ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitCommon/OptIO/src/LzmaEnc.c
Revision: 1.1
Committed: Tue Feb 24 20:13:57 2009 UTC (16 years, 2 months ago) by loizides
Content type: text/plain
Branch: MAIN
CVS Tags: Mit_032, Mit_031, Mit_025c_branch2, Mit_025c_branch1, Mit_030, Mit_029c, Mit_030_pre1, Mit_029a, Mit_029, Mit_029_pre1, Mit_028a, Mit_025c_branch0, Mit_028, Mit_027a, Mit_027, Mit_026, Mit_025e, Mit_025d, Mit_025c, Mit_025b, Mit_025a, Mit_025, Mit_025pre2, Mit_024b, Mit_025pre1, Mit_024a, Mit_024, Mit_023, Mit_022a, Mit_022, Mit_020d, TMit_020d, Mit_020c, Mit_021, Mit_021pre2, Mit_021pre1, Mit_020b, Mit_020a, Mit_020, Mit_020pre1, Mit_018, Mit_017, Mit_017pre3, Mit_017pre2, Mit_017pre1, V07-05-00, Mit_016, Mit_015b, Mit_015a, Mit_015, Mit_014e, Mit_014d, Mit_014c, Mit_014b, ConvRejection-10-06-09, Mit_014a, Mit_014, Mit_014pre3, Mit_014pre2, Mit_014pre1, Mit_013d, Mit_013c, Mit_013b, Mit_013a, Mit_013, Mit_013pre1, Mit_012i, Mit_012g, Mit_012f, Mit_012e, Mit_012d, Mit_012c, Mit_012b, Mit_012a, Mit_012, Mit_011a, Mit_011, Mit_010a, Mit_010, Mit_009c, Mit_009b, Mit_009a, Mit_009, Mit_008, Mit_008pre2, Mit_008pre1, HEAD
Branch point for: Mit_025c_branch
Log Message:
Added lzma

File Contents

# User Rev Content
1 loizides 1.1 /* LzmaEnc.c -- LZMA Encoder
2     2009-02-02 : Igor Pavlov : Public domain */
3    
4     #include <string.h>
5    
6     /* #define SHOW_STAT */
7     /* #define SHOW_STAT2 */
8    
9     #if defined(SHOW_STAT) || defined(SHOW_STAT2)
10     #include <stdio.h>
11     #endif
12    
13     #include "LzmaEnc.h"
14    
15     #include "LzFind.h"
16     #ifdef COMPRESS_MF_MT
17     #include "LzFindMt.h"
18     #endif
19    
20     #ifdef SHOW_STAT
21     static int ttt = 0;
22     #endif
23    
24     #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
25    
26     #define kBlockSize (9 << 10)
27     #define kUnpackBlockSize (1 << 18)
28     #define kMatchArraySize (1 << 21)
29     #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
30    
31     #define kNumMaxDirectBits (31)
32    
33     #define kNumTopBits 24
34     #define kTopValue ((UInt32)1 << kNumTopBits)
35    
36     #define kNumBitModelTotalBits 11
37     #define kBitModelTotal (1 << kNumBitModelTotalBits)
38     #define kNumMoveBits 5
39     #define kProbInitValue (kBitModelTotal >> 1)
40    
41     #define kNumMoveReducingBits 4
42     #define kNumBitPriceShiftBits 4
43     #define kBitPrice (1 << kNumBitPriceShiftBits)
44    
45     void LzmaEncProps_Init(CLzmaEncProps *p)
46     {
47     p->level = 5;
48     p->dictSize = p->mc = 0;
49     p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
50     p->writeEndMark = 0;
51     }
52    
53     void LzmaEncProps_Normalize(CLzmaEncProps *p)
54     {
55     int level = p->level;
56     if (level < 0) level = 5;
57     p->level = level;
58     if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
59     if (p->lc < 0) p->lc = 3;
60     if (p->lp < 0) p->lp = 0;
61     if (p->pb < 0) p->pb = 2;
62     if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
63     if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
64     if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
65     if (p->numHashBytes < 0) p->numHashBytes = 4;
66     if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
67     if (p->numThreads < 0)
68     p->numThreads =
69     #ifdef COMPRESS_MF_MT
70     ((p->btMode && p->algo) ? 2 : 1);
71     #else
72     1;
73     #endif
74     }
75    
76     UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
77     {
78     CLzmaEncProps props = *props2;
79     LzmaEncProps_Normalize(&props);
80     return props.dictSize;
81     }
82    
83     /* #define LZMA_LOG_BSR */
84     /* Define it for Intel's CPU */
85    
86    
87     #ifdef LZMA_LOG_BSR
88    
89     #define kDicLogSizeMaxCompress 30
90    
91     #define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
92    
93     UInt32 GetPosSlot1(UInt32 pos)
94     {
95     UInt32 res;
96     BSR2_RET(pos, res);
97     return res;
98     }
99     #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
100     #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
101    
102     #else
103    
104     #define kNumLogBits (9 + (int)sizeof(size_t) / 2)
105     #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
106    
107     void LzmaEnc_FastPosInit(Byte *g_FastPos)
108     {
109     int c = 2, slotFast;
110     g_FastPos[0] = 0;
111     g_FastPos[1] = 1;
112    
113     for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
114     {
115     UInt32 k = (1 << ((slotFast >> 1) - 1));
116     UInt32 j;
117     for (j = 0; j < k; j++, c++)
118     g_FastPos[c] = (Byte)slotFast;
119     }
120     }
121    
122     #define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
123     (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
124     res = p->g_FastPos[pos >> i] + (i * 2); }
125     /*
126     #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
127     p->g_FastPos[pos >> 6] + 12 : \
128     p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
129     */
130    
131     #define GetPosSlot1(pos) p->g_FastPos[pos]
132     #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
133     #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
134    
135     #endif
136    
137    
138     #define LZMA_NUM_REPS 4
139    
140     typedef unsigned CState;
141    
142     typedef struct _COptimal
143     {
144     UInt32 price;
145    
146     CState state;
147     int prev1IsChar;
148     int prev2;
149    
150     UInt32 posPrev2;
151     UInt32 backPrev2;
152    
153     UInt32 posPrev;
154     UInt32 backPrev;
155     UInt32 backs[LZMA_NUM_REPS];
156     } COptimal;
157    
158     #define kNumOpts (1 << 12)
159    
160     #define kNumLenToPosStates 4
161     #define kNumPosSlotBits 6
162     #define kDicLogSizeMin 0
163     #define kDicLogSizeMax 32
164     #define kDistTableSizeMax (kDicLogSizeMax * 2)
165    
166    
167     #define kNumAlignBits 4
168     #define kAlignTableSize (1 << kNumAlignBits)
169     #define kAlignMask (kAlignTableSize - 1)
170    
171     #define kStartPosModelIndex 4
172     #define kEndPosModelIndex 14
173     #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
174    
175     #define kNumFullDistances (1 << (kEndPosModelIndex / 2))
176    
177     #ifdef _LZMA_PROB32
178     #define CLzmaProb UInt32
179     #else
180     #define CLzmaProb UInt16
181     #endif
182    
183     #define LZMA_PB_MAX 4
184     #define LZMA_LC_MAX 8
185     #define LZMA_LP_MAX 4
186    
187     #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
188    
189    
190     #define kLenNumLowBits 3
191     #define kLenNumLowSymbols (1 << kLenNumLowBits)
192     #define kLenNumMidBits 3
193     #define kLenNumMidSymbols (1 << kLenNumMidBits)
194     #define kLenNumHighBits 8
195     #define kLenNumHighSymbols (1 << kLenNumHighBits)
196    
197     #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
198    
199     #define LZMA_MATCH_LEN_MIN 2
200     #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
201    
202     #define kNumStates 12
203    
204     typedef struct
205     {
206     CLzmaProb choice;
207     CLzmaProb choice2;
208     CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
209     CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
210     CLzmaProb high[kLenNumHighSymbols];
211     } CLenEnc;
212    
213     typedef struct
214     {
215     CLenEnc p;
216     UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
217     UInt32 tableSize;
218     UInt32 counters[LZMA_NUM_PB_STATES_MAX];
219     } CLenPriceEnc;
220    
221     typedef struct _CRangeEnc
222     {
223     UInt32 range;
224     Byte cache;
225     UInt64 low;
226     UInt64 cacheSize;
227     Byte *buf;
228     Byte *bufLim;
229     Byte *bufBase;
230     ISeqOutStream *outStream;
231     UInt64 processed;
232     SRes res;
233     } CRangeEnc;
234    
235     typedef struct _CSeqInStreamBuf
236     {
237     ISeqInStream funcTable;
238     const Byte *data;
239     SizeT rem;
240     } CSeqInStreamBuf;
241    
242     static SRes MyRead(void *pp, void *data, size_t *size)
243     {
244     size_t curSize = *size;
245     CSeqInStreamBuf *p = (CSeqInStreamBuf *)pp;
246     if (p->rem < curSize)
247     curSize = p->rem;
248     memcpy(data, p->data, curSize);
249     p->rem -= curSize;
250     p->data += curSize;
251     *size = curSize;
252     return SZ_OK;
253     }
254    
255     typedef struct
256     {
257     CLzmaProb *litProbs;
258    
259     CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
260     CLzmaProb isRep[kNumStates];
261     CLzmaProb isRepG0[kNumStates];
262     CLzmaProb isRepG1[kNumStates];
263     CLzmaProb isRepG2[kNumStates];
264     CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
265    
266     CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
267     CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
268     CLzmaProb posAlignEncoder[1 << kNumAlignBits];
269    
270     CLenPriceEnc lenEnc;
271     CLenPriceEnc repLenEnc;
272    
273     UInt32 reps[LZMA_NUM_REPS];
274     UInt32 state;
275     } CSaveState;
276    
277     typedef struct _CLzmaEnc
278     {
279     IMatchFinder matchFinder;
280     void *matchFinderObj;
281    
282     #ifdef COMPRESS_MF_MT
283     Bool mtMode;
284     CMatchFinderMt matchFinderMt;
285     #endif
286    
287     CMatchFinder matchFinderBase;
288    
289     #ifdef COMPRESS_MF_MT
290     Byte pad[128];
291     #endif
292    
293     UInt32 optimumEndIndex;
294     UInt32 optimumCurrentIndex;
295    
296     UInt32 longestMatchLength;
297     UInt32 numPairs;
298     UInt32 numAvail;
299     COptimal opt[kNumOpts];
300    
301     #ifndef LZMA_LOG_BSR
302     Byte g_FastPos[1 << kNumLogBits];
303     #endif
304    
305     UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
306     UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
307     UInt32 numFastBytes;
308     UInt32 additionalOffset;
309     UInt32 reps[LZMA_NUM_REPS];
310     UInt32 state;
311    
312     UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
313     UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
314     UInt32 alignPrices[kAlignTableSize];
315     UInt32 alignPriceCount;
316    
317     UInt32 distTableSize;
318    
319     unsigned lc, lp, pb;
320     unsigned lpMask, pbMask;
321    
322     CLzmaProb *litProbs;
323    
324     CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
325     CLzmaProb isRep[kNumStates];
326     CLzmaProb isRepG0[kNumStates];
327     CLzmaProb isRepG1[kNumStates];
328     CLzmaProb isRepG2[kNumStates];
329     CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
330    
331     CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
332     CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
333     CLzmaProb posAlignEncoder[1 << kNumAlignBits];
334    
335     CLenPriceEnc lenEnc;
336     CLenPriceEnc repLenEnc;
337    
338     unsigned lclp;
339    
340     Bool fastMode;
341    
342     CRangeEnc rc;
343    
344     Bool writeEndMark;
345     UInt64 nowPos64;
346     UInt32 matchPriceCount;
347     Bool finished;
348     Bool multiThread;
349    
350     SRes result;
351     UInt32 dictSize;
352     UInt32 matchFinderCycles;
353    
354     ISeqInStream *inStream;
355     CSeqInStreamBuf seqBufInStream;
356    
357     CSaveState saveState;
358     } CLzmaEnc;
359    
360     void LzmaEnc_SaveState(CLzmaEncHandle pp)
361     {
362     CLzmaEnc *p = (CLzmaEnc *)pp;
363     CSaveState *dest = &p->saveState;
364     int i;
365     dest->lenEnc = p->lenEnc;
366     dest->repLenEnc = p->repLenEnc;
367     dest->state = p->state;
368    
369     for (i = 0; i < kNumStates; i++)
370     {
371     memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
372     memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
373     }
374     for (i = 0; i < kNumLenToPosStates; i++)
375     memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
376     memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
377     memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
378     memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
379     memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
380     memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
381     memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
382     memcpy(dest->reps, p->reps, sizeof(p->reps));
383     memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
384     }
385    
386     void LzmaEnc_RestoreState(CLzmaEncHandle pp)
387     {
388     CLzmaEnc *dest = (CLzmaEnc *)pp;
389     const CSaveState *p = &dest->saveState;
390     int i;
391     dest->lenEnc = p->lenEnc;
392     dest->repLenEnc = p->repLenEnc;
393     dest->state = p->state;
394    
395     for (i = 0; i < kNumStates; i++)
396     {
397     memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
398     memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
399     }
400     for (i = 0; i < kNumLenToPosStates; i++)
401     memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
402     memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
403     memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
404     memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
405     memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
406     memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
407     memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
408     memcpy(dest->reps, p->reps, sizeof(p->reps));
409     memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
410     }
411    
412     SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
413     {
414     CLzmaEnc *p = (CLzmaEnc *)pp;
415     CLzmaEncProps props = *props2;
416     LzmaEncProps_Normalize(&props);
417    
418     if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
419     props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
420     return SZ_ERROR_PARAM;
421     p->dictSize = props.dictSize;
422     p->matchFinderCycles = props.mc;
423     {
424     unsigned fb = props.fb;
425     if (fb < 5)
426     fb = 5;
427     if (fb > LZMA_MATCH_LEN_MAX)
428     fb = LZMA_MATCH_LEN_MAX;
429     p->numFastBytes = fb;
430     }
431     p->lc = props.lc;
432     p->lp = props.lp;
433     p->pb = props.pb;
434     p->fastMode = (props.algo == 0);
435     p->matchFinderBase.btMode = props.btMode;
436     {
437     UInt32 numHashBytes = 4;
438     if (props.btMode)
439     {
440     if (props.numHashBytes < 2)
441     numHashBytes = 2;
442     else if (props.numHashBytes < 4)
443     numHashBytes = props.numHashBytes;
444     }
445     p->matchFinderBase.numHashBytes = numHashBytes;
446     }
447    
448     p->matchFinderBase.cutValue = props.mc;
449    
450     p->writeEndMark = props.writeEndMark;
451    
452     #ifdef COMPRESS_MF_MT
453     /*
454     if (newMultiThread != _multiThread)
455     {
456     ReleaseMatchFinder();
457     _multiThread = newMultiThread;
458     }
459     */
460     p->multiThread = (props.numThreads > 1);
461     #endif
462    
463     return SZ_OK;
464     }
465    
466     static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
467     static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
468     static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
469     static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
470    
471     #define IsCharState(s) ((s) < 7)
472    
473     #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
474    
475     #define kInfinityPrice (1 << 30)
476    
477     static void RangeEnc_Construct(CRangeEnc *p)
478     {
479     p->outStream = 0;
480     p->bufBase = 0;
481     }
482    
483     #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
484    
485     #define RC_BUF_SIZE (1 << 16)
486     static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
487     {
488     if (p->bufBase == 0)
489     {
490     p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
491     if (p->bufBase == 0)
492     return 0;
493     p->bufLim = p->bufBase + RC_BUF_SIZE;
494     }
495     return 1;
496     }
497    
498     static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
499     {
500     alloc->Free(alloc, p->bufBase);
501     p->bufBase = 0;
502     }
503    
504     static void RangeEnc_Init(CRangeEnc *p)
505     {
506     /* Stream.Init(); */
507     p->low = 0;
508     p->range = 0xFFFFFFFF;
509     p->cacheSize = 1;
510     p->cache = 0;
511    
512     p->buf = p->bufBase;
513    
514     p->processed = 0;
515     p->res = SZ_OK;
516     }
517    
518     static void RangeEnc_FlushStream(CRangeEnc *p)
519     {
520     size_t num;
521     if (p->res != SZ_OK)
522     return;
523     num = p->buf - p->bufBase;
524     if (num != p->outStream->Write(p->outStream, p->bufBase, num))
525     p->res = SZ_ERROR_WRITE;
526     p->processed += num;
527     p->buf = p->bufBase;
528     }
529    
530     static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
531     {
532     if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
533     {
534     Byte temp = p->cache;
535     do
536     {
537     Byte *buf = p->buf;
538     *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
539     p->buf = buf;
540     if (buf == p->bufLim)
541     RangeEnc_FlushStream(p);
542     temp = 0xFF;
543     }
544     while (--p->cacheSize != 0);
545     p->cache = (Byte)((UInt32)p->low >> 24);
546     }
547     p->cacheSize++;
548     p->low = (UInt32)p->low << 8;
549     }
550    
551     static void RangeEnc_FlushData(CRangeEnc *p)
552     {
553     int i;
554     for (i = 0; i < 5; i++)
555     RangeEnc_ShiftLow(p);
556     }
557    
558     static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
559     {
560     do
561     {
562     p->range >>= 1;
563     p->low += p->range & (0 - ((value >> --numBits) & 1));
564     if (p->range < kTopValue)
565     {
566     p->range <<= 8;
567     RangeEnc_ShiftLow(p);
568     }
569     }
570     while (numBits != 0);
571     }
572    
573     static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
574     {
575     UInt32 ttt = *prob;
576     UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
577     if (symbol == 0)
578     {
579     p->range = newBound;
580     ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
581     }
582     else
583     {
584     p->low += newBound;
585     p->range -= newBound;
586     ttt -= ttt >> kNumMoveBits;
587     }
588     *prob = (CLzmaProb)ttt;
589     if (p->range < kTopValue)
590     {
591     p->range <<= 8;
592     RangeEnc_ShiftLow(p);
593     }
594     }
595    
596     static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
597     {
598     symbol |= 0x100;
599     do
600     {
601     RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
602     symbol <<= 1;
603     }
604     while (symbol < 0x10000);
605     }
606    
607     static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
608     {
609     UInt32 offs = 0x100;
610     symbol |= 0x100;
611     do
612     {
613     matchByte <<= 1;
614     RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
615     symbol <<= 1;
616     offs &= ~(matchByte ^ symbol);
617     }
618     while (symbol < 0x10000);
619     }
620    
621     void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
622     {
623     UInt32 i;
624     for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
625     {
626     const int kCyclesBits = kNumBitPriceShiftBits;
627     UInt32 w = i;
628     UInt32 bitCount = 0;
629     int j;
630     for (j = 0; j < kCyclesBits; j++)
631     {
632     w = w * w;
633     bitCount <<= 1;
634     while (w >= ((UInt32)1 << 16))
635     {
636     w >>= 1;
637     bitCount++;
638     }
639     }
640     ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
641     }
642     }
643    
644    
645     #define GET_PRICE(prob, symbol) \
646     p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
647    
648     #define GET_PRICEa(prob, symbol) \
649     ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
650    
651     #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
652     #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
653    
654     #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
655     #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
656    
657     static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
658     {
659     UInt32 price = 0;
660     symbol |= 0x100;
661     do
662     {
663     price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
664     symbol <<= 1;
665     }
666     while (symbol < 0x10000);
667     return price;
668     }
669    
670     static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
671     {
672     UInt32 price = 0;
673     UInt32 offs = 0x100;
674     symbol |= 0x100;
675     do
676     {
677     matchByte <<= 1;
678     price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
679     symbol <<= 1;
680     offs &= ~(matchByte ^ symbol);
681     }
682     while (symbol < 0x10000);
683     return price;
684     }
685    
686    
687     static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
688     {
689     UInt32 m = 1;
690     int i;
691     for (i = numBitLevels; i != 0;)
692     {
693     UInt32 bit;
694     i--;
695     bit = (symbol >> i) & 1;
696     RangeEnc_EncodeBit(rc, probs + m, bit);
697     m = (m << 1) | bit;
698     }
699     }
700    
701     static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
702     {
703     UInt32 m = 1;
704     int i;
705     for (i = 0; i < numBitLevels; i++)
706     {
707     UInt32 bit = symbol & 1;
708     RangeEnc_EncodeBit(rc, probs + m, bit);
709     m = (m << 1) | bit;
710     symbol >>= 1;
711     }
712     }
713    
714     static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
715     {
716     UInt32 price = 0;
717     symbol |= (1 << numBitLevels);
718     while (symbol != 1)
719     {
720     price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
721     symbol >>= 1;
722     }
723     return price;
724     }
725    
726     static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
727     {
728     UInt32 price = 0;
729     UInt32 m = 1;
730     int i;
731     for (i = numBitLevels; i != 0; i--)
732     {
733     UInt32 bit = symbol & 1;
734     symbol >>= 1;
735     price += GET_PRICEa(probs[m], bit);
736     m = (m << 1) | bit;
737     }
738     return price;
739     }
740    
741    
742     static void LenEnc_Init(CLenEnc *p)
743     {
744     unsigned i;
745     p->choice = p->choice2 = kProbInitValue;
746     for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
747     p->low[i] = kProbInitValue;
748     for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
749     p->mid[i] = kProbInitValue;
750     for (i = 0; i < kLenNumHighSymbols; i++)
751     p->high[i] = kProbInitValue;
752     }
753    
754     static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
755     {
756     if (symbol < kLenNumLowSymbols)
757     {
758     RangeEnc_EncodeBit(rc, &p->choice, 0);
759     RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
760     }
761     else
762     {
763     RangeEnc_EncodeBit(rc, &p->choice, 1);
764     if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
765     {
766     RangeEnc_EncodeBit(rc, &p->choice2, 0);
767     RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
768     }
769     else
770     {
771     RangeEnc_EncodeBit(rc, &p->choice2, 1);
772     RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
773     }
774     }
775     }
776    
777     static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
778     {
779     UInt32 a0 = GET_PRICE_0a(p->choice);
780     UInt32 a1 = GET_PRICE_1a(p->choice);
781     UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
782     UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
783     UInt32 i = 0;
784     for (i = 0; i < kLenNumLowSymbols; i++)
785     {
786     if (i >= numSymbols)
787     return;
788     prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
789     }
790     for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
791     {
792     if (i >= numSymbols)
793     return;
794     prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
795     }
796     for (; i < numSymbols; i++)
797     prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
798     }
799    
800     static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
801     {
802     LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
803     p->counters[posState] = p->tableSize;
804     }
805    
806     static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
807     {
808     UInt32 posState;
809     for (posState = 0; posState < numPosStates; posState++)
810     LenPriceEnc_UpdateTable(p, posState, ProbPrices);
811     }
812    
813     static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
814     {
815     LenEnc_Encode(&p->p, rc, symbol, posState);
816     if (updatePrice)
817     if (--p->counters[posState] == 0)
818     LenPriceEnc_UpdateTable(p, posState, ProbPrices);
819     }
820    
821    
822    
823    
824     static void MovePos(CLzmaEnc *p, UInt32 num)
825     {
826     #ifdef SHOW_STAT
827     ttt += num;
828     printf("\n MovePos %d", num);
829     #endif
830     if (num != 0)
831     {
832     p->additionalOffset += num;
833     p->matchFinder.Skip(p->matchFinderObj, num);
834     }
835     }
836    
837     static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
838     {
839     UInt32 lenRes = 0, numPairs;
840     p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
841     numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
842     #ifdef SHOW_STAT
843     printf("\n i = %d numPairs = %d ", ttt, numPairs / 2);
844     ttt++;
845     {
846     UInt32 i;
847     for (i = 0; i < numPairs; i += 2)
848     printf("%2d %6d | ", p->matches[i], p->matches[i + 1]);
849     }
850     #endif
851     if (numPairs > 0)
852     {
853     lenRes = p->matches[numPairs - 2];
854     if (lenRes == p->numFastBytes)
855     {
856     const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
857     UInt32 distance = p->matches[numPairs - 1] + 1;
858     UInt32 numAvail = p->numAvail;
859     if (numAvail > LZMA_MATCH_LEN_MAX)
860     numAvail = LZMA_MATCH_LEN_MAX;
861     {
862     const Byte *pby2 = pby - distance;
863     for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
864     }
865     }
866     }
867     p->additionalOffset++;
868     *numDistancePairsRes = numPairs;
869     return lenRes;
870     }
871    
872    
873     #define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
874     #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
875     #define IsShortRep(p) ((p)->backPrev == 0)
876    
877     static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
878     {
879     return
880     GET_PRICE_0(p->isRepG0[state]) +
881     GET_PRICE_0(p->isRep0Long[state][posState]);
882     }
883    
884     static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
885     {
886     UInt32 price;
887     if (repIndex == 0)
888     {
889     price = GET_PRICE_0(p->isRepG0[state]);
890     price += GET_PRICE_1(p->isRep0Long[state][posState]);
891     }
892     else
893     {
894     price = GET_PRICE_1(p->isRepG0[state]);
895     if (repIndex == 1)
896     price += GET_PRICE_0(p->isRepG1[state]);
897     else
898     {
899     price += GET_PRICE_1(p->isRepG1[state]);
900     price += GET_PRICE(p->isRepG2[state], repIndex - 2);
901     }
902     }
903     return price;
904     }
905    
906     static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
907     {
908     return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
909     GetPureRepPrice(p, repIndex, state, posState);
910     }
911    
912     static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
913     {
914     UInt32 posMem = p->opt[cur].posPrev;
915     UInt32 backMem = p->opt[cur].backPrev;
916     p->optimumEndIndex = cur;
917     do
918     {
919     if (p->opt[cur].prev1IsChar)
920     {
921     MakeAsChar(&p->opt[posMem])
922     p->opt[posMem].posPrev = posMem - 1;
923     if (p->opt[cur].prev2)
924     {
925     p->opt[posMem - 1].prev1IsChar = False;
926     p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
927     p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
928     }
929     }
930     {
931     UInt32 posPrev = posMem;
932     UInt32 backCur = backMem;
933    
934     backMem = p->opt[posPrev].backPrev;
935     posMem = p->opt[posPrev].posPrev;
936    
937     p->opt[posPrev].backPrev = backCur;
938     p->opt[posPrev].posPrev = cur;
939     cur = posPrev;
940     }
941     }
942     while (cur != 0);
943     *backRes = p->opt[0].backPrev;
944     p->optimumCurrentIndex = p->opt[0].posPrev;
945     return p->optimumCurrentIndex;
946     }
947    
948     #define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
949    
950     static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
951     {
952     UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
953     UInt32 matchPrice, repMatchPrice, normalMatchPrice;
954     UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
955     UInt32 *matches;
956     const Byte *data;
957     Byte curByte, matchByte;
958     if (p->optimumEndIndex != p->optimumCurrentIndex)
959     {
960     const COptimal *opt = &p->opt[p->optimumCurrentIndex];
961     UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
962     *backRes = opt->backPrev;
963     p->optimumCurrentIndex = opt->posPrev;
964     return lenRes;
965     }
966     p->optimumCurrentIndex = p->optimumEndIndex = 0;
967    
968     if (p->additionalOffset == 0)
969     mainLen = ReadMatchDistances(p, &numPairs);
970     else
971     {
972     mainLen = p->longestMatchLength;
973     numPairs = p->numPairs;
974     }
975    
976     numAvail = p->numAvail;
977     if (numAvail < 2)
978     {
979     *backRes = (UInt32)(-1);
980     return 1;
981     }
982     if (numAvail > LZMA_MATCH_LEN_MAX)
983     numAvail = LZMA_MATCH_LEN_MAX;
984    
985     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
986     repMaxIndex = 0;
987     for (i = 0; i < LZMA_NUM_REPS; i++)
988     {
989     UInt32 lenTest;
990     const Byte *data2;
991     reps[i] = p->reps[i];
992     data2 = data - (reps[i] + 1);
993     if (data[0] != data2[0] || data[1] != data2[1])
994     {
995     repLens[i] = 0;
996     continue;
997     }
998     for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
999     repLens[i] = lenTest;
1000     if (lenTest > repLens[repMaxIndex])
1001     repMaxIndex = i;
1002     }
1003     if (repLens[repMaxIndex] >= p->numFastBytes)
1004     {
1005     UInt32 lenRes;
1006     *backRes = repMaxIndex;
1007     lenRes = repLens[repMaxIndex];
1008     MovePos(p, lenRes - 1);
1009     return lenRes;
1010     }
1011    
1012     matches = p->matches;
1013     if (mainLen >= p->numFastBytes)
1014     {
1015     *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
1016     MovePos(p, mainLen - 1);
1017     return mainLen;
1018     }
1019     curByte = *data;
1020     matchByte = *(data - (reps[0] + 1));
1021    
1022     if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
1023     {
1024     *backRes = (UInt32)-1;
1025     return 1;
1026     }
1027    
1028     p->opt[0].state = (CState)p->state;
1029    
1030     posState = (position & p->pbMask);
1031    
1032     {
1033     const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1034     p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
1035     (!IsCharState(p->state) ?
1036     LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
1037     LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1038     }
1039    
1040     MakeAsChar(&p->opt[1]);
1041    
1042     matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
1043     repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
1044    
1045     if (matchByte == curByte)
1046     {
1047     UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
1048     if (shortRepPrice < p->opt[1].price)
1049     {
1050     p->opt[1].price = shortRepPrice;
1051     MakeAsShortRep(&p->opt[1]);
1052     }
1053     }
1054     lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
1055    
1056     if (lenEnd < 2)
1057     {
1058     *backRes = p->opt[1].backPrev;
1059     return 1;
1060     }
1061    
1062     p->opt[1].posPrev = 0;
1063     for (i = 0; i < LZMA_NUM_REPS; i++)
1064     p->opt[0].backs[i] = reps[i];
1065    
1066     len = lenEnd;
1067     do
1068     p->opt[len--].price = kInfinityPrice;
1069     while (len >= 2);
1070    
1071     for (i = 0; i < LZMA_NUM_REPS; i++)
1072     {
1073     UInt32 repLen = repLens[i];
1074     UInt32 price;
1075     if (repLen < 2)
1076     continue;
1077     price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
1078     do
1079     {
1080     UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
1081     COptimal *opt = &p->opt[repLen];
1082     if (curAndLenPrice < opt->price)
1083     {
1084     opt->price = curAndLenPrice;
1085     opt->posPrev = 0;
1086     opt->backPrev = i;
1087     opt->prev1IsChar = False;
1088     }
1089     }
1090     while (--repLen >= 2);
1091     }
1092    
1093     normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
1094    
1095     len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
1096     if (len <= mainLen)
1097     {
1098     UInt32 offs = 0;
1099     while (len > matches[offs])
1100     offs += 2;
1101     for (; ; len++)
1102     {
1103     COptimal *opt;
1104     UInt32 distance = matches[offs + 1];
1105    
1106     UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
1107     UInt32 lenToPosState = GetLenToPosState(len);
1108     if (distance < kNumFullDistances)
1109     curAndLenPrice += p->distancesPrices[lenToPosState][distance];
1110     else
1111     {
1112     UInt32 slot;
1113     GetPosSlot2(distance, slot);
1114     curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
1115     }
1116     opt = &p->opt[len];
1117     if (curAndLenPrice < opt->price)
1118     {
1119     opt->price = curAndLenPrice;
1120     opt->posPrev = 0;
1121     opt->backPrev = distance + LZMA_NUM_REPS;
1122     opt->prev1IsChar = False;
1123     }
1124     if (len == matches[offs])
1125     {
1126     offs += 2;
1127     if (offs == numPairs)
1128     break;
1129     }
1130     }
1131     }
1132    
1133     cur = 0;
1134    
1135     #ifdef SHOW_STAT2
1136     if (position >= 0)
1137     {
1138     unsigned i;
1139     printf("\n pos = %4X", position);
1140     for (i = cur; i <= lenEnd; i++)
1141     printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
1142     }
1143     #endif
1144    
1145     for (;;)
1146     {
1147     UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
1148     UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
1149     Bool nextIsChar;
1150     Byte curByte, matchByte;
1151     const Byte *data;
1152     COptimal *curOpt;
1153     COptimal *nextOpt;
1154    
1155     cur++;
1156     if (cur == lenEnd)
1157     return Backward(p, backRes, cur);
1158    
1159     newLen = ReadMatchDistances(p, &numPairs);
1160     if (newLen >= p->numFastBytes)
1161     {
1162     p->numPairs = numPairs;
1163     p->longestMatchLength = newLen;
1164     return Backward(p, backRes, cur);
1165     }
1166     position++;
1167     curOpt = &p->opt[cur];
1168     posPrev = curOpt->posPrev;
1169     if (curOpt->prev1IsChar)
1170     {
1171     posPrev--;
1172     if (curOpt->prev2)
1173     {
1174     state = p->opt[curOpt->posPrev2].state;
1175     if (curOpt->backPrev2 < LZMA_NUM_REPS)
1176     state = kRepNextStates[state];
1177     else
1178     state = kMatchNextStates[state];
1179     }
1180     else
1181     state = p->opt[posPrev].state;
1182     state = kLiteralNextStates[state];
1183     }
1184     else
1185     state = p->opt[posPrev].state;
1186     if (posPrev == cur - 1)
1187     {
1188     if (IsShortRep(curOpt))
1189     state = kShortRepNextStates[state];
1190     else
1191     state = kLiteralNextStates[state];
1192     }
1193     else
1194     {
1195     UInt32 pos;
1196     const COptimal *prevOpt;
1197     if (curOpt->prev1IsChar && curOpt->prev2)
1198     {
1199     posPrev = curOpt->posPrev2;
1200     pos = curOpt->backPrev2;
1201     state = kRepNextStates[state];
1202     }
1203     else
1204     {
1205     pos = curOpt->backPrev;
1206     if (pos < LZMA_NUM_REPS)
1207     state = kRepNextStates[state];
1208     else
1209     state = kMatchNextStates[state];
1210     }
1211     prevOpt = &p->opt[posPrev];
1212     if (pos < LZMA_NUM_REPS)
1213     {
1214     UInt32 i;
1215     reps[0] = prevOpt->backs[pos];
1216     for (i = 1; i <= pos; i++)
1217     reps[i] = prevOpt->backs[i - 1];
1218     for (; i < LZMA_NUM_REPS; i++)
1219     reps[i] = prevOpt->backs[i];
1220     }
1221     else
1222     {
1223     UInt32 i;
1224     reps[0] = (pos - LZMA_NUM_REPS);
1225     for (i = 1; i < LZMA_NUM_REPS; i++)
1226     reps[i] = prevOpt->backs[i - 1];
1227     }
1228     }
1229     curOpt->state = (CState)state;
1230    
1231     curOpt->backs[0] = reps[0];
1232     curOpt->backs[1] = reps[1];
1233     curOpt->backs[2] = reps[2];
1234     curOpt->backs[3] = reps[3];
1235    
1236     curPrice = curOpt->price;
1237     nextIsChar = False;
1238     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1239     curByte = *data;
1240     matchByte = *(data - (reps[0] + 1));
1241    
1242     posState = (position & p->pbMask);
1243    
1244     curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
1245     {
1246     const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1247     curAnd1Price +=
1248     (!IsCharState(state) ?
1249     LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
1250     LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1251     }
1252    
1253     nextOpt = &p->opt[cur + 1];
1254    
1255     if (curAnd1Price < nextOpt->price)
1256     {
1257     nextOpt->price = curAnd1Price;
1258     nextOpt->posPrev = cur;
1259     MakeAsChar(nextOpt);
1260     nextIsChar = True;
1261     }
1262    
1263     matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
1264     repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
1265    
1266     if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
1267     {
1268     UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
1269     if (shortRepPrice <= nextOpt->price)
1270     {
1271     nextOpt->price = shortRepPrice;
1272     nextOpt->posPrev = cur;
1273     MakeAsShortRep(nextOpt);
1274     nextIsChar = True;
1275     }
1276     }
1277     numAvailFull = p->numAvail;
1278     {
1279     UInt32 temp = kNumOpts - 1 - cur;
1280     if (temp < numAvailFull)
1281     numAvailFull = temp;
1282     }
1283    
1284     if (numAvailFull < 2)
1285     continue;
1286     numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
1287    
1288     if (!nextIsChar && matchByte != curByte) /* speed optimization */
1289     {
1290     /* try Literal + rep0 */
1291     UInt32 temp;
1292     UInt32 lenTest2;
1293     const Byte *data2 = data - (reps[0] + 1);
1294     UInt32 limit = p->numFastBytes + 1;
1295     if (limit > numAvailFull)
1296     limit = numAvailFull;
1297    
1298     for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
1299     lenTest2 = temp - 1;
1300     if (lenTest2 >= 2)
1301     {
1302     UInt32 state2 = kLiteralNextStates[state];
1303     UInt32 posStateNext = (position + 1) & p->pbMask;
1304     UInt32 nextRepMatchPrice = curAnd1Price +
1305     GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1306     GET_PRICE_1(p->isRep[state2]);
1307     /* for (; lenTest2 >= 2; lenTest2--) */
1308     {
1309     UInt32 curAndLenPrice;
1310     COptimal *opt;
1311     UInt32 offset = cur + 1 + lenTest2;
1312     while (lenEnd < offset)
1313     p->opt[++lenEnd].price = kInfinityPrice;
1314     curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1315     opt = &p->opt[offset];
1316     if (curAndLenPrice < opt->price)
1317     {
1318     opt->price = curAndLenPrice;
1319     opt->posPrev = cur + 1;
1320     opt->backPrev = 0;
1321     opt->prev1IsChar = True;
1322     opt->prev2 = False;
1323     }
1324     }
1325     }
1326     }
1327    
1328     startLen = 2; /* speed optimization */
1329     {
1330     UInt32 repIndex;
1331     for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
1332     {
1333     UInt32 lenTest;
1334     UInt32 lenTestTemp;
1335     UInt32 price;
1336     const Byte *data2 = data - (reps[repIndex] + 1);
1337     if (data[0] != data2[0] || data[1] != data2[1])
1338     continue;
1339     for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
1340     while (lenEnd < cur + lenTest)
1341     p->opt[++lenEnd].price = kInfinityPrice;
1342     lenTestTemp = lenTest;
1343     price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
1344     do
1345     {
1346     UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
1347     COptimal *opt = &p->opt[cur + lenTest];
1348     if (curAndLenPrice < opt->price)
1349     {
1350     opt->price = curAndLenPrice;
1351     opt->posPrev = cur;
1352     opt->backPrev = repIndex;
1353     opt->prev1IsChar = False;
1354     }
1355     }
1356     while (--lenTest >= 2);
1357     lenTest = lenTestTemp;
1358    
1359     if (repIndex == 0)
1360     startLen = lenTest + 1;
1361    
1362     /* if (_maxMode) */
1363     {
1364     UInt32 lenTest2 = lenTest + 1;
1365     UInt32 limit = lenTest2 + p->numFastBytes;
1366     UInt32 nextRepMatchPrice;
1367     if (limit > numAvailFull)
1368     limit = numAvailFull;
1369     for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1370     lenTest2 -= lenTest + 1;
1371     if (lenTest2 >= 2)
1372     {
1373     UInt32 state2 = kRepNextStates[state];
1374     UInt32 posStateNext = (position + lenTest) & p->pbMask;
1375     UInt32 curAndLenCharPrice =
1376     price + p->repLenEnc.prices[posState][lenTest - 2] +
1377     GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1378     LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1379     data[lenTest], data2[lenTest], p->ProbPrices);
1380     state2 = kLiteralNextStates[state2];
1381     posStateNext = (position + lenTest + 1) & p->pbMask;
1382     nextRepMatchPrice = curAndLenCharPrice +
1383     GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1384     GET_PRICE_1(p->isRep[state2]);
1385    
1386     /* for (; lenTest2 >= 2; lenTest2--) */
1387     {
1388     UInt32 curAndLenPrice;
1389     COptimal *opt;
1390     UInt32 offset = cur + lenTest + 1 + lenTest2;
1391     while (lenEnd < offset)
1392     p->opt[++lenEnd].price = kInfinityPrice;
1393     curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1394     opt = &p->opt[offset];
1395     if (curAndLenPrice < opt->price)
1396     {
1397     opt->price = curAndLenPrice;
1398     opt->posPrev = cur + lenTest + 1;
1399     opt->backPrev = 0;
1400     opt->prev1IsChar = True;
1401     opt->prev2 = True;
1402     opt->posPrev2 = cur;
1403     opt->backPrev2 = repIndex;
1404     }
1405     }
1406     }
1407     }
1408     }
1409     }
1410     /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
1411     if (newLen > numAvail)
1412     {
1413     newLen = numAvail;
1414     for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
1415     matches[numPairs] = newLen;
1416     numPairs += 2;
1417     }
1418     if (newLen >= startLen)
1419     {
1420     UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
1421     UInt32 offs, curBack, posSlot;
1422     UInt32 lenTest;
1423     while (lenEnd < cur + newLen)
1424     p->opt[++lenEnd].price = kInfinityPrice;
1425    
1426     offs = 0;
1427     while (startLen > matches[offs])
1428     offs += 2;
1429     curBack = matches[offs + 1];
1430     GetPosSlot2(curBack, posSlot);
1431     for (lenTest = /*2*/ startLen; ; lenTest++)
1432     {
1433     UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
1434     UInt32 lenToPosState = GetLenToPosState(lenTest);
1435     COptimal *opt;
1436     if (curBack < kNumFullDistances)
1437     curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
1438     else
1439     curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
1440    
1441     opt = &p->opt[cur + lenTest];
1442     if (curAndLenPrice < opt->price)
1443     {
1444     opt->price = curAndLenPrice;
1445     opt->posPrev = cur;
1446     opt->backPrev = curBack + LZMA_NUM_REPS;
1447     opt->prev1IsChar = False;
1448     }
1449    
1450     if (/*_maxMode && */lenTest == matches[offs])
1451     {
1452     /* Try Match + Literal + Rep0 */
1453     const Byte *data2 = data - (curBack + 1);
1454     UInt32 lenTest2 = lenTest + 1;
1455     UInt32 limit = lenTest2 + p->numFastBytes;
1456     UInt32 nextRepMatchPrice;
1457     if (limit > numAvailFull)
1458     limit = numAvailFull;
1459     for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1460     lenTest2 -= lenTest + 1;
1461     if (lenTest2 >= 2)
1462     {
1463     UInt32 state2 = kMatchNextStates[state];
1464     UInt32 posStateNext = (position + lenTest) & p->pbMask;
1465     UInt32 curAndLenCharPrice = curAndLenPrice +
1466     GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1467     LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1468     data[lenTest], data2[lenTest], p->ProbPrices);
1469     state2 = kLiteralNextStates[state2];
1470     posStateNext = (posStateNext + 1) & p->pbMask;
1471     nextRepMatchPrice = curAndLenCharPrice +
1472     GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1473     GET_PRICE_1(p->isRep[state2]);
1474    
1475     /* for (; lenTest2 >= 2; lenTest2--) */
1476     {
1477     UInt32 offset = cur + lenTest + 1 + lenTest2;
1478     UInt32 curAndLenPrice;
1479     COptimal *opt;
1480     while (lenEnd < offset)
1481     p->opt[++lenEnd].price = kInfinityPrice;
1482     curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1483     opt = &p->opt[offset];
1484     if (curAndLenPrice < opt->price)
1485     {
1486     opt->price = curAndLenPrice;
1487     opt->posPrev = cur + lenTest + 1;
1488     opt->backPrev = 0;
1489     opt->prev1IsChar = True;
1490     opt->prev2 = True;
1491     opt->posPrev2 = cur;
1492     opt->backPrev2 = curBack + LZMA_NUM_REPS;
1493     }
1494     }
1495     }
1496     offs += 2;
1497     if (offs == numPairs)
1498     break;
1499     curBack = matches[offs + 1];
1500     if (curBack >= kNumFullDistances)
1501     GetPosSlot2(curBack, posSlot);
1502     }
1503     }
1504     }
1505     }
1506     }
1507    
1508     #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
1509    
1510     static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
1511     {
1512     UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
1513     const Byte *data;
1514     const UInt32 *matches;
1515    
1516     if (p->additionalOffset == 0)
1517     mainLen = ReadMatchDistances(p, &numPairs);
1518     else
1519     {
1520     mainLen = p->longestMatchLength;
1521     numPairs = p->numPairs;
1522     }
1523    
1524     numAvail = p->numAvail;
1525     *backRes = (UInt32)-1;
1526     if (numAvail < 2)
1527     return 1;
1528     if (numAvail > LZMA_MATCH_LEN_MAX)
1529     numAvail = LZMA_MATCH_LEN_MAX;
1530     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1531    
1532     repLen = repIndex = 0;
1533     for (i = 0; i < LZMA_NUM_REPS; i++)
1534     {
1535     UInt32 len;
1536     const Byte *data2 = data - (p->reps[i] + 1);
1537     if (data[0] != data2[0] || data[1] != data2[1])
1538     continue;
1539     for (len = 2; len < numAvail && data[len] == data2[len]; len++);
1540     if (len >= p->numFastBytes)
1541     {
1542     *backRes = i;
1543     MovePos(p, len - 1);
1544     return len;
1545     }
1546     if (len > repLen)
1547     {
1548     repIndex = i;
1549     repLen = len;
1550     }
1551     }
1552    
1553     matches = p->matches;
1554     if (mainLen >= p->numFastBytes)
1555     {
1556     *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
1557     MovePos(p, mainLen - 1);
1558     return mainLen;
1559     }
1560    
1561     mainDist = 0; /* for GCC */
1562     if (mainLen >= 2)
1563     {
1564     mainDist = matches[numPairs - 1];
1565     while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
1566     {
1567     if (!ChangePair(matches[numPairs - 3], mainDist))
1568     break;
1569     numPairs -= 2;
1570     mainLen = matches[numPairs - 2];
1571     mainDist = matches[numPairs - 1];
1572     }
1573     if (mainLen == 2 && mainDist >= 0x80)
1574     mainLen = 1;
1575     }
1576    
1577     if (repLen >= 2 && (
1578     (repLen + 1 >= mainLen) ||
1579     (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
1580     (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
1581     {
1582     *backRes = repIndex;
1583     MovePos(p, repLen - 1);
1584     return repLen;
1585     }
1586    
1587     if (mainLen < 2 || numAvail <= 2)
1588     return 1;
1589    
1590     p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
1591     if (p->longestMatchLength >= 2)
1592     {
1593     UInt32 newDistance = matches[p->numPairs - 1];
1594     if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
1595     (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
1596     (p->longestMatchLength > mainLen + 1) ||
1597     (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
1598     return 1;
1599     }
1600    
1601     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1602     for (i = 0; i < LZMA_NUM_REPS; i++)
1603     {
1604     UInt32 len, limit;
1605     const Byte *data2 = data - (p->reps[i] + 1);
1606     if (data[0] != data2[0] || data[1] != data2[1])
1607     continue;
1608     limit = mainLen - 1;
1609     for (len = 2; len < limit && data[len] == data2[len]; len++);
1610     if (len >= limit)
1611     return 1;
1612     }
1613     *backRes = mainDist + LZMA_NUM_REPS;
1614     MovePos(p, mainLen - 2);
1615     return mainLen;
1616     }
1617    
1618     static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
1619     {
1620     UInt32 len;
1621     RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1622     RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1623     p->state = kMatchNextStates[p->state];
1624     len = LZMA_MATCH_LEN_MIN;
1625     LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1626     RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
1627     RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
1628     RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
1629     }
1630    
1631     static SRes CheckErrors(CLzmaEnc *p)
1632     {
1633     if (p->result != SZ_OK)
1634     return p->result;
1635     if (p->rc.res != SZ_OK)
1636     p->result = SZ_ERROR_WRITE;
1637     if (p->matchFinderBase.result != SZ_OK)
1638     p->result = SZ_ERROR_READ;
1639     if (p->result != SZ_OK)
1640     p->finished = True;
1641     return p->result;
1642     }
1643    
1644     static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
1645     {
1646     /* ReleaseMFStream(); */
1647     p->finished = True;
1648     if (p->writeEndMark)
1649     WriteEndMarker(p, nowPos & p->pbMask);
1650     RangeEnc_FlushData(&p->rc);
1651     RangeEnc_FlushStream(&p->rc);
1652     return CheckErrors(p);
1653     }
1654    
1655     static void FillAlignPrices(CLzmaEnc *p)
1656     {
1657     UInt32 i;
1658     for (i = 0; i < kAlignTableSize; i++)
1659     p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
1660     p->alignPriceCount = 0;
1661     }
1662    
1663     static void FillDistancesPrices(CLzmaEnc *p)
1664     {
1665     UInt32 tempPrices[kNumFullDistances];
1666     UInt32 i, lenToPosState;
1667     for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
1668     {
1669     UInt32 posSlot = GetPosSlot1(i);
1670     UInt32 footerBits = ((posSlot >> 1) - 1);
1671     UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1672     tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
1673     }
1674    
1675     for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
1676     {
1677     UInt32 posSlot;
1678     const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
1679     UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
1680     for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
1681     posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
1682     for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
1683     posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
1684    
1685     {
1686     UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
1687     UInt32 i;
1688     for (i = 0; i < kStartPosModelIndex; i++)
1689     distancesPrices[i] = posSlotPrices[i];
1690     for (; i < kNumFullDistances; i++)
1691     distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
1692     }
1693     }
1694     p->matchPriceCount = 0;
1695     }
1696    
1697     void LzmaEnc_Construct(CLzmaEnc *p)
1698     {
1699     RangeEnc_Construct(&p->rc);
1700     MatchFinder_Construct(&p->matchFinderBase);
1701     #ifdef COMPRESS_MF_MT
1702     MatchFinderMt_Construct(&p->matchFinderMt);
1703     p->matchFinderMt.MatchFinder = &p->matchFinderBase;
1704     #endif
1705    
1706     {
1707     CLzmaEncProps props;
1708     LzmaEncProps_Init(&props);
1709     LzmaEnc_SetProps(p, &props);
1710     }
1711    
1712     #ifndef LZMA_LOG_BSR
1713     LzmaEnc_FastPosInit(p->g_FastPos);
1714     #endif
1715    
1716     LzmaEnc_InitPriceTables(p->ProbPrices);
1717     p->litProbs = 0;
1718     p->saveState.litProbs = 0;
1719     }
1720    
1721     CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
1722     {
1723     void *p;
1724     p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
1725     if (p != 0)
1726     LzmaEnc_Construct((CLzmaEnc *)p);
1727     return p;
1728     }
1729    
1730     void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
1731     {
1732     alloc->Free(alloc, p->litProbs);
1733     alloc->Free(alloc, p->saveState.litProbs);
1734     p->litProbs = 0;
1735     p->saveState.litProbs = 0;
1736     }
1737    
1738     void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
1739     {
1740     #ifdef COMPRESS_MF_MT
1741     MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
1742     #endif
1743     MatchFinder_Free(&p->matchFinderBase, allocBig);
1744     LzmaEnc_FreeLits(p, alloc);
1745     RangeEnc_Free(&p->rc, alloc);
1746     }
1747    
1748     void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
1749     {
1750     LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
1751     alloc->Free(alloc, p);
1752     }
1753    
1754     static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
1755     {
1756     UInt32 nowPos32, startPos32;
1757     if (p->inStream != 0)
1758     {
1759     p->matchFinderBase.stream = p->inStream;
1760     p->matchFinder.Init(p->matchFinderObj);
1761     p->inStream = 0;
1762     }
1763    
1764     if (p->finished)
1765     return p->result;
1766     RINOK(CheckErrors(p));
1767    
1768     nowPos32 = (UInt32)p->nowPos64;
1769     startPos32 = nowPos32;
1770    
1771     if (p->nowPos64 == 0)
1772     {
1773     UInt32 numPairs;
1774     Byte curByte;
1775     if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1776     return Flush(p, nowPos32);
1777     ReadMatchDistances(p, &numPairs);
1778     RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
1779     p->state = kLiteralNextStates[p->state];
1780     curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
1781     LitEnc_Encode(&p->rc, p->litProbs, curByte);
1782     p->additionalOffset--;
1783     nowPos32++;
1784     }
1785    
1786     if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
1787     for (;;)
1788     {
1789     UInt32 pos, len, posState;
1790    
1791     if (p->fastMode)
1792     len = GetOptimumFast(p, &pos);
1793     else
1794     len = GetOptimum(p, nowPos32, &pos);
1795    
1796     #ifdef SHOW_STAT2
1797     printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos);
1798     #endif
1799    
1800     posState = nowPos32 & p->pbMask;
1801     if (len == 1 && pos == (UInt32)-1)
1802     {
1803     Byte curByte;
1804     CLzmaProb *probs;
1805     const Byte *data;
1806    
1807     RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
1808     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
1809     curByte = *data;
1810     probs = LIT_PROBS(nowPos32, *(data - 1));
1811     if (IsCharState(p->state))
1812     LitEnc_Encode(&p->rc, probs, curByte);
1813     else
1814     LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
1815     p->state = kLiteralNextStates[p->state];
1816     }
1817     else
1818     {
1819     RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1820     if (pos < LZMA_NUM_REPS)
1821     {
1822     RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
1823     if (pos == 0)
1824     {
1825     RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
1826     RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
1827     }
1828     else
1829     {
1830     UInt32 distance = p->reps[pos];
1831     RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
1832     if (pos == 1)
1833     RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
1834     else
1835     {
1836     RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
1837     RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
1838     if (pos == 3)
1839     p->reps[3] = p->reps[2];
1840     p->reps[2] = p->reps[1];
1841     }
1842     p->reps[1] = p->reps[0];
1843     p->reps[0] = distance;
1844     }
1845     if (len == 1)
1846     p->state = kShortRepNextStates[p->state];
1847     else
1848     {
1849     LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1850     p->state = kRepNextStates[p->state];
1851     }
1852     }
1853     else
1854     {
1855     UInt32 posSlot;
1856     RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1857     p->state = kMatchNextStates[p->state];
1858     LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1859     pos -= LZMA_NUM_REPS;
1860     GetPosSlot(pos, posSlot);
1861     RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
1862    
1863     if (posSlot >= kStartPosModelIndex)
1864     {
1865     UInt32 footerBits = ((posSlot >> 1) - 1);
1866     UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1867     UInt32 posReduced = pos - base;
1868    
1869     if (posSlot < kEndPosModelIndex)
1870     RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
1871     else
1872     {
1873     RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
1874     RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
1875     p->alignPriceCount++;
1876     }
1877     }
1878     p->reps[3] = p->reps[2];
1879     p->reps[2] = p->reps[1];
1880     p->reps[1] = p->reps[0];
1881     p->reps[0] = pos;
1882     p->matchPriceCount++;
1883     }
1884     }
1885     p->additionalOffset -= len;
1886     nowPos32 += len;
1887     if (p->additionalOffset == 0)
1888     {
1889     UInt32 processed;
1890     if (!p->fastMode)
1891     {
1892     if (p->matchPriceCount >= (1 << 7))
1893     FillDistancesPrices(p);
1894     if (p->alignPriceCount >= kAlignTableSize)
1895     FillAlignPrices(p);
1896     }
1897     if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1898     break;
1899     processed = nowPos32 - startPos32;
1900     if (useLimits)
1901     {
1902     if (processed + kNumOpts + 300 >= maxUnpackSize ||
1903     RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
1904     break;
1905     }
1906     else if (processed >= (1 << 15))
1907     {
1908     p->nowPos64 += nowPos32 - startPos32;
1909     return CheckErrors(p);
1910     }
1911     }
1912     }
1913     p->nowPos64 += nowPos32 - startPos32;
1914     return Flush(p, nowPos32);
1915     }
1916    
1917     #define kBigHashDicLimit ((UInt32)1 << 24)
1918    
1919     static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
1920     {
1921     UInt32 beforeSize = kNumOpts;
1922     Bool btMode;
1923     if (!RangeEnc_Alloc(&p->rc, alloc))
1924     return SZ_ERROR_MEM;
1925     btMode = (p->matchFinderBase.btMode != 0);
1926     #ifdef COMPRESS_MF_MT
1927     p->mtMode = (p->multiThread && !p->fastMode && btMode);
1928     #endif
1929    
1930     {
1931     unsigned lclp = p->lc + p->lp;
1932     if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
1933     {
1934     LzmaEnc_FreeLits(p, alloc);
1935     p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1936     p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1937     if (p->litProbs == 0 || p->saveState.litProbs == 0)
1938     {
1939     LzmaEnc_FreeLits(p, alloc);
1940     return SZ_ERROR_MEM;
1941     }
1942     p->lclp = lclp;
1943     }
1944     }
1945    
1946     p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
1947    
1948     if (beforeSize + p->dictSize < keepWindowSize)
1949     beforeSize = keepWindowSize - p->dictSize;
1950    
1951     #ifdef COMPRESS_MF_MT
1952     if (p->mtMode)
1953     {
1954     RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
1955     p->matchFinderObj = &p->matchFinderMt;
1956     MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
1957     }
1958     else
1959     #endif
1960     {
1961     if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
1962     return SZ_ERROR_MEM;
1963     p->matchFinderObj = &p->matchFinderBase;
1964     MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
1965     }
1966     return SZ_OK;
1967     }
1968    
1969     void LzmaEnc_Init(CLzmaEnc *p)
1970     {
1971     UInt32 i;
1972     p->state = 0;
1973     for (i = 0 ; i < LZMA_NUM_REPS; i++)
1974     p->reps[i] = 0;
1975    
1976     RangeEnc_Init(&p->rc);
1977    
1978    
1979     for (i = 0; i < kNumStates; i++)
1980     {
1981     UInt32 j;
1982     for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
1983     {
1984     p->isMatch[i][j] = kProbInitValue;
1985     p->isRep0Long[i][j] = kProbInitValue;
1986     }
1987     p->isRep[i] = kProbInitValue;
1988     p->isRepG0[i] = kProbInitValue;
1989     p->isRepG1[i] = kProbInitValue;
1990     p->isRepG2[i] = kProbInitValue;
1991     }
1992    
1993     {
1994     UInt32 num = 0x300 << (p->lp + p->lc);
1995     for (i = 0; i < num; i++)
1996     p->litProbs[i] = kProbInitValue;
1997     }
1998    
1999     {
2000     for (i = 0; i < kNumLenToPosStates; i++)
2001     {
2002     CLzmaProb *probs = p->posSlotEncoder[i];
2003     UInt32 j;
2004     for (j = 0; j < (1 << kNumPosSlotBits); j++)
2005     probs[j] = kProbInitValue;
2006     }
2007     }
2008     {
2009     for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
2010     p->posEncoders[i] = kProbInitValue;
2011     }
2012    
2013     LenEnc_Init(&p->lenEnc.p);
2014     LenEnc_Init(&p->repLenEnc.p);
2015    
2016     for (i = 0; i < (1 << kNumAlignBits); i++)
2017     p->posAlignEncoder[i] = kProbInitValue;
2018    
2019     p->optimumEndIndex = 0;
2020     p->optimumCurrentIndex = 0;
2021     p->additionalOffset = 0;
2022    
2023     p->pbMask = (1 << p->pb) - 1;
2024     p->lpMask = (1 << p->lp) - 1;
2025     }
2026    
2027     void LzmaEnc_InitPrices(CLzmaEnc *p)
2028     {
2029     if (!p->fastMode)
2030     {
2031     FillDistancesPrices(p);
2032     FillAlignPrices(p);
2033     }
2034    
2035     p->lenEnc.tableSize =
2036     p->repLenEnc.tableSize =
2037     p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
2038     LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
2039     LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
2040     }
2041    
2042     static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2043     {
2044     UInt32 i;
2045     for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
2046     if (p->dictSize <= ((UInt32)1 << i))
2047     break;
2048     p->distTableSize = i * 2;
2049    
2050     p->finished = False;
2051     p->result = SZ_OK;
2052     RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
2053     LzmaEnc_Init(p);
2054     LzmaEnc_InitPrices(p);
2055     p->nowPos64 = 0;
2056     return SZ_OK;
2057     }
2058    
2059     static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqInStream *inStream, ISeqOutStream *outStream,
2060     ISzAlloc *alloc, ISzAlloc *allocBig)
2061     {
2062     CLzmaEnc *p = (CLzmaEnc *)pp;
2063     p->inStream = inStream;
2064     p->rc.outStream = outStream;
2065     return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
2066     }
2067    
2068     SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
2069     ISeqInStream *inStream, UInt32 keepWindowSize,
2070     ISzAlloc *alloc, ISzAlloc *allocBig)
2071     {
2072     CLzmaEnc *p = (CLzmaEnc *)pp;
2073     p->inStream = inStream;
2074     return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2075     }
2076    
2077     static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
2078     {
2079     p->seqBufInStream.funcTable.Read = MyRead;
2080     p->seqBufInStream.data = src;
2081     p->seqBufInStream.rem = srcLen;
2082     }
2083    
2084     SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
2085     UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2086     {
2087     CLzmaEnc *p = (CLzmaEnc *)pp;
2088     LzmaEnc_SetInputBuf(p, src, srcLen);
2089     p->inStream = &p->seqBufInStream.funcTable;
2090     return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2091     }
2092    
2093     void LzmaEnc_Finish(CLzmaEncHandle pp)
2094     {
2095     #ifdef COMPRESS_MF_MT
2096     CLzmaEnc *p = (CLzmaEnc *)pp;
2097     if (p->mtMode)
2098     MatchFinderMt_ReleaseStream(&p->matchFinderMt);
2099     #else
2100     pp = pp;
2101     #endif
2102     }
2103    
2104     typedef struct _CSeqOutStreamBuf
2105     {
2106     ISeqOutStream funcTable;
2107     Byte *data;
2108     SizeT rem;
2109     Bool overflow;
2110     } CSeqOutStreamBuf;
2111    
2112     static size_t MyWrite(void *pp, const void *data, size_t size)
2113     {
2114     CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
2115     if (p->rem < size)
2116     {
2117     size = p->rem;
2118     p->overflow = True;
2119     }
2120     memcpy(p->data, data, size);
2121     p->rem -= size;
2122     p->data += size;
2123     return size;
2124     }
2125    
2126    
2127     UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
2128     {
2129     const CLzmaEnc *p = (CLzmaEnc *)pp;
2130     return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
2131     }
2132    
2133     const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
2134     {
2135     const CLzmaEnc *p = (CLzmaEnc *)pp;
2136     return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2137     }
2138    
2139     SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
2140     Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
2141     {
2142     CLzmaEnc *p = (CLzmaEnc *)pp;
2143     UInt64 nowPos64;
2144     SRes res;
2145     CSeqOutStreamBuf outStream;
2146    
2147     outStream.funcTable.Write = MyWrite;
2148     outStream.data = dest;
2149     outStream.rem = *destLen;
2150     outStream.overflow = False;
2151    
2152     p->writeEndMark = False;
2153     p->finished = False;
2154     p->result = SZ_OK;
2155    
2156     if (reInit)
2157     LzmaEnc_Init(p);
2158     LzmaEnc_InitPrices(p);
2159     nowPos64 = p->nowPos64;
2160     RangeEnc_Init(&p->rc);
2161     p->rc.outStream = &outStream.funcTable;
2162    
2163     res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
2164    
2165     *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
2166     *destLen -= outStream.rem;
2167     if (outStream.overflow)
2168     return SZ_ERROR_OUTPUT_EOF;
2169    
2170     return res;
2171     }
2172    
2173     SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
2174     ISzAlloc *alloc, ISzAlloc *allocBig)
2175     {
2176     CLzmaEnc *p = (CLzmaEnc *)pp;
2177     SRes res = SZ_OK;
2178    
2179     #ifdef COMPRESS_MF_MT
2180     Byte allocaDummy[0x300];
2181     int i = 0;
2182     for (i = 0; i < 16; i++)
2183     allocaDummy[i] = (Byte)i;
2184     #endif
2185    
2186     RINOK(LzmaEnc_Prepare(pp, inStream, outStream, alloc, allocBig));
2187    
2188     for (;;)
2189     {
2190     res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
2191     if (res != SZ_OK || p->finished != 0)
2192     break;
2193     if (progress != 0)
2194     {
2195     res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
2196     if (res != SZ_OK)
2197     {
2198     res = SZ_ERROR_PROGRESS;
2199     break;
2200     }
2201     }
2202     }
2203     LzmaEnc_Finish(pp);
2204     return res;
2205     }
2206    
2207     SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
2208     {
2209     CLzmaEnc *p = (CLzmaEnc *)pp;
2210     int i;
2211     UInt32 dictSize = p->dictSize;
2212     if (*size < LZMA_PROPS_SIZE)
2213     return SZ_ERROR_PARAM;
2214     *size = LZMA_PROPS_SIZE;
2215     props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
2216    
2217     for (i = 11; i <= 30; i++)
2218     {
2219     if (dictSize <= ((UInt32)2 << i))
2220     {
2221     dictSize = (2 << i);
2222     break;
2223     }
2224     if (dictSize <= ((UInt32)3 << i))
2225     {
2226     dictSize = (3 << i);
2227     break;
2228     }
2229     }
2230    
2231     for (i = 0; i < 4; i++)
2232     props[1 + i] = (Byte)(dictSize >> (8 * i));
2233     return SZ_OK;
2234     }
2235    
2236     SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2237     int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2238     {
2239     SRes res;
2240     CLzmaEnc *p = (CLzmaEnc *)pp;
2241    
2242     CSeqOutStreamBuf outStream;
2243    
2244     LzmaEnc_SetInputBuf(p, src, srcLen);
2245    
2246     outStream.funcTable.Write = MyWrite;
2247     outStream.data = dest;
2248     outStream.rem = *destLen;
2249     outStream.overflow = False;
2250    
2251     p->writeEndMark = writeEndMark;
2252     res = LzmaEnc_Encode(pp, &outStream.funcTable, &p->seqBufInStream.funcTable,
2253     progress, alloc, allocBig);
2254    
2255     *destLen -= outStream.rem;
2256     if (outStream.overflow)
2257     return SZ_ERROR_OUTPUT_EOF;
2258     return res;
2259     }
2260    
2261     SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2262     const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
2263     ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2264     {
2265     CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
2266     SRes res;
2267     if (p == 0)
2268     return SZ_ERROR_MEM;
2269    
2270     res = LzmaEnc_SetProps(p, props);
2271     if (res == SZ_OK)
2272     {
2273     res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
2274     if (res == SZ_OK)
2275     res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
2276     writeEndMark, progress, alloc, allocBig);
2277     }
2278    
2279     LzmaEnc_Destroy(p, alloc, allocBig);
2280     return res;
2281     }