1 |
loizides |
1.1 |
// $Id: Helix.cc,v 1.2 2008/09/04 13:55:30 loizides Exp $
|
2 |
|
|
|
3 |
|
|
#include "MitCommon/MathTools/interface/Helix.h"
|
4 |
|
|
|
5 |
|
|
using namespace mithep;
|
6 |
|
|
|
7 |
|
|
Helix::Helix(const TVector3 &MomentumGev, const TVector3 &PositionCm,
|
8 |
|
|
double q, double BFieldTesla)
|
9 |
|
|
{
|
10 |
|
|
double CotTheta,W,Z0,D0;
|
11 |
|
|
Angle Phi0;
|
12 |
|
|
|
13 |
|
|
if (BFieldTesla != 0.0 && q != 0.0) {
|
14 |
|
|
double CurvatureConstant
|
15 |
|
|
= 0.0029979;
|
16 |
|
|
double Helicity = -1.0*fabs(BFieldTesla)*fabs(q)/(BFieldTesla*q);
|
17 |
|
|
double Radius = fabs(MomentumGev.Perp()/
|
18 |
|
|
(CurvatureConstant*BFieldTesla*q));
|
19 |
|
|
|
20 |
|
|
if (Radius==0.0)
|
21 |
|
|
W = HUGE_VAL;
|
22 |
|
|
else
|
23 |
|
|
W = Helicity/Radius;
|
24 |
|
|
Angle phi1 = MomentumGev.Phi();
|
25 |
|
|
double x = PositionCm.x(),
|
26 |
|
|
y = PositionCm.y(),
|
27 |
|
|
z = PositionCm.z();
|
28 |
|
|
double sinPhi1 = sin(phi1),
|
29 |
|
|
cosPhi1 = cos(phi1);
|
30 |
|
|
double gamma = atan((x*cosPhi1 + y*sinPhi1)/(x*sinPhi1-y*cosPhi1 -1/W));
|
31 |
|
|
Phi0 = phi1+gamma;
|
32 |
|
|
D0 = ((1/W + y*cosPhi1 - x*sinPhi1) /cos(gamma) - 1/W);
|
33 |
|
|
CotTheta = MomentumGev.z()/MomentumGev.Perp();
|
34 |
|
|
Z0 = z + gamma*CotTheta/W;
|
35 |
|
|
}
|
36 |
|
|
// For the special case that we have no Helix, never happens for us .. right?
|
37 |
|
|
else {
|
38 |
|
|
std::cout << "MAJOR ERROR in HELIX !!!! STOP !!!!\n";
|
39 |
|
|
// Line auxLine(PositionCm,MomentumGev.unit());
|
40 |
|
|
// Z0 = auxLine.Z0();
|
41 |
|
|
// Phi0 = auxLine.Phi0();
|
42 |
|
|
// CotTheta = auxLine.CotTheta();
|
43 |
|
|
// D0 = auxLine.D0();
|
44 |
|
|
// W = 0.0;
|
45 |
|
|
//
|
46 |
|
|
// fCotTheta = CotTheta;
|
47 |
|
|
// fCurvature = W/2;
|
48 |
|
|
// fZ0 = Z0;
|
49 |
|
|
// fD0 = D0;
|
50 |
|
|
// fPhi0 = Phi0;
|
51 |
|
|
// fIsStale = 1;
|
52 |
|
|
// fS = -999.999;
|
53 |
|
|
// fAa = -999.999;
|
54 |
|
|
// fSs = -999.999;
|
55 |
|
|
// fCc = -999.999;
|
56 |
|
|
// fSinPhi0 = 1.0;
|
57 |
|
|
// fCosPhi0 = 1.0;
|
58 |
|
|
// fSinTheta = 1.0;
|
59 |
|
|
// fCosTheta = 1.0;
|
60 |
|
|
// fVParameters = 0;
|
61 |
|
|
// fCenterIsValid = false;
|
62 |
|
|
// fMx = 0.0;
|
63 |
|
|
// fMy = 0.0;
|
64 |
|
|
}
|
65 |
|
|
}
|
66 |
|
|
|
67 |
|
|
bool Helix::operator == (const Helix &right) const
|
68 |
|
|
{
|
69 |
|
|
return
|
70 |
|
|
fCotTheta == right.fCotTheta &&
|
71 |
|
|
fCurvature == right.fCurvature &&
|
72 |
|
|
fZ0 == right.fZ0 &&
|
73 |
|
|
fD0 == right.fD0 &&
|
74 |
|
|
fPhi0 == right.fPhi0;
|
75 |
|
|
}
|
76 |
|
|
|
77 |
|
|
bool Helix::operator != (const Helix & right) const
|
78 |
|
|
{
|
79 |
|
|
return !((*this)==right);
|
80 |
|
|
}
|
81 |
|
|
|
82 |
|
|
Helix::~Helix()
|
83 |
|
|
{
|
84 |
|
|
delete fVParameters;
|
85 |
|
|
}
|
86 |
|
|
|
87 |
|
|
|
88 |
|
|
|
89 |
|
|
TVector3 Helix::Position(double s) const
|
90 |
|
|
{
|
91 |
|
|
fCacheSinesAndCosines(s);
|
92 |
|
|
if (s == 0.0 || fCurvature == 0.0) {
|
93 |
|
|
return TVector3(-fD0*fSinPhi0+s*fCosPhi0*fSinTheta,
|
94 |
|
|
fD0*fCosPhi0+s*fSinPhi0*fSinTheta,
|
95 |
|
|
fZ0+s*fCosTheta);
|
96 |
|
|
} else {
|
97 |
|
|
return TVector3((fCosPhi0*fSs-fSinPhi0*(2.0*fCurvature*fD0+1.0-fCc))
|
98 |
|
|
/(2.0*fCurvature),
|
99 |
|
|
(fSinPhi0*fSs+fCosPhi0*(2.0*fCurvature*fD0+1.0-fCc))
|
100 |
|
|
/(2.0*fCurvature),
|
101 |
|
|
fS*fCosTheta + fZ0);
|
102 |
|
|
}
|
103 |
|
|
}
|
104 |
|
|
|
105 |
|
|
TVector3 Helix::Direction(double s) const
|
106 |
|
|
{
|
107 |
|
|
fCacheSinesAndCosines(s);
|
108 |
|
|
if (s == 0.0) {
|
109 |
|
|
return TVector3(fCosPhi0*fSinTheta,fSinPhi0*fSinTheta,fCosTheta);
|
110 |
|
|
}
|
111 |
|
|
double xtan = fSinTheta*(fCosPhi0*fCc -fSinPhi0*fSs);
|
112 |
|
|
double ytan = fSinTheta*(fCosPhi0*fSs +fSinPhi0*fCc);
|
113 |
|
|
double ztan = fCosTheta;
|
114 |
|
|
return TVector3(xtan,ytan,ztan);
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
double Helix::PathLengthAtRhoEquals(double rho) const
|
118 |
|
|
{
|
119 |
|
|
return (SinTheta()?(L2DAtR(rho)/SinTheta()):0.0);
|
120 |
|
|
}
|
121 |
|
|
|
122 |
|
|
double Helix::InverseRadius() const
|
123 |
|
|
{
|
124 |
|
|
return fCurvature*2.0;
|
125 |
|
|
}
|
126 |
|
|
|
127 |
|
|
double Helix::Radius() const
|
128 |
|
|
{
|
129 |
|
|
return fabs(1.0/InverseRadius());
|
130 |
|
|
}
|
131 |
|
|
|
132 |
|
|
SignedAngle Helix::TurningAngle(double s) const
|
133 |
|
|
{
|
134 |
|
|
return s/Radius();
|
135 |
|
|
}
|
136 |
|
|
|
137 |
|
|
double Helix::Curvature() const
|
138 |
|
|
{
|
139 |
|
|
return fCurvature;
|
140 |
|
|
}
|
141 |
|
|
|
142 |
|
|
double Helix::Helicity() const
|
143 |
|
|
{
|
144 |
|
|
return fCurvature>0 ? 1.0 : -1.0 ;
|
145 |
|
|
}
|
146 |
|
|
|
147 |
|
|
double Helix::CotTheta() const
|
148 |
|
|
{
|
149 |
|
|
return fCotTheta;
|
150 |
|
|
}
|
151 |
|
|
|
152 |
|
|
Angle Helix::Phi0() const
|
153 |
|
|
{
|
154 |
|
|
return fPhi0;
|
155 |
|
|
}
|
156 |
|
|
|
157 |
|
|
double Helix::D0() const
|
158 |
|
|
{
|
159 |
|
|
return fD0;
|
160 |
|
|
}
|
161 |
|
|
|
162 |
|
|
double Helix::SignLz() const
|
163 |
|
|
{
|
164 |
|
|
return (fD0>0) ? -1.0 : 1.0;
|
165 |
|
|
}
|
166 |
|
|
|
167 |
|
|
double Helix::Z0() const
|
168 |
|
|
{
|
169 |
|
|
return fZ0;
|
170 |
|
|
}
|
171 |
|
|
|
172 |
|
|
|
173 |
|
|
TVector3 Helix::SecondDerivative(double s) const
|
174 |
|
|
{
|
175 |
|
|
double phi1 = fPhi0+s*2.0*fCurvature*fSinTheta;
|
176 |
|
|
double sp1 = sin(phi1);
|
177 |
|
|
double xsecond = -fSinTheta*sp1*2.0*fCurvature*fSinTheta;
|
178 |
|
|
double ysecond = fSinTheta*sqrt(1.0-sp1*sp1)*2.0*fCurvature*fSinTheta;
|
179 |
|
|
return TVector3(xsecond,ysecond,0.0);
|
180 |
|
|
}
|
181 |
|
|
|
182 |
|
|
double Helix::SinPhi0() const
|
183 |
|
|
{
|
184 |
|
|
fRefreshCache();
|
185 |
|
|
return fSinPhi0;
|
186 |
|
|
}
|
187 |
|
|
double Helix::CosPhi0() const
|
188 |
|
|
{
|
189 |
|
|
fRefreshCache();
|
190 |
|
|
return fCosPhi0;
|
191 |
|
|
}
|
192 |
|
|
double Helix::SinTheta() const
|
193 |
|
|
{
|
194 |
|
|
fRefreshCache();
|
195 |
|
|
return fSinTheta;
|
196 |
|
|
}
|
197 |
|
|
double Helix::CosTheta() const
|
198 |
|
|
{
|
199 |
|
|
fRefreshCache();
|
200 |
|
|
return fCosTheta;
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
Angle Helix::PhiAtR(double rho) const
|
204 |
|
|
{
|
205 |
|
|
double c = Curvature();
|
206 |
|
|
double d = D0();
|
207 |
|
|
double a = c/(1.0+2.0*c*d);
|
208 |
|
|
double b = d - a*d*d;
|
209 |
|
|
double arcsin = a*rho+b/rho;
|
210 |
|
|
if (arcsin>1.0 || arcsin<-1.0) {
|
211 |
|
|
return (arcsin > 0.) ? M_PI : -M_PI;
|
212 |
|
|
}
|
213 |
|
|
Angle phi = Phi0() + asin(arcsin);
|
214 |
|
|
return phi;
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
double Helix::ZAtR(double rho) const
|
218 |
|
|
{
|
219 |
|
|
return fZ0 + CotTheta()*L2DAtR(rho);
|
220 |
|
|
}
|
221 |
|
|
|
222 |
|
|
double Helix::L2DAtR(double rho) const {
|
223 |
|
|
double L2D;
|
224 |
|
|
|
225 |
|
|
double c = Curvature();
|
226 |
|
|
double d = D0();
|
227 |
|
|
|
228 |
|
|
if (c!=0.0) {
|
229 |
|
|
double rad = (rho*rho-d*d)/(1.0+2.0*c*d);
|
230 |
|
|
double rprime;
|
231 |
|
|
|
232 |
|
|
if (rad<0.0)
|
233 |
|
|
rprime = 0.0;
|
234 |
|
|
else
|
235 |
|
|
rprime = sqrt( rad );
|
236 |
|
|
|
237 |
|
|
if (c*rprime > 1.0 || c*rprime < -1.0)
|
238 |
|
|
L2D = c*rprime > 0. ? M_PI/c : -M_PI/c;
|
239 |
|
|
else
|
240 |
|
|
L2D = asin(c*rprime)/c;
|
241 |
|
|
|
242 |
|
|
}
|
243 |
|
|
else {
|
244 |
|
|
L2D = rho;
|
245 |
|
|
}
|
246 |
|
|
return L2D;
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
double Helix::CosAlphaAtR(double rho) const {
|
250 |
|
|
double c = Curvature();
|
251 |
|
|
double d = D0();
|
252 |
|
|
double a = c/(1.0+2.0*c*d);
|
253 |
|
|
double phi = PhiAtR(rho);
|
254 |
|
|
|
255 |
|
|
double x = rho*cos(phi);
|
256 |
|
|
double y = rho*sin(phi);
|
257 |
|
|
|
258 |
|
|
double dir_x0 = (1.0+2.0*c*d) * (1.0-2.0*a*y);
|
259 |
|
|
double dir_y0 = (1.0+2.0*c*d) * 2.0*a*x;
|
260 |
|
|
|
261 |
|
|
double phi0 = Phi0();
|
262 |
|
|
double dir_x = dir_x0*cos(phi0) - dir_y0*sin(phi0);
|
263 |
|
|
double dir_y = dir_x0*sin(phi0) + dir_y0*cos(phi0);
|
264 |
|
|
|
265 |
|
|
double cosalpha = (x*dir_x + y*dir_y)/rho;
|
266 |
|
|
return cosalpha;
|
267 |
|
|
}
|
268 |
|
|
|
269 |
|
|
//void Helix::Location(Trajectory::Location &loc, double s) const
|
270 |
|
|
//{
|
271 |
|
|
// fCacheSinesAndCosines(s);
|
272 |
|
|
// double cP0sT = fCosPhi0*fSinTheta, sP0sT = fSinPhi0*fSinTheta;
|
273 |
|
|
// if (s && fCurvature) {
|
274 |
|
|
// loc.SetLocation(s,
|
275 |
|
|
// (fCosPhi0*fSs-
|
276 |
|
|
// fSinPhi0*(2.0*fCurvature*fD0+1.0-fCc))
|
277 |
|
|
// /(2.0*fCurvature),
|
278 |
|
|
// (fSinPhi0*fSs+
|
279 |
|
|
// fCosPhi0*(2.0*fCurvature*fD0+1.0-fCc))
|
280 |
|
|
// /(2.0*fCurvature),
|
281 |
|
|
// s*fCosTheta + fZ0,
|
282 |
|
|
// cP0sT*fCc-sP0sT*fSs,
|
283 |
|
|
// cP0sT*fSs+sP0sT*fCc,
|
284 |
|
|
// fCosTheta
|
285 |
|
|
// );
|
286 |
|
|
// }
|
287 |
|
|
// else {
|
288 |
|
|
// loc.SetLocation(s,
|
289 |
|
|
// -fD0*fSinPhi0+s*cP0sT,
|
290 |
|
|
// fD0*fCosPhi0+s*sP0sT,
|
291 |
|
|
// fZ0+s*fCosTheta,
|
292 |
|
|
// cP0sT,sP0sT,fCosTheta
|
293 |
|
|
// );
|
294 |
|
|
// }
|
295 |
|
|
//}
|
296 |
|
|
|
297 |
|
|
//Trajectory::Location* Helix::newIntersectionWith (const HepPlane3D& plane) const
|
298 |
|
|
//{
|
299 |
|
|
// if (!SinTheta()) // fastest way out of a screwy situation.
|
300 |
|
|
// return 0;
|
301 |
|
|
//
|
302 |
|
|
// double deltaS=1.0,s=0.0;
|
303 |
|
|
// s = fabs(plane.d())/SinTheta();
|
304 |
|
|
// HepVector3D normal = plane.normal();
|
305 |
|
|
// Trajectory::Location *ploc = new Trajectory::Location ;
|
306 |
|
|
// for (int iteration=0;iteration<100;iteration++) {
|
307 |
|
|
// if (fabs(deltaS)>0.0001){
|
308 |
|
|
// Location(*ploc,s);
|
309 |
|
|
// deltaS = ((-(plane.distance(ploc->position())))
|
310 |
|
|
// /(normal.dot(ploc->direction())));
|
311 |
|
|
// s+=deltaS;
|
312 |
|
|
// }
|
313 |
|
|
// else {
|
314 |
|
|
// if (s>0)
|
315 |
|
|
// return ploc;
|
316 |
|
|
// }
|
317 |
|
|
// }
|
318 |
|
|
// delete ploc;
|
319 |
|
|
// return 0;
|
320 |
|
|
//}
|