1 |
// $Id: Helix.cc,v 1.2 2009/03/20 13:33:19 loizides Exp $
|
2 |
|
3 |
#include "MitCommon/MathTools/interface/Helix.h"
|
4 |
#include <TSystem.h>
|
5 |
|
6 |
ClassImp(mithep::Helix)
|
7 |
|
8 |
using namespace mithep;
|
9 |
|
10 |
//--------------------------------------------------------------------------------------------------
|
11 |
Helix::Helix(const TVector3 &MomentumGev, const TVector3 &PositionCm,
|
12 |
double q, double BFieldTesla)
|
13 |
{
|
14 |
double CotTheta,W,Z0,D0;
|
15 |
Angle Phi0;
|
16 |
|
17 |
if (BFieldTesla != 0.0 && q != 0.0) {
|
18 |
double CurvatureConstant
|
19 |
= 0.0029979;
|
20 |
double Helicity = -1.0*fabs(BFieldTesla)*fabs(q)/(BFieldTesla*q);
|
21 |
double Radius = fabs(MomentumGev.Perp()/
|
22 |
(CurvatureConstant*BFieldTesla*q));
|
23 |
|
24 |
if (Radius==0.0)
|
25 |
W = HUGE_VAL;
|
26 |
else
|
27 |
W = Helicity/Radius;
|
28 |
Angle phi1 = MomentumGev.Phi();
|
29 |
double x = PositionCm.x(),
|
30 |
y = PositionCm.y(),
|
31 |
z = PositionCm.z();
|
32 |
double sinPhi1 = sin(phi1),
|
33 |
cosPhi1 = cos(phi1);
|
34 |
double gamma = atan((x*cosPhi1 + y*sinPhi1)/(x*sinPhi1-y*cosPhi1 -1/W));
|
35 |
Phi0 = phi1+gamma;
|
36 |
D0 = ((1/W + y*cosPhi1 - x*sinPhi1) /cos(gamma) - 1/W);
|
37 |
CotTheta = MomentumGev.z()/MomentumGev.Perp();
|
38 |
Z0 = z + gamma*CotTheta/W;
|
39 |
}
|
40 |
// For the special case that we have no Helix, never happens for us .. right?
|
41 |
else {
|
42 |
std::cout << "MAJOR ERROR in HELIX!!!! Should not happen. STOP!!!!\n";
|
43 |
gSystem->Exit(123);
|
44 |
}
|
45 |
}
|
46 |
|
47 |
//--------------------------------------------------------------------------------------------------
|
48 |
bool Helix::operator == (const Helix &right) const
|
49 |
{
|
50 |
return
|
51 |
fCotTheta == right.fCotTheta &&
|
52 |
fCurvature == right.fCurvature &&
|
53 |
fZ0 == right.fZ0 &&
|
54 |
fD0 == right.fD0 &&
|
55 |
fPhi0 == right.fPhi0;
|
56 |
}
|
57 |
|
58 |
//--------------------------------------------------------------------------------------------------
|
59 |
bool Helix::operator != (const Helix & right) const
|
60 |
{
|
61 |
return !((*this)==right);
|
62 |
}
|
63 |
|
64 |
//--------------------------------------------------------------------------------------------------
|
65 |
Helix::~Helix()
|
66 |
{
|
67 |
delete fVParameters;
|
68 |
}
|
69 |
|
70 |
//--------------------------------------------------------------------------------------------------
|
71 |
TVector3 Helix::Position(double s) const
|
72 |
{
|
73 |
fCacheSinesAndCosines(s);
|
74 |
if (s == 0.0 || fCurvature == 0.0) {
|
75 |
return TVector3(-fD0*fSinPhi0+s*fCosPhi0*fSinTheta,
|
76 |
fD0*fCosPhi0+s*fSinPhi0*fSinTheta,
|
77 |
fZ0+s*fCosTheta);
|
78 |
} else {
|
79 |
return TVector3((fCosPhi0*fSs-fSinPhi0*(2.0*fCurvature*fD0+1.0-fCc))
|
80 |
/(2.0*fCurvature),
|
81 |
(fSinPhi0*fSs+fCosPhi0*(2.0*fCurvature*fD0+1.0-fCc))
|
82 |
/(2.0*fCurvature),
|
83 |
fS*fCosTheta + fZ0);
|
84 |
}
|
85 |
}
|
86 |
|
87 |
//--------------------------------------------------------------------------------------------------
|
88 |
TVector3 Helix::Direction(double s) const
|
89 |
{
|
90 |
fCacheSinesAndCosines(s);
|
91 |
if (s == 0.0) {
|
92 |
return TVector3(fCosPhi0*fSinTheta,fSinPhi0*fSinTheta,fCosTheta);
|
93 |
}
|
94 |
double xtan = fSinTheta*(fCosPhi0*fCc -fSinPhi0*fSs);
|
95 |
double ytan = fSinTheta*(fCosPhi0*fSs +fSinPhi0*fCc);
|
96 |
double ztan = fCosTheta;
|
97 |
return TVector3(xtan,ytan,ztan);
|
98 |
}
|
99 |
|
100 |
//--------------------------------------------------------------------------------------------------
|
101 |
double Helix::PathLengthAtRhoEquals(double rho) const
|
102 |
{
|
103 |
return (SinTheta()?(L2DAtR(rho)/SinTheta()):0.0);
|
104 |
}
|
105 |
|
106 |
//--------------------------------------------------------------------------------------------------
|
107 |
double Helix::InverseRadius() const
|
108 |
{
|
109 |
return fCurvature*2.0;
|
110 |
}
|
111 |
|
112 |
//--------------------------------------------------------------------------------------------------
|
113 |
double Helix::Radius() const
|
114 |
{
|
115 |
return fabs(1.0/InverseRadius());
|
116 |
}
|
117 |
|
118 |
//--------------------------------------------------------------------------------------------------
|
119 |
SignedAngle Helix::TurningAngle(double s) const
|
120 |
{
|
121 |
return s/Radius();
|
122 |
}
|
123 |
|
124 |
//--------------------------------------------------------------------------------------------------
|
125 |
double Helix::Curvature() const
|
126 |
{
|
127 |
return fCurvature;
|
128 |
}
|
129 |
|
130 |
//--------------------------------------------------------------------------------------------------
|
131 |
double Helix::Helicity() const
|
132 |
{
|
133 |
return fCurvature>0 ? 1.0 : -1.0 ;
|
134 |
}
|
135 |
|
136 |
//--------------------------------------------------------------------------------------------------
|
137 |
double Helix::CotTheta() const
|
138 |
{
|
139 |
return fCotTheta;
|
140 |
}
|
141 |
|
142 |
//--------------------------------------------------------------------------------------------------
|
143 |
Angle Helix::Phi0() const
|
144 |
{
|
145 |
return fPhi0;
|
146 |
}
|
147 |
|
148 |
//--------------------------------------------------------------------------------------------------
|
149 |
double Helix::D0() const
|
150 |
{
|
151 |
return fD0;
|
152 |
}
|
153 |
|
154 |
//--------------------------------------------------------------------------------------------------
|
155 |
double Helix::SignLz() const
|
156 |
{
|
157 |
return (fD0>0) ? -1.0 : 1.0;
|
158 |
}
|
159 |
|
160 |
//--------------------------------------------------------------------------------------------------
|
161 |
double Helix::Z0() const
|
162 |
{
|
163 |
return fZ0;
|
164 |
}
|
165 |
|
166 |
//--------------------------------------------------------------------------------------------------
|
167 |
TVector3 Helix::SecondDerivative(double s) const
|
168 |
{
|
169 |
double phi1 = fPhi0+s*2.0*fCurvature*fSinTheta;
|
170 |
double sp1 = sin(phi1);
|
171 |
double xsecond = -fSinTheta*sp1*2.0*fCurvature*fSinTheta;
|
172 |
double ysecond = fSinTheta*sqrt(1.0-sp1*sp1)*2.0*fCurvature*fSinTheta;
|
173 |
return TVector3(xsecond,ysecond,0.0);
|
174 |
}
|
175 |
|
176 |
//--------------------------------------------------------------------------------------------------
|
177 |
double Helix::SinPhi0() const
|
178 |
{
|
179 |
fRefreshCache();
|
180 |
return fSinPhi0;
|
181 |
}
|
182 |
|
183 |
//--------------------------------------------------------------------------------------------------
|
184 |
double Helix::CosPhi0() const
|
185 |
{
|
186 |
fRefreshCache();
|
187 |
return fCosPhi0;
|
188 |
}
|
189 |
|
190 |
//--------------------------------------------------------------------------------------------------
|
191 |
double Helix::SinTheta() const
|
192 |
{
|
193 |
fRefreshCache();
|
194 |
return fSinTheta;
|
195 |
}
|
196 |
|
197 |
//--------------------------------------------------------------------------------------------------
|
198 |
double Helix::CosTheta() const
|
199 |
{
|
200 |
fRefreshCache();
|
201 |
return fCosTheta;
|
202 |
}
|
203 |
|
204 |
//--------------------------------------------------------------------------------------------------
|
205 |
Angle Helix::PhiAtR(double rho) const
|
206 |
{
|
207 |
double c = Curvature();
|
208 |
double d = D0();
|
209 |
double a = c/(1.0+2.0*c*d);
|
210 |
double b = d - a*d*d;
|
211 |
double arcsin = a*rho+b/rho;
|
212 |
if (arcsin>1.0 || arcsin<-1.0) {
|
213 |
return (arcsin > 0.) ? M_PI : -M_PI;
|
214 |
}
|
215 |
Angle phi = Phi0() + asin(arcsin);
|
216 |
return phi;
|
217 |
}
|
218 |
|
219 |
//--------------------------------------------------------------------------------------------------
|
220 |
double Helix::ZAtR(double rho) const
|
221 |
{
|
222 |
return fZ0 + CotTheta()*L2DAtR(rho);
|
223 |
}
|
224 |
|
225 |
//--------------------------------------------------------------------------------------------------
|
226 |
double Helix::L2DAtR(double rho) const {
|
227 |
double L2D;
|
228 |
|
229 |
double c = Curvature();
|
230 |
double d = D0();
|
231 |
|
232 |
if (c!=0.0) {
|
233 |
double rad = (rho*rho-d*d)/(1.0+2.0*c*d);
|
234 |
double rprime;
|
235 |
|
236 |
if (rad<0.0)
|
237 |
rprime = 0.0;
|
238 |
else
|
239 |
rprime = sqrt( rad );
|
240 |
|
241 |
if (c*rprime > 1.0 || c*rprime < -1.0)
|
242 |
L2D = c*rprime > 0. ? M_PI/c : -M_PI/c;
|
243 |
else
|
244 |
L2D = asin(c*rprime)/c;
|
245 |
|
246 |
}
|
247 |
else {
|
248 |
L2D = rho;
|
249 |
}
|
250 |
return L2D;
|
251 |
}
|
252 |
|
253 |
//--------------------------------------------------------------------------------------------------
|
254 |
double Helix::CosAlphaAtR(double rho) const {
|
255 |
double c = Curvature();
|
256 |
double d = D0();
|
257 |
double a = c/(1.0+2.0*c*d);
|
258 |
double phi = PhiAtR(rho);
|
259 |
|
260 |
double x = rho*cos(phi);
|
261 |
double y = rho*sin(phi);
|
262 |
|
263 |
double dir_x0 = (1.0+2.0*c*d) * (1.0-2.0*a*y);
|
264 |
double dir_y0 = (1.0+2.0*c*d) * 2.0*a*x;
|
265 |
|
266 |
double phi0 = Phi0();
|
267 |
double dir_x = dir_x0*cos(phi0) - dir_y0*sin(phi0);
|
268 |
double dir_y = dir_x0*sin(phi0) + dir_y0*cos(phi0);
|
269 |
|
270 |
double cosalpha = (x*dir_x + y*dir_y)/rho;
|
271 |
return cosalpha;
|
272 |
}
|