; }
250 void SetExpectedHitsInner(const BitMask48 &h) { fExpectedHitsInner = h; }
251 void SetExpectedHitsOuter(const BitMask48 &h) { fExpectedHitsInner = h; }
252 void SetIsGsf(Bool_t b) { fIsGsf = b; }
253 void SetNdof(UShort_t dof) { fNdof = dof; }
254 void SetMCPart(const MCParticle *p) { fMCParticleRef = p; }
255 void SetPhiEcal(Double_t phi) { fPhiEcal = phi; }
256 void SetSCluster(const SuperCluster* sc) { fSuperClusterRef = sc; }
257 Double_t X0() const { return D0()*TMath::Sin(Phi()); }
258 Double_t Y0() const { return -D0()*TMath::Cos(Phi()); }
259 Double_t Z0() const { return fDsz/TMath::Cos(fLambda); }
260
261
262 static const BitMask48 StereoLayers();
263 static const BitMask48 PixelLayers();
264
265 protected:
266 void ClearMom() const { fCacheMomFlag.ClearCache(); }
267 void GetMom() const;
268
269 BitMask48 fHits; //storage for mostly hit information
270 BitMask48 fMissingHits; //missing hits in crossed good modules
271 BitMask48 fExpectedHitsInner; //expected hits before first hit
272 BitMask48 fExpectedHitsOuter; //expected hits after last hit
273 ETrackAlgorithm fAlgo; //track algorithm
274 TrackQuality fQuality; //track quality
275 Bool_t fIsGsf; //flag to identify gsf tracks
276 Double32_t fPtErr; //[0,0,12]pt uncertainty
277 Double32_t fQOverP; //[0,0,14]signed inverse of momentum [1/GeV]
278 Double32_t fQOverPErr; //[0,0,14]error of q/p
279 Double32_t fLambda; //[0,0,14]pi/2 - polar angle at the reference point
280 Double32_t fLambdaErr; //[0,0,14]error of lambda
281 Double32_t fPhi0; //[0,0,14]azimuth angle at the given point
282 Double32_t fPhi0Err; //[0,0,14]error of azimuthal angle
283 Double32_t fDxy; //[0,0,14]trans. distance to reference point [cm]
284 Double32_t fDxyErr; //[0,0,14]error of transverse distance
285 Double32_t fDsz; //[0,0,14]long. distance to reference point [cm]
286 Double32_t fDszErr; //[0,0,14]error of longitudinal distance
287 Double32_t fChi2; //[0,0,12]chi squared of track fit
288 UShort_t fNdof; //degree-of-freedom of track fit
289 Double32_t fEtaEcal; //[0,0,12]eta of track at Ecal front face
290 Double32_t fPhiEcal; //[0,0,12]phi of track at Ecal front face
291 Ref<SuperCluster> fSuperClusterRef; //superCluster crossed by track
292 Ref<MCParticle> fMCParticleRef; //reference to sim particle (for monte carlo)
293 mutable CacheFlag fCacheMomFlag; //||cache validity flag for momentum
294 mutable ThreeVectorC fCachedMom; //!cached momentum vector
295
296 ClassDef(Track, 5) // Track class
297 };
298 }
299
300 //--------------------------------------------------------------------------------------------------
301 inline void mithep::Track::GetMom() const
302 {
303 // Compute three momentum.
304
305 Double_t pt = TMath::Abs(TMath::Cos(fLambda)/fQOverP);
306 Double_t eta = - TMath::Log(TMath::Tan(Theta()/2.));
307 fCachedMom.SetCoordinates(pt,eta,Phi());
308 }
309
310 //--------------------------------------------------------------------------------------------------
311 inline const mithep::ThreeVectorC &mithep::Track::Mom() const
312 {
313 // Return cached momentum value.
314
315 if (!fCacheMomFlag.IsValid()) {
316 GetMom();
317 fCacheMomFlag.SetValid();
318 }
319 return fCachedMom;
320 }
321
322 //--------------------------------------------------------------------------------------------------
323 inline Double_t mithep::Track::D0Corrected(const BaseVertex &iVertex) const
324 {
325 // Return corrected d0 with respect to primary vertex or beamspot.
326
327 Double_t lXM = -TMath::Sin(Phi()) * D0();
328 Double_t lYM = TMath::Cos(Phi()) * D0();
329 Double_t lDX = (lXM + iVertex.X());
330 Double_t lDY = (lYM + iVertex.Y());
331 Double_t d0Corr = (Px()*lDY - Py()*lDX)/Pt();
332
333 return d0Corr;
334 }
335
336 //--------------------------------------------------------------------------------------------------
337 inline Double_t mithep::Track::DzCorrected(const mithep::BaseVertex &iVertex) const
338 {
339 // Compute Dxy with respect to a given position
340 mithep::ThreeVector momPerp(Px(),Py(),0);
341 mithep::ThreeVector posPerp(X0()-iVertex.X(),Y0()-iVertex.Y(),0);
342 return Z0() - iVertex.Z() - posPerp.Dot(momPerp)/Pt() * (Pz()/Pt());
343
344 }
345
346 //--------------------------------------------------------------------------------------------------
347 inline void mithep::Track::SetHelix(Double_t qOverP, Double_t lambda, Double_t phi0,
348 Double_t dxy, Double_t dsz)
349 {
350 // Set helix parameters.
351
352 fQOverP = qOverP;
353 fLambda = lambda;
354 fPhi0 = phi0;
355 fDxy = dxy;
356 fDsz = dsz;
357 ClearMom();
358 }
359
360 //--------------------------------------------------------------------------------------------------
361 inline void mithep::Track::SetErrors(Double_t qOverPErr, Double_t lambdaErr, Double_t phi0Err,
362 Double_t dxyErr, Double_t dszErr)
363 {
364 // Set helix errors.
365
366 fQOverPErr = qOverPErr;
367 fLambdaErr = lambdaErr;
368 fPhi0Err = phi0Err;
369 fDxyErr = dxyErr;
370 fDszErr = dszErr;
371 }
372
373 //--------------------------------------------------------------------------------------------------
374 inline const mithep::BitMask48 mithep::Track::StereoLayers()
375 {
376 // Build and return BitMask of stereo layers.
377
378 mithep::BitMask48 stereoLayers;
379 stereoLayers.SetBit(mithep::Track::TIB1S);
380 stereoLayers.SetBit(mithep::Track::TIB2S);
381 stereoLayers.SetBit(mithep::Track::TID1S);
382 stereoLayers.SetBit(mithep::Track::TID2S);
383 stereoLayers.SetBit(mithep::Track::TID3S);
384 stereoLayers.SetBit(mithep::Track::TOB1S);
385 stereoLayers.SetBit(mithep::Track::TOB2S);
386 stereoLayers.SetBit(mithep::Track::TEC1S);
387 stereoLayers.SetBit(mithep::Track::TEC2S);
388 stereoLayers.SetBit(mithep::Track::TEC3S);
389 stereoLayers.SetBit(mithep::Track::TEC4S);
390 stereoLayers.SetBit(mithep::Track::TEC5S);
391 stereoLayers.SetBit(mithep::Track::TEC6S);
392 stereoLayers.SetBit(mithep::Track::TEC7S);
393 stereoLayers.SetBit(mithep::Track::TEC8S);
394 stereoLayers.SetBit(mithep::Track::TEC9S);
395 return stereoLayers;
396 }
397
398 //--------------------------------------------------------------------------------------------------
399 inline const mithep::BitMask48 mithep::Track::PixelLayers()
400 {
401 // Build and return BitMask of stereo layers.
402
403 mithep::BitMask48 pixelLayers;
404 pixelLayers.SetBit(mithep::Track::PXB1);
405 pixelLayers.SetBit(mithep::Track::PXB2);
406 pixelLayers.SetBit(mithep::Track::PXB3);
407 pixelLayers.SetBit(mithep::Track::PXF1);
408 pixelLayers.SetBit(mithep::Track::PXF2);
409 return pixelLayers;
410 }
411 #endif