ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitAna/DataTree/interface/Track.h
Revision: 1.53
Committed: Thu Jul 1 15:05:15 2010 UTC (14 years, 10 months ago) by bendavid
Content type: text/plain
Branch: MAIN
CVS Tags: Mit_025c_branch2, Mit_025c_branch1, Mit_025c_branch0, Mit_025d, Mit_025c, Mit_025b, Mit_025a, Mit_025, Mit_025pre2, Mit_024b, Mit_025pre1, Mit_024a, Mit_024, Mit_023, Mit_022a, Mit_022, Mit_020d, TMit_020d, Mit_020c, Mit_021, Mit_021pre2, Mit_021pre1, Mit_020b, Mit_020a, Mit_020, Mit_020pre1, Mit_018, Mit_017, Mit_017pre3, Mit_017pre2, Mit_017pre1, Mit_016, Mit_015b, Mit_015a, Mit_015, Mit_014e, Mit_014d, Mit_014c
Branch point for: Mit_025c_branch
Changes since 1.52: +5 -5 lines
Log Message:
Fix bug in Track constructor

File Contents

# Content
1 //--------------------------------------------------------------------------------------------------
2 // $Id: Track.h,v 1.52 2010/06/25 15:11:34 bendavid Exp $
3 //
4 // Track
5 //
6 // We store the CMSSW track parameterization
7 // Parameters associated to the 5D curvilinear covariance matrix:
8 // (qoverp, lambda, phi, dxy, dsz)
9 // defined as:
10 // qoverp = q / abs(p) = signed inverse of momentum [1/GeV]
11 // lambda = pi/2 - polar angle at the given point
12 // phi = azimuth angle at the given point
13 // dxy = -vx*sin(phi) + vy*cos(phi) [cm]
14 // dsz = vz*cos(lambda) - (vx*cos(phi)+vy*sin(phi))*sin(lambda) [cm]
15 // (See http://cmslxr.fnal.gov/lxr/source/DataFormats/TrackReco/interface/TrackBase.h)
16 //
17 // Format for fHits: (We do not use anything resembling reco::HitPattern from CMSSW because that
18 // data format requires 800 bits per track!)
19 // There is a one to one mapping between bits and tracker layers, where layers are enumerated
20 // seperately in the PXB, PXF, TIB, TID, TOB, TEC and r-phi and stereo modules are treated as
21 // seperate layers in those detectors which have them
22 // (TIB L1,L2, TID L1,L2,L3, TOB L1,L2, TEC L1,L2,L3,L4,L5,L6,L7,L8,L9).
23 //
24 // A bit value of 1 indicates a hit in the corresponding layer, and 0 indicates no hit.
25 //
26 // Note that currently this only stores information about hits in the Tracker,
27 // but muon chamber information will likely be added as well.
28 //
29 // Bit-Layer assignments (starting from bit 0):
30 // Bit 0: PXB L1
31 // Bit 1: PXB L2
32 // Bit 2: PXB L3
33 // Bit 3: PXF L1
34 // Bit 4: PXF L2
35 // Bit 5: TIB L1 r-phi
36 // Bit 6: TIB L1 stereo
37 // Bit 7: TIB L2 r-phi
38 // Bit 8: TIB L2 stereo
39 // Bit 9: TIB L3 r-phi
40 // Bit 10: TIB L4 r-phi
41 // Bit 11: TID L1 r-phi
42 // Bit 12: TID L1 stereo
43 // Bit 13: TID L2 r-phi
44 // Bit 14: TID L2 stereo
45 // Bit 15: TID L3 r-phi
46 // Bit 16: TID L3 stereo
47 // Bit 17: TOB L1 r-phi
48 // Bit 18: TOB L1 stereo
49 // Bit 19: TOB L2 r-phi
50 // Bit 20: TOB L2 stereo
51 // Bit 21: TOB L3 r-phi
52 // Bit 22: TOB L4 r-phi
53 // Bit 23: TOB L5 r-phi
54 // Bit 24: TOB L6 r-phi
55 // Bit 25: TEC L1 r-phi
56 // Bit 26: TEC L1 stereo
57 // Bit 27: TEC L2 r-phi
58 // Bit 28: TEC L2 stereo
59 // Bit 29: TEC L3 r-phi
60 // Bit 30: TEC L3 stereo
61 // Bit 31: TEC L4 r-phi
62 // Bit 32: TEC L4 stereo
63 // Bit 33: TEC L5 r-phi
64 // Bit 34: TEC L5 stereo
65 // Bit 35: TEC L6 r-phi
66 // Bit 36: TEC L6 stereo
67 // Bit 37: TEC L7 r-phi
68 // Bit 38: TEC L7 stereo
69 // Bit 39: TEC L8 r-phi
70 // Bit 40: TEC L8 stereo
71 // Bit 41: TEC L9 r-phi
72 // Bit 42: TEC L9 stereo
73 //
74 // Authors: C.Loizides, J.Bendavid, C.Paus
75 //--------------------------------------------------------------------------------------------------
76
77 #ifndef MITANA_DATATREE_TRACK_H
78 #define MITANA_DATATREE_TRACK_H
79
80 #include "MitAna/DataCont/interface/BitMask.h"
81 #include "MitAna/DataTree/interface/TrackQuality.h"
82 #include "MitAna/DataTree/interface/BaseVertex.h"
83 #include "MitAna/DataTree/interface/DataObject.h"
84 #include "MitAna/DataTree/interface/MCParticle.h"
85 #include "MitAna/DataTree/interface/SuperCluster.h"
86
87 namespace mithep
88 {
89 class Track : public DataObject
90 {
91 public:
92 enum EHitLayer {
93 PXB1,
94 PXB2,
95 PXB3,
96 PXF1,
97 PXF2,
98 TIB1,
99 TIB1S,
100 TIB2,
101 TIB2S,
102 TIB3,
103 TIB4,
104 TID1,
105 TID1S,
106 TID2,
107 TID2S,
108 TID3,
109 TID3S,
110 TOB1,
111 TOB1S,
112 TOB2,
113 TOB2S,
114 TOB3,
115 TOB4,
116 TOB5,
117 TOB6,
118 TEC1,
119 TEC1S,
120 TEC2,
121 TEC2S,
122 TEC3,
123 TEC3S,
124 TEC4,
125 TEC4S,
126 TEC5,
127 TEC5S,
128 TEC6,
129 TEC6S,
130 TEC7,
131 TEC7S,
132 TEC8,
133 TEC8S,
134 TEC9,
135 TEC9S
136 };
137
138 enum ETrackAlgorithm { //taken from DataFormats/TrackReco/interface/TrackBase.h
139 undefAlgorithm=0,
140 ctf=1,
141 rs=2,
142 cosmics=3,
143 iter0=4,
144 iter1=5,
145 iter2=6,
146 iter3=7,
147 iter4=8,
148 iter5=9,
149 iter6=10,
150 iter7=11,
151 iter8=12,
152 iter9=13,
153 iter10=14,
154 outInEcalSeededConv=15,
155 inOutEcalSeededConv=16,
156 nuclInter=17,
157 standAloneMuon=18,
158 globalMuon=19,
159 cosmicStandAloneMuon=20,
160 cosmicGlobalMuon=21,
161 iter1LargeD0=22,
162 iter2LargeD0=23,
163 iter3LargeD0=24,
164 iter4LargeD0=25,
165 iter5LargeD0=26,
166 bTagGhostTracks=27,
167 beamhalo=28,
168 algoSize=29
169 };
170
171
172 Track() : fNHits(0), fNPixelHits(0), fNMissingHits(0), fNExpectedHitsInner(0), fNExpectedHitsOuter(0),
173 fAlgo(undefAlgorithm), fIsGsf(0), fPtErr(0), fQOverP(0), fQOverPErr(0),
174 fLambda(0), fLambdaErr(0), fPhi0(0), fPhi0Err(0),
175 fDxy(0), fDxyErr(0), fDsz(0), fDszErr(0), fChi2(0),
176 fNdof(0), fEtaEcal(0), fPhiEcal(0) {}
177 Track(Double_t qOverP, Double_t lambda, Double_t phi0, Double_t dxy, Double_t dsz) :
178 fNHits(0), fNPixelHits(0), fNMissingHits(0), fNExpectedHitsInner(0), fNExpectedHitsOuter(0),
179 fAlgo(undefAlgorithm), fIsGsf(0), fPtErr(0), fQOverP(qOverP), fQOverPErr(0),
180 fLambda(lambda), fLambdaErr(0), fPhi0(phi0), fPhi0Err(0),
181 fDxy(dxy), fDxyErr(0), fDsz(dsz), fDszErr(0), fChi2(0),
182 fNdof(0), fEtaEcal(0), fPhiEcal(0) {}
183 ~Track() {}
184
185 ETrackAlgorithm Algo() const { return fAlgo; }
186 Int_t Charge() const { return (fQOverP>0) ? 1 : -1; }
187 Double_t Chi2() const { return fChi2; }
188 void ClearHit(EHitLayer l) { fHits.ClearBit(l); }
189 Double_t D0() const { return -fDxy; }
190 Double_t D0Corrected(const BaseVertex &iVertex) const;
191 Double_t DzCorrected(const BaseVertex &iVertex) const;
192 Double_t D0Err() const { return fDxyErr; }
193 Double_t Dsz() const { return fDsz; }
194 Double_t DszErr() const { return fDszErr; }
195 Double_t Dxy() const { return fDxy; }
196 Double_t DxyErr() const { return fDxyErr; }
197 Double_t E(Double_t m) const { return TMath::Sqrt(E2(m)); }
198 Double_t E2(Double_t m) const { return P2()+m*m; }
199 Double_t Eta() const { return Mom().Eta(); }
200 Double_t EtaEcal() const { return fEtaEcal; }
201 Bool_t Hit(EHitLayer l) const { return fHits.TestBit(l); }
202 const BitMask48 &Hits() const { return fHits; }
203 const BitMask48 &MissingHits() const { return fMissingHits; }
204 const BitMask48 &ExpectedHitsInner() const { return fExpectedHitsInner; }
205 const BitMask48 &ExpectedHitsOuter() const { return fExpectedHitsOuter; }
206 Bool_t IsGsf() const { return fIsGsf; }
207 Double_t Lambda() const { return fLambda; }
208 Double_t LambdaErr() const { return fLambdaErr; }
209 const MCParticle *MCPart() const { return fMCParticleRef.Obj(); }
210 const ThreeVectorC &Mom() const;
211 FourVectorM Mom4(Double_t m) const { return FourVectorM(Pt(),Eta(),Phi(),m); }
212 UShort_t Ndof() const { return fNdof; }
213 UInt_t NHits() const { if (fNHits) return fNHits; else return fHits.NBitsSet(); }
214 UInt_t NMissingHits() const { if (fNMissingHits) return fNMissingHits; else return fMissingHits.NBitsSet(); }
215 UInt_t NExpectedHitsInner() const { if (fNExpectedHitsInner) return fNExpectedHitsInner; else return fExpectedHitsInner.NBitsSet(); }
216 UInt_t NExpectedHitsOuter() const { if (fNExpectedHitsOuter) return fNExpectedHitsOuter; else return fExpectedHitsOuter.NBitsSet(); }
217 UInt_t NStereoHits() const { return StereoHits().NBitsSet(); }
218 UInt_t NPixelHits() const { if (fNPixelHits) return fNPixelHits; else return PixelHits().NBitsSet(); }
219 EObjType ObjType() const { return kTrack; }
220 Double_t P2() const { return 1./fQOverP/fQOverP; }
221 Double_t P() const { return TMath::Abs(1./fQOverP); }
222 Double_t Phi() const { return fPhi0; }
223 Double_t Phi0() const { return fPhi0; }
224 Double_t Phi0Err() const { return fPhi0Err; }
225 Double_t PhiEcal() const { return fPhiEcal; }
226 Double_t Prob() const { return TMath::Prob(fChi2,fNdof); }
227 Double_t Pt() const { return Mom().Rho(); }
228 Double_t PtErr() const { return fPtErr; }
229 Double_t Px() const { return Mom().X(); }
230 Double_t Py() const { return Mom().Y(); }
231 Double_t Pz() const { return Mom().Z(); }
232 Double_t QOverP() const { return fQOverP; }
233 Double_t QOverPErr() const { return fQOverPErr; }
234 Double_t RChi2() const { return fChi2/(Double_t)fNdof; }
235 Double_t Theta() const { return (TMath::PiOver2() - fLambda); }
236 const SuperCluster *SCluster() const { return fSuperClusterRef.Obj(); }
237 const BitMask48 PixelHits() const { return (fHits & PixelLayers()); }
238 const TrackQuality &Quality() const { return fQuality; }
239 TrackQuality &Quality() { return fQuality; }
240 const BitMask48 StereoHits() const { return (fHits & StereoLayers()); }
241 void SetAlgo(ETrackAlgorithm e) { fAlgo = e; }
242 void SetChi2(Double_t chi2) { fChi2 = chi2; }
243 void SetErrors(Double_t qOverPErr, Double_t lambdaErr, Double_t phi0Err,
244 Double_t dXyErr, Double_t dSzErr);
245 void SetEtaEcal(Double_t eta) { fEtaEcal = eta; }
246 void SetHelix (Double_t qOverP, Double_t lambda, Double_t phi0,
247 Double_t dXy, Double_t dSz);
248 void SetPtErr(Double_t ptErr) { fPtErr = ptErr; }
249 void SetHit(EHitLayer l) { fHits.SetBit(l); }
250 void SetHits(const BitMask48 &hits) { fHits = hits; }
251 void SetMissingHits(const BitMask48 &h) { fMissingHits = h; }
252 void SetExpectedHitsInner(const BitMask48 &h) { fExpectedHitsInner = h; }
253 void SetExpectedHitsOuter(const BitMask48 &h) { fExpectedHitsOuter = h; }
254 void SetIsGsf(Bool_t b) { fIsGsf = b; }
255 void SetNHits(Byte_t n) { fNHits = n; }
256 void SetNPixelHits(Byte_t n) { fNPixelHits = n; }
257 void SetNMissingHits(Byte_t n) { fNMissingHits = n; }
258 void SetNExpectedHitsInner(Byte_t n) { fNExpectedHitsInner = n; }
259 void SetNExpectedHitsOuter(Byte_t n) { fNExpectedHitsOuter = n; }
260 void SetNdof(UShort_t dof) { fNdof = dof; }
261 void SetMCPart(const MCParticle *p) { fMCParticleRef = p; }
262 void SetPhiEcal(Double_t phi) { fPhiEcal = phi; }
263 void SetSCluster(const SuperCluster* sc) { fSuperClusterRef = sc; }
264 Double_t X0() const { return D0()*TMath::Sin(Phi()); }
265 Double_t Y0() const { return -D0()*TMath::Cos(Phi()); }
266 Double_t Z0() const { return fDsz/TMath::Cos(fLambda); }
267
268
269 static const BitMask48 StereoLayers();
270 static const BitMask48 PixelLayers();
271
272 protected:
273 void ClearMom() const { fCacheMomFlag.ClearCache(); }
274 void GetMom() const;
275
276 BitMask48 fHits; //storage for mostly hit information
277 BitMask48 fMissingHits; //missing hits in crossed good modules
278 BitMask48 fExpectedHitsInner; //expected hits before first hit
279 BitMask48 fExpectedHitsOuter; //expected hits after last hit
280 Byte_t fNHits; //number of valid hits
281 Byte_t fNPixelHits; //number of valid pixel hits
282 Byte_t fNMissingHits; //number of missing hits
283 Byte_t fNExpectedHitsInner; //number of expected inner hits
284 Byte_t fNExpectedHitsOuter; //number of expected outer hits
285 ETrackAlgorithm fAlgo; //track algorithm
286 TrackQuality fQuality; //track quality
287 Bool_t fIsGsf; //flag to identify gsf tracks
288 Double32_t fPtErr; //[0,0,12]pt uncertainty
289 Double32_t fQOverP; //[0,0,14]signed inverse of momentum [1/GeV]
290 Double32_t fQOverPErr; //[0,0,14]error of q/p
291 Double32_t fLambda; //[0,0,14]pi/2 - polar angle at the reference point
292 Double32_t fLambdaErr; //[0,0,14]error of lambda
293 Double32_t fPhi0; //[0,0,14]azimuth angle at the given point
294 Double32_t fPhi0Err; //[0,0,14]error of azimuthal angle
295 Double32_t fDxy; //[0,0,14]trans. distance to reference point [cm]
296 Double32_t fDxyErr; //[0,0,14]error of transverse distance
297 Double32_t fDsz; //[0,0,14]long. distance to reference point [cm]
298 Double32_t fDszErr; //[0,0,14]error of longitudinal distance
299 Double32_t fChi2; //[0,0,12]chi squared of track fit
300 UShort_t fNdof; //degree-of-freedom of track fit
301 Double32_t fEtaEcal; //[0,0,12]eta of track at Ecal front face
302 Double32_t fPhiEcal; //[0,0,12]phi of track at Ecal front face
303 Ref<SuperCluster> fSuperClusterRef; //superCluster crossed by track
304 Ref<MCParticle> fMCParticleRef; //reference to sim particle (for monte carlo)
305 mutable CacheFlag fCacheMomFlag; //||cache validity flag for momentum
306 mutable ThreeVectorC fCachedMom; //!cached momentum vector
307
308 ClassDef(Track, 6) // Track class
309 };
310 }
311
312 //--------------------------------------------------------------------------------------------------
313 inline void mithep::Track::GetMom() const
314 {
315 // Compute three momentum.
316
317 Double_t pt = TMath::Abs(TMath::Cos(fLambda)/fQOverP);
318 Double_t eta = - TMath::Log(TMath::Tan(Theta()/2.));
319 fCachedMom.SetCoordinates(pt,eta,Phi());
320 }
321
322 //--------------------------------------------------------------------------------------------------
323 inline const mithep::ThreeVectorC &mithep::Track::Mom() const
324 {
325 // Return cached momentum value.
326
327 if (!fCacheMomFlag.IsValid()) {
328 GetMom();
329 fCacheMomFlag.SetValid();
330 }
331 return fCachedMom;
332 }
333
334 //--------------------------------------------------------------------------------------------------
335 inline Double_t mithep::Track::D0Corrected(const BaseVertex &iVertex) const
336 {
337 // Return corrected d0 with respect to primary vertex or beamspot.
338
339 Double_t lXM = -TMath::Sin(Phi()) * D0();
340 Double_t lYM = TMath::Cos(Phi()) * D0();
341 Double_t lDX = (lXM + iVertex.X());
342 Double_t lDY = (lYM + iVertex.Y());
343 Double_t d0Corr = (Px()*lDY - Py()*lDX)/Pt();
344
345 return d0Corr;
346 }
347
348 //--------------------------------------------------------------------------------------------------
349 inline Double_t mithep::Track::DzCorrected(const mithep::BaseVertex &iVertex) const
350 {
351 // Compute Dxy with respect to a given position
352 mithep::ThreeVector momPerp(Px(),Py(),0);
353 mithep::ThreeVector posPerp(X0()-iVertex.X(),Y0()-iVertex.Y(),0);
354 return Z0() - iVertex.Z() - posPerp.Dot(momPerp)/Pt() * (Pz()/Pt());
355
356 }
357
358 //--------------------------------------------------------------------------------------------------
359 inline void mithep::Track::SetHelix(Double_t qOverP, Double_t lambda, Double_t phi0,
360 Double_t dxy, Double_t dsz)
361 {
362 // Set helix parameters.
363
364 fQOverP = qOverP;
365 fLambda = lambda;
366 fPhi0 = phi0;
367 fDxy = dxy;
368 fDsz = dsz;
369 ClearMom();
370 }
371
372 //--------------------------------------------------------------------------------------------------
373 inline void mithep::Track::SetErrors(Double_t qOverPErr, Double_t lambdaErr, Double_t phi0Err,
374 Double_t dxyErr, Double_t dszErr)
375 {
376 // Set helix errors.
377
378 fQOverPErr = qOverPErr;
379 fLambdaErr = lambdaErr;
380 fPhi0Err = phi0Err;
381 fDxyErr = dxyErr;
382 fDszErr = dszErr;
383 }
384
385 //--------------------------------------------------------------------------------------------------
386 inline const mithep::BitMask48 mithep::Track::StereoLayers()
387 {
388 // Build and return BitMask of stereo layers.
389
390 mithep::BitMask48 stereoLayers;
391 stereoLayers.SetBit(mithep::Track::TIB1S);
392 stereoLayers.SetBit(mithep::Track::TIB2S);
393 stereoLayers.SetBit(mithep::Track::TID1S);
394 stereoLayers.SetBit(mithep::Track::TID2S);
395 stereoLayers.SetBit(mithep::Track::TID3S);
396 stereoLayers.SetBit(mithep::Track::TOB1S);
397 stereoLayers.SetBit(mithep::Track::TOB2S);
398 stereoLayers.SetBit(mithep::Track::TEC1S);
399 stereoLayers.SetBit(mithep::Track::TEC2S);
400 stereoLayers.SetBit(mithep::Track::TEC3S);
401 stereoLayers.SetBit(mithep::Track::TEC4S);
402 stereoLayers.SetBit(mithep::Track::TEC5S);
403 stereoLayers.SetBit(mithep::Track::TEC6S);
404 stereoLayers.SetBit(mithep::Track::TEC7S);
405 stereoLayers.SetBit(mithep::Track::TEC8S);
406 stereoLayers.SetBit(mithep::Track::TEC9S);
407 return stereoLayers;
408 }
409
410 //--------------------------------------------------------------------------------------------------
411 inline const mithep::BitMask48 mithep::Track::PixelLayers()
412 {
413 // Build and return BitMask of stereo layers.
414
415 mithep::BitMask48 pixelLayers;
416 pixelLayers.SetBit(mithep::Track::PXB1);
417 pixelLayers.SetBit(mithep::Track::PXB2);
418 pixelLayers.SetBit(mithep::Track::PXB3);
419 pixelLayers.SetBit(mithep::Track::PXF1);
420 pixelLayers.SetBit(mithep::Track::PXF2);
421 return pixelLayers;
422 }
423 #endif