ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitCommon/VertexFit/src/MultiVertexFitter.cc
Revision: 1.4
Committed: Fri Mar 20 13:33:03 2009 UTC (16 years, 1 month ago) by loizides
Content type: text/plain
Branch: MAIN
CVS Tags: Mit_011, Mit_010a, Mit_010, Mit_009c, Mit_009b, Mit_009a, Mit_009, Mit_008
Changes since 1.3: +71 -59 lines
Log Message:
Cleanup

File Contents

# Content
1 // $Id: MultiVertexFitter.cc,v 1.3 2008/11/13 16:34:29 paus Exp $
2
3 #include "MitCommon/VertexFit/interface/MultiVertexFitter.h"
4 #include <algorithm>
5 #include <math.h>
6 #include <iostream>
7 #include <csignal>
8 #include <csetjmp>
9 #include <TMath.h>
10 #include <CLHEP/Matrix/Matrix.h>
11
12 extern "C" void ctvmft_(int&, int&, int&);
13 extern "C" bool mcalc_ (int&, int*, float&, float&, double*);
14 extern "C" void dcalc_ (int&, int&, float*, float&, float&, float*);
15
16 using namespace std;
17 using namespace mithep;
18
19 jmp_buf env;
20
21 //--------------------------------------------------------------------------------------------------
22 extern "C" void MultiVertexFitterSetStatus(int i) {
23 cout << "Warning, you are handling a severe error in MultiVertexFitter" << endl;
24 longjmp(env,-66);
25 }
26
27 //--------------------------------------------------------------------------------------------------
28 MultiVertexFitter::MultiVertexFitter() :
29 _bField (3.8), // default B field for running
30 _currentAllocatedVertexNumber(0), // facilitates CandNode recursion
31 _referencePoint (0,0,0), // set reference point to (0,0,0) initially
32 _primaryVertex (0,0,0), // set primary vertex to (0,0,0) initially
33 _cdfPrimaryVertex (0,0,0) // set pv in CMS coords to (0,0,0) initially
34 {
35 // Set name and email of MultiVertexFitter expert
36 _expert="Christoph Paus (paus@mit.edu)";
37
38 // First get pointers to various FORTAN common blocks
39 _ctvmq_com = (CTVMQ*) ctvmq_address_(); //printf(" Common: _ctvmq_com %p\n", _ctvmq_com );
40 _ctvmfr_com = (CTVMFR*) ctvmfr_address_(); //printf(" Common: _ctvmfr_com %p\n", _ctvmfr_com);
41 _fiddle_com = (FIDDLE*) fiddle_address_(); //printf(" Common: _fiddle_com %p\n", _fiddle_com);
42 _trkprm_com = (TRKPRM*) trkprm_address_(); //printf(" Common: _trkprm_com %p\n", _trkprm_com);
43
44 // Initialize various arrays
45 init();
46 // Don't bomb program on error.
47 _fiddle.excuse = 1;
48 // Don't extrapolate track errors by default
49 _extrapolateTrackErrors = false;
50 }
51
52 //--------------------------------------------------------------------------------------------------
53 void MultiVertexFitter::init(double bField)
54 {
55 // Set internal variable which keeps track of the b field
56 _bField = bField;
57
58 // Now initialize CTVMQ common. Run and trigger numbers are dummies - they are not used.
59 _ctvmq.runnum = 1;
60 _ctvmq.trgnum = 100;
61 // Eventually, we have to get the magnetic field from the right place.
62 // Origignal with bmag = 14.116 [kGauss]:
63 // _ctvmq.pscale = 0.000149896 * bmag;
64 // New bfield in Tesla bmag = 1.4116 [T]:
65 _ctvmq.pscale = 0.00149896 * bField;
66 // Set the default maximum chi-square per dof.
67 _fiddle.chisqmax = 225.0;
68 // We also need to get the primary vertex from the right place, but for now we put in (0,0,0).
69 setPrimaryVertex(0.0,0.0,0.0);
70 float xverr[3][3];
71 for (int j = 0; j<3; j++) {
72 for (int k = 0; k<3; k++) {
73 xverr[j][k] = 0.;
74 }
75 }
76 xverr[0][0] = 0.005;
77 xverr[1][1] = 0.005;
78 xverr[2][2] = 1.0;
79 setPrimaryVertexError(xverr);
80 // Zero number of tracks, vertices and mass constraints
81 _ctvmq.ntrack = 0;
82 _ctvmq.nvertx = 0;
83 _ctvmq.nmassc = 0;
84 // Zero track list and arrays containing the vertex and mass constraint configuration
85 for (int j=0; j<_maxtrk; ++j) {
86 _ctvmq.list[j]=0;
87 for (int jv=0; jv<_maxvtx; ++jv)
88 _ctvmq.trkvtx[jv][j] = false;
89 for (int jmc=0; jmc<_maxmcn; ++jmc)
90 _ctvmq.trkmcn[jmc][j] = false;
91 }
92 // Initialize the conversion and vertex pointing arrays
93 for (int jv=0; jv<_maxvtx; ++jv) {
94 _ctvmq.cvtx[jv] = 0;
95 _ctvmq.vtxpnt[0][jv] = -1;
96 _ctvmq.vtxpnt[1][jv] = 0;
97 }
98 _ctvmq.drmax = 2.0;
99 _ctvmq.dzmax = 20.0;
100 _ctvmq.rvmax = 70.0;
101 _ctvmq.trnmax = 0.5;
102 _ctvmq.dsmin = -100.0; // for CDF used -2, for CMS fuzzing around.
103 // Set _stat to -999 and chisqq to -1 to symbolize that no fit has yet been done.
104 _stat = -999;
105 _ctvmq.chisqr[0] = -1.0;
106
107 _primaryVertex = Hep3Vector(0,0,0);
108 _cdfPrimaryVertex = Hep3Vector(0,0,0);
109 _referencePoint = ThreeVector(0,0,0);
110 }
111
112 //--------------------------------------------------------------------------------------------------
113 bool MultiVertexFitter::addTrack(const HepVector &v, const HepSymMatrix &cov,
114 int trackId, float mass, vertexNumber jv)
115 {
116 // Check that this vertex number is within the allowed range.
117 if (jv<VERTEX_1 || jv>_maxvtx)
118 return false;
119 _ctvmq.nvertx = jv>_ctvmq.nvertx ? jv : _ctvmq.nvertx;
120
121 // Add track extrapolation, if the user set it
122 HepVector w = v;
123 HepSymMatrix m = cov;
124 //if (_extrapolateTrackErrors)
125 // // This will move the reference point
126 // moveReferencePoint(w, m);
127
128 // Check that we have not exceeded the maximum number of tracks.
129 if (_ctvmq.ntrack>=_maxtrk)
130 return false;
131
132 // Add this track
133 _ctvmq.list [_ctvmq.ntrack] = trackId;
134 _ctvmq.tkbank[_ctvmq.ntrack][0] = 'Q';
135 _ctvmq.tkbank[_ctvmq.ntrack][1] = 'T';
136 _ctvmq.tkbank[_ctvmq.ntrack][2] = 'R';
137 _ctvmq.tkbank[_ctvmq.ntrack][3] = 'K';
138 _ctvmq.tmass [_ctvmq.ntrack] = mass;
139 _ctvmq.trkvtx[jv-1][_ctvmq.ntrack] = true;
140
141 // Put this track's helix parameters and error matrix into a fortran common block so that they
142 // can be accessed by gettrk. This is a dummy for now.
143 _trkprm.trhelix[_ctvmq.ntrack][0] = w[0];
144 _trkprm.trhelix[_ctvmq.ntrack][1] = w[1];
145 _trkprm.trhelix[_ctvmq.ntrack][2] = w[2];
146 _trkprm.trhelix[_ctvmq.ntrack][3] = w[3];
147 _trkprm.trhelix[_ctvmq.ntrack][4] = w[4];
148
149 for (int j=0; j<5; ++j) {
150 for (int k=0; k<5; ++k)
151 _trkprm.trem[_ctvmq.ntrack][j][k]=m[j][k];
152 }
153 _ctvmq.ntrack++;
154
155 return true;
156 }
157
158 //--------------------------------------------------------------------------------------------------
159 bool MultiVertexFitter::addTrack(const TVectorD &v, const TMatrixDSym &cov,
160 int trackId, double mass, vertexNumber jv)
161 {
162 // Check that this vertex number is within the allowed range.
163 if (jv<VERTEX_1 || jv>_maxvtx)
164 return false;
165 _ctvmq.nvertx = jv>_ctvmq.nvertx ? jv : _ctvmq.nvertx;
166
167 //// Add track extrapolation, if the user set it
168 //HepVector w = v;
169 //HepSymMatrix m = cov;
170 TVectorD w(v);
171 TMatrixDSym m(cov);
172 ////if (_extrapolateTrackErrors)
173 //// // This will move the reference point
174 //// moveReferencePoint(w, m);
175
176 // Check that we have not exceeded the maximum number of tracks.
177 if (_ctvmq.ntrack>=_maxtrk)
178 return false;
179
180 // Add this track
181 _ctvmq.list [_ctvmq.ntrack] = trackId;
182 _ctvmq.tkbank[_ctvmq.ntrack][0] = 'Q';
183 _ctvmq.tkbank[_ctvmq.ntrack][1] = 'T';
184 _ctvmq.tkbank[_ctvmq.ntrack][2] = 'R';
185 _ctvmq.tkbank[_ctvmq.ntrack][3] = 'K';
186 _ctvmq.tmass [_ctvmq.ntrack] = mass;
187 _ctvmq.trkvtx[jv-1][_ctvmq.ntrack] = true;
188
189 // Put this track's helix parameters and error matrix into a fortran common block so that they
190 // can be accessed by gettrk. This is a dummy for now.
191 _trkprm.trhelix[_ctvmq.ntrack][0] = w[0];
192 _trkprm.trhelix[_ctvmq.ntrack][1] = w[1];
193 _trkprm.trhelix[_ctvmq.ntrack][2] = w[2];
194 _trkprm.trhelix[_ctvmq.ntrack][3] = w[3];
195 _trkprm.trhelix[_ctvmq.ntrack][4] = w[4];
196
197 for (int j=0; j<5; ++j) {
198 for (int k=0; k<5; ++k)
199 _trkprm.trem[_ctvmq.ntrack][j][k]=m[j][k];
200 }
201 _ctvmq.ntrack++;
202
203 return true;
204 }
205
206 //--------------------------------------------------------------------------------------------------
207 bool MultiVertexFitter::vertexPoint_2d(vertexNumber jv1, vertexNumber jv2)
208 {
209 // Check that these vertex numbers are within allowed range and that the vertices are unique.
210 if (jv1>_maxvtx || jv1<VERTEX_1)
211 return false;
212 if (jv2>_maxvtx || jv2<PRIMARY_VERTEX)
213 return false;
214 if (jv1 <= jv2)
215 return false;
216
217 // Setup vertex pointing.
218 _ctvmq.vtxpnt[0][jv1-1] = jv2;
219 _ctvmq.vtxpnt[1][jv1-1] = 1; // 2d pointing.
220
221 return true;
222 }
223
224 //--------------------------------------------------------------------------------------------------
225 bool MultiVertexFitter::vertexPoint_3d(vertexNumber jv1, vertexNumber jv2)
226 {
227 // Check that these vertex numbers are within allowed range and that the vertices are distinct
228 if (jv1>_maxvtx || jv1<VERTEX_1)
229 return false;
230 if (jv2>_maxvtx || jv2<PRIMARY_VERTEX)
231 return false;
232 if (jv1 <= jv2)
233 return false;
234
235 // Setup vertex pointing
236 _ctvmq.vtxpnt[0][jv1-1] = jv2;
237 _ctvmq.vtxpnt[1][jv1-1] = 2; // 3d pointing
238
239 return true;
240 }
241
242 //--------------------------------------------------------------------------------------------------
243 bool MultiVertexFitter::vertexPoint_1track(vertexNumber jv1, vertexNumber jv2)
244 {
245 // Check that these vertex numbers are within allowed range and are distinct
246 if (jv1>_maxvtx || jv1<VERTEX_1)
247 return false;
248 if (jv2>_maxvtx || jv2<PRIMARY_VERTEX)
249 return false;
250 if (jv1 <= jv2)
251 return false;
252
253 // Setup vertex pointing
254 _ctvmq.vtxpnt[0][jv1-1] = jv2;
255 _ctvmq.vtxpnt[1][jv1-1] = 3; // Point to 1 track vertex
256
257 return true;
258 }
259
260 //--------------------------------------------------------------------------------------------------
261 bool MultiVertexFitter::vertexPoint_0track(vertexNumber jv1, vertexNumber jv2)
262 {
263 // jv2 is the zero track vertex. jv1 is the multi track vertex which points to jv2
264
265 // Note: You must call this routine at least twice in order for ctvmft_zerotrackvtx to work ie
266 // there must be at least 2 vertices pointed at a zero track vertex. ctvmft for this, but the
267 // error message may not make it to your log file (look at the local variables in the stack frame
268 // especially IJKERR(2). The significance of this error code is documented at the top of whatever
269 // routine chucked you out (ctvmf00 in this case)
270
271 // see ctvmft.f source file for discussion. See especially comments at the top of subroutines:
272 // ctvmft and ctvmfa
273
274 // Check that these vertex numbers are within allowed range and are distinct.
275 if (jv1>_maxvtx || jv1<VERTEX_1)
276 return false;
277 if (jv2>_maxvtx || jv2<PRIMARY_VERTEX)
278 return false;
279 if (jv1 <= jv2)
280 return false;
281
282 // Setup vertex pointing.
283 _ctvmq.vtxpnt[0][jv1-1] = jv2;
284 _ctvmq.vtxpnt[1][jv1-1] = 4; // Point to 0 track vertex.
285
286 return true;
287 }
288
289 //--------------------------------------------------------------------------------------------------
290 bool MultiVertexFitter::conversion_2d(vertexNumber jv)
291 {
292 if (jv<VERTEX_1 || jv>_ctvmq.nvertx)
293 return false;
294
295 _ctvmq.cvtx[jv-1] = 1;
296
297 return true;
298 }
299
300 //--------------------------------------------------------------------------------------------------
301 bool MultiVertexFitter::conversion_3d(vertexNumber jv)
302 {
303 if (jv<VERTEX_1 || jv>_ctvmq.nvertx)
304 return false;
305
306 _ctvmq.cvtx[jv-1] = 2;
307
308 return true;
309 }
310
311 //--------------------------------------------------------------------------------------------------
312 bool MultiVertexFitter::massConstrain(int ntrk, const int trkIds[], float mass)
313 {
314 // Check that we have not exceeded the allowed number of mass constraints.
315 if (_ctvmq.nmassc>=_maxmcn)
316 return false;
317
318 // Set constraint mass
319 _ctvmq.cmass[_ctvmq.nmassc]=mass;
320
321 // For each track in contraint, set trkmcn true. Since the number in tracks[] is the track
322 // number, we have to find each track in the list of tracks.
323 for (int jt=0; jt<ntrk; ++jt) {
324 bool found=false;
325 for (int kt=0; kt<_ctvmq.ntrack; ++kt) {
326 if (trkIds[jt] == _ctvmq.list[kt]) {
327 _ctvmq.trkmcn[_ctvmq.nmassc][kt]=true;
328 found=true;
329 }
330 }
331 if (!found)
332 return false;
333 }
334
335 // Increment number of mass constraints.
336 _ctvmq.nmassc++;
337
338 return true;
339 }
340
341 //--------------------------------------------------------------------------------------------------
342 bool MultiVertexFitter::beamlineConstraint(float xb, float yb, HepSymMatrix berr,
343 float xzbslope, float yzbslope)
344 {
345 // Set beam position at z=0
346 setPrimaryVertex(xb,yb,0);
347 //if (_extrapolateTrackErrors) {
348 // float newXb = xb - _referencePoint.x() + _referencePoint.z() * xzbslope;
349 // float newYb = yb - _referencePoint.y() + _referencePoint.z() * yzbslope;
350 // setPrimaryVertex(newXb, newYb, 0);
351 //}
352
353 bool success = setPrimaryVertexError(berr);
354
355 // Set the beamline slope values
356 _ctvmq.xzslope = xzbslope;
357 _ctvmq.yzslope = yzbslope;
358
359 // Turn ON beamline constraint
360 _ctvmq.vtxpnt[0][0] = -100;
361
362 return success;
363 }
364
365 //--------------------------------------------------------------------------------------------------
366 bool MultiVertexFitter::beamlineConstraint(Hep3Vector pv, HepSymMatrix berr, float xzbslope,
367 float yzbslope)
368 {
369 // Check if input beam position coordinates are at z=0
370 if (pv.z() != 0)
371 return false;
372
373 return beamlineConstraint(pv.x(),pv.y(),berr,xzbslope,yzbslope);
374 }
375
376 //--------------------------------------------------------------------------------------------------
377 void MultiVertexFitter::setPrimaryVertex(float xv, float yv, float zv)
378 {
379 // Set x,y,z position of the primary vertex.
380 _ctvmq.xyzpv0[0] = xv;
381 _ctvmq.xyzpv0[1] = yv;
382 _ctvmq.xyzpv0[2] = zv;
383
384 _primaryVertex = Hep3Vector( xv, yv, zv );
385 }
386
387 //--------------------------------------------------------------------------------------------------
388 void MultiVertexFitter::setPrimaryVertex(Hep3Vector pv)
389 {
390 // Set x,y,z position of the primary vertex.
391 _ctvmq.xyzpv0[0] = pv.x();
392 _ctvmq.xyzpv0[1] = pv.y();
393 _ctvmq.xyzpv0[2] = pv.z();
394
395 _primaryVertex = pv;
396 }
397
398 //--------------------------------------------------------------------------------------------------
399 void MultiVertexFitter::setPrimaryVertexError(const float xverr[3][3])
400 {
401 // Set the error matrix for the primary vertex.
402 for (int j=0; j<3; ++j) {
403 for (int k=0; k<3; ++k)
404 _ctvmq.exyzpv[j][k]=xverr[j][k];
405 }
406 }
407
408 //--------------------------------------------------------------------------------------------------
409 bool MultiVertexFitter::setPrimaryVertexError(const HepSymMatrix &xverr)
410 {
411 // Set the error matrix for the primary vertex using a HepSymMatrix. First check that the matrix
412 // is the correct size.
413 if (xverr.num_row() != 3)
414 return false;
415 for (int j=0; j<3; j++) {
416 for (int k=0; k<3; k++)
417 _ctvmq.exyzpv[j][k]=xverr[j][k];
418 }
419 return true;
420 }
421
422 //--------------------------------------------------------------------------------------------------
423 bool MultiVertexFitter::fit()
424 {
425 // Check that the diagonal elements of all the track error matrices are positive
426 bool mstat = true;
427 for (int trk=0; trk<_ctvmq.ntrack; ++trk) {
428 for (int j=0; j<5; ++j) {
429 // Check diagonal elements of error matrix.
430 if (_trkprm.trem[trk][j][j] < 0.) {
431 // The covariance matrix could not be inverted: Set the error codes and fail this fit
432 mstat = false;
433 _ctvmq.ijkerr[0] = 3;
434 _ctvmq.ijkerr[1] = 2;
435 _ctvmq.ijkerr[2] = trk + 1;
436 }
437 }
438 // Check that curvature of track is reasonable: Pt is above ~10MeV/c. If not, set the error
439 // codes and fail this fit
440 if (fabs(_trkprm.trhelix[trk][1]) > 0.1) {
441 //if (fabs(_trkprm.trhelix[trk][1]) > 0.01) {
442 mstat = false;
443 _ctvmq.ijkerr[0] = 3;
444 _ctvmq.ijkerr[1] = 5;
445 _ctvmq.ijkerr[2] = trk + 1;
446 }
447 }
448 // If there was a problem with any track, fail the fit
449 if (!mstat) {
450 _stat = 1;
451 return false;
452 }
453
454 // First copy information into CTVMFT common blocks
455 *_ctvmq_com = _ctvmq;
456 *_ctvmfr_com = _ctvmfr;
457 *_fiddle_com = _fiddle;
458 *_trkprm_com = _trkprm;
459 // Do the vertex fit.
460 int print = 0;
461 int level = 0;
462
463 // #if ( defined(LINUX) && defined(__USE_BSD) ) || defined(OSF1)
464 // struct sigaction myaction = {MultiVertexFitterSetStatus, 0, 0, 0}, oldaction;
465 // sigaction(SIGFPE, &myaction, &oldaction);
466 // if (setjmp(env)!=0) {
467 // sigaction(SIGFPE, &oldaction,0);
468 // return -999;
469 // }
470 // #endif
471
472 ctvmft_(print,level,_stat);
473
474 // #if ( defined(LINUX) && defined(__USE_BSD) ) || defined(OSF1)
475 // sigaction(SIGFPE, &oldaction,0);
476 // #endif
477
478 // Now copy information from CTVMFT common blocks to local storage
479 _ctvmq = *_ctvmq_com;
480 _ctvmfr = *_ctvmfr_com;
481 _fiddle = *_fiddle_com;
482 _trkprm = *_trkprm_com;
483
484 return (_stat == 0);
485 }
486
487 //--------------------------------------------------------------------------------------------------
488 void MultiVertexFitter::print() const
489 {
490 print(cout);
491 }
492
493 //--------------------------------------------------------------------------------------------------
494 void MultiVertexFitter::print(ostream& os) const
495 {
496 os << "****************************** MultiVertexFitter "
497 << "******************************" << endl;
498 os << "Number of tracks: " << _ctvmq.ntrack << endl;
499 os << " Tracks: ";
500 for (int jt=0; jt<_ctvmq.ntrack; ++jt) {
501 if (jt != 0) os << ", ";
502 os << _ctvmq.list[jt];
503 }
504 os << endl;
505 os << "Number of vertices: " << _ctvmq.nvertx << endl;
506 for (int jv=0; jv<_ctvmq.nvertx; ++jv) {
507 os << " Vertex " << jv+1 << " tracks: ";
508 for (int jt=0; jt<_ctvmq.ntrack; ++jt) {
509 if (_ctvmq.trkvtx[jv][jt]) {
510 os << " " << _ctvmq.list[jt];
511 }
512 }
513 os << endl;
514 }
515 for (int jv=0; jv<_ctvmq.nvertx; ++jv) {
516 if (_ctvmq.vtxpnt[0][jv]==0) {
517 os << " Vertex " << jv+1 << " points to the primary vertex ";
518 }
519 else if (_ctvmq.vtxpnt[0][jv]>0) {
520 os << " Vertex " << jv+1 << " points to vertex "
521 << _ctvmq.vtxpnt[0][jv];
522 }
523 if (_ctvmq.vtxpnt[1][jv]==1) {
524 os << " in 2 dimensions" << endl;
525 }
526 else if (_ctvmq.vtxpnt[1][jv]==2) {
527 os << " in 3 dimensions" << endl;
528 }
529 else if (_ctvmq.vtxpnt[1][jv]==3) {
530 os << ", a single track vertex" << endl;
531 }
532 if (_ctvmq.cvtx[jv]>0) {
533 os << " Vertex " << jv+1 << " is a conversion" << endl;
534 }
535 }
536 os << "Number of mass constraints: " << _ctvmq.nmassc << endl;
537 for (int jmc=0; jmc<_ctvmq.nmassc; ++jmc) {
538 os << " Tracks ";
539 for (int jt=0; jt<_ctvmq.ntrack; ++jt) {
540 if (_ctvmq.trkmcn[jmc][jt]) {
541 os << " " << _ctvmq.list[jt];
542 }
543 }
544 os << " constrained to mass " << _ctvmq.cmass[jmc]
545 << " Gev/c^2" << endl;
546 }
547 if (_stat==-999) {
548 os << "No fit has been done." << endl;
549 }
550 else {
551 os << "***** Results of Fit *****" << endl;
552 printErr(os);
553 os << " Status = " << _stat << endl;
554 os.precision(7);
555 os << " Chi-square = " << scientific << _ctvmq.chisqr[0]
556 << " for " << _ctvmq.ndof << " degrees of freedom." << endl;
557 os << " => probability = " << prob() << endl;
558 for (int jv=0; jv<_ctvmq.nvertx; ++jv) {
559 os << "Vertex " << jv+1
560 << " position: " << scientific
561 << _ctvmq.xyzvrt[jv+1][0] << " "
562 << _ctvmq.xyzvrt[jv+1][1] << " "
563 << _ctvmq.xyzvrt[jv+1][2] << endl;
564 }
565 for (int jt=0; jt<_ctvmq.ntrack; ++jt) {
566 os << "Track " << _ctvmq.list[jt]
567 << " - P4: " << scientific
568 << _ctvmq.trkp4[0][jt] << " "
569 << _ctvmq.trkp4[1][jt] << " "
570 << _ctvmq.trkp4[2][jt] << " "
571 << _ctvmq.trkp4[3][jt] << " "
572 << " - PT: " << scientific
573 << sqrt(_ctvmq.trkp4[0][jt]*_ctvmq.trkp4[0][jt]+
574 _ctvmq.trkp4[1][jt]*_ctvmq.trkp4[1][jt]) << endl;
575 }
576 }
577 os << "****************************************"
578 << "**************************" << endl;
579
580 return;
581 }
582
583 //--------------------------------------------------------------------------------------------------
584 void MultiVertexFitter::printErr() const
585 {
586 printErr(cout);
587 }
588
589 //--------------------------------------------------------------------------------------------------
590 void MultiVertexFitter::printErr(ostream& os) const
591 {
592 os << "MultiVertexFitter: IJKERR = " << _ctvmq.ijkerr[0] << ", "
593 << _ctvmq.ijkerr[1] << ", "
594 << _ctvmq.ijkerr[2] << endl;
595 if (status()==0 && _ctvmq.ijkerr[0]==0) return;
596 if (_ctvmq.ijkerr[0] == -1) {
597 os << " Problem with GETTRK: track requested is not in list."
598 << endl
599 << " This should not happen - Contact MultiVertexFitter expert "
600 << _expert << "." <<endl;
601 }
602 else if (_ctvmq.ijkerr[0]==1) {
603 os << " Problem in CTVM00:" << endl;
604 if (_ctvmq.ijkerr[1]==1) {
605 os << " Number of tracks is " << _ctvmq.ntrack
606 << "." << endl;
607 if (_ctvmq.ntrack < 2) {
608 os << ", which is too few (must be at least 2)." << endl;
609 }
610 else if (_ctvmq.ntrack > _maxtrk) {
611 os << ", which is too many (maximum is " << _maxtrk
612 << ")." << endl;
613 }
614 else {
615 os << " Problem with number of tracks"
616 << " for unknown reasons." << endl;
617 }
618 }
619 else if (_ctvmq.ijkerr[1]==2) {
620 os << " Number of vertices is " << _ctvmq.nvertx
621 << "." << endl;
622 if (_ctvmq.nvertx < 1) {
623 os << ", which is too few (must be at least 1)." << endl;
624 }
625 else if (_ctvmq.nvertx > _maxvtx) {
626 os << ", which is too many (maximum is " << _maxvtx
627 << ")." << endl;
628 }
629 else {
630 os << endl << " Problem with number of vertices"
631 << " for unknown reasons." << endl;
632 }
633 }
634 else if (_ctvmq.ijkerr[1]==3) {
635 os << " Number of mass constraints is " << _ctvmq.nmassc
636 << "." << endl;
637 if (_ctvmq.nmassc < 0) {
638 os << ", which is negative." << endl;
639 }
640 else if (_ctvmq.nmassc > _maxmcn) {
641 os << ", which is too many (maximum is " << _maxmcn
642 << ")." << endl;
643 }
644 else {
645 os << endl << " Problem with number of mass"
646 << " constraints for unknown reasons." << endl;
647 }
648 }
649 else if (_ctvmq.ijkerr[1]==11) {
650 os << " Vertex " << _ctvmq.ijkerr[2]
651 << " has less than one track." << endl;
652 }
653 else if (_ctvmq.ijkerr[1]==12) {
654 os << " Vertex " << _ctvmq.ijkerr[2]
655 << " is a conversion vertex with a number of tracks"
656 << " different than two." << endl;
657 }
658 else if (_ctvmq.ijkerr[1]==13) {
659 os << " Vertex " << _ctvmq.ijkerr[2]
660 << " is a one track vertex that has no multi-track"
661 << " descendents." << endl;
662 }
663 else if (_ctvmq.ijkerr[1]==14) {
664 os << " Vertex " << _ctvmq.ijkerr[2]
665 << " does not point at a vertex with a lower number."
666 << endl;
667 }
668 else if (_ctvmq.ijkerr[1]==15) {
669 os << " Vertex " << _ctvmq.ijkerr[2]
670 << " has a parent vertex that is a conversion." << endl;
671 }
672 else if (_ctvmq.ijkerr[1]==16) {
673 os << " Vertex " << _ctvmq.ijkerr[2]
674 << " does 1 track pointing to a vertex with"
675 << " more than 1 track." << endl;
676 }
677 else if (_ctvmq.ijkerr[1]==17) {
678 os << " Vertex " << _ctvmq.ijkerr[2]
679 << " does 0 track pointing to a vertex with"
680 << " more than 0 track (?)." << endl;
681 }
682 else if (_ctvmq.ijkerr[1]==19) {
683 os << " Primary vertex error matrix is singular." << endl;
684 }
685 else if (_ctvmq.ijkerr[1]==21) {
686 os << " Track with Id " << _ctvmq.ijkerr[2]
687 << "is not in any vertex." << endl;
688 }
689 else if (_ctvmq.ijkerr[1]==22) {
690 os << " Track with Id " << _ctvmq.ijkerr[2]
691 << "is in multiple vertices." << endl;
692 }
693 else if (_ctvmq.ijkerr[1]==23) {
694 os << " Track with Id " << _ctvmq.ijkerr[2]
695 << "occurs more than once." << endl;
696 }
697 else if (_ctvmq.ijkerr[1]==31) {
698 os << " A mass constraint has less than 2 tracks." << endl;
699 }
700 else if (_ctvmq.ijkerr[1]==32) {
701 os << " The sum masses of the tracks in a mass constraint"
702 << " exceeds the constraint mass." << endl;
703 }
704 else if (_ctvmq.ijkerr[1]==33) {
705 os << " Beamline constraint. Beam covariance not set properly."
706 << " Negative diagonal elements." << endl;
707 }
708 else if (_ctvmq.ijkerr[1]==34) {
709 os << " Beamline constraint. Beam covariance not set properly."
710 << " Off-diagonal elements not zero." << endl;
711 }
712 else if (_ctvmq.ijkerr[1]==36) {
713 os << " Beamline constraint. Number of vertices = "
714 << _ctvmq.nvertx << " Should be 1." << endl;
715 }
716 }
717 else if (_ctvmq.ijkerr[0] == 2) {
718 if (_ctvmq.ijkerr[1] == 20) {
719 os << " Problem in CTVM00: " << endl;
720 os << " Track has negative Id = "
721 << _ctvmq.list[_ctvmq.ijkerr[2]-1] << "." << endl;
722 }
723 else {
724 os << " Problem in CTVMFA with vertex "
725 << _ctvmq.ijkerr[2] << ": " << endl;
726 os << " Failure in vertex first approximation." << endl;
727 if (_ctvmq.ijkerr[1] == 1) {
728 os << " Tracks are concentric circles." << endl;
729 }
730 if (_ctvmq.ijkerr[1] == 2) {
731 os << " Conversion vertex has widely separated"
732 << " exterior circles at midpoint." << endl;
733 }
734 if (_ctvmq.ijkerr[1] == 3) {
735 os << " Conversion vertex has widely separated"
736 << " interior circles at midpoint." << endl;
737 }
738 if (_ctvmq.ijkerr[1] == 4) {
739 os << " Vertex has widely separated"
740 << " exterior circles at approximate vertex." << endl;
741 }
742 if (_ctvmq.ijkerr[1] == 5) {
743 os << " Vertex has widely separated"
744 << " interior circles at approximate vertex." << endl;
745 }
746 if (_ctvmq.ijkerr[1] == 6) {
747 os << " Rv is too large at the chosen"
748 << " intersection point." << endl;
749 }
750 if (_ctvmq.ijkerr[1] == 7) {
751 os << " Delta z is too large at the chosen"
752 << " intersection point." << endl;
753 }
754 if (_ctvmq.ijkerr[1] == 8) {
755 os << " A track's turning to the chosen vertex"
756 << " is too large." << endl;
757 }
758 if (_ctvmq.ijkerr[1] == 9) {
759 os << " There is no solution with an adequately"
760 << " positive arc length." << endl;
761 }
762 if (_ctvmq.ijkerr[1] == 21) {
763 os << " zero-track vertexing: either/both vertex "
764 << " momenta are too small (<0.01 MeV)." << endl;
765 }
766 if (_ctvmq.ijkerr[1] == 22) {
767 os << " zero-track vertexing: Two lines (tracks) are "
768 << " parallel/antiparallel." << endl;
769 }
770
771 }
772 }
773 else if (_ctvmq.ijkerr[0] == 3) {
774 os << " Problem in CTVM01 with track with Id = "
775 << _ctvmq.list[_ctvmq.ijkerr[2]-1] << ": " << endl;
776 if (_ctvmq.ijkerr[1] == 1) {
777 os << " GETTRK cannot find Id in list." << endl;
778 }
779 if (_ctvmq.ijkerr[1] == 2) {
780 os << " Covariance matrix could not be inverted." << endl
781 << " Offending track number (in order addded) is "
782 << _ctvmq.ijkerr[2] << "." << endl;
783 }
784 if (_ctvmq.ijkerr[1] == 3) {
785 os << " Track turns through too large an angle"
786 << " to the vertex." << endl;
787 }
788 if (_ctvmq.ijkerr[1] == 4) {
789 os << " Track moves too far backward to vertex." << endl;
790 }
791 if (_ctvmq.ijkerr[1] == 5) {
792 os << " Track with curvature > 0.01." << endl
793 << " Offending track number is "
794 << _ctvmq.ijkerr[2] << "." << endl;
795 }
796 }
797 else if (status() == 9) {
798 os << " General fit problem: " << endl;
799 if (_ctvmq.ijkerr[1] == 1) {
800 os << " Singular solution matrix." << endl;
801 }
802 if (_ctvmq.ijkerr[1] == 2 || _ctvmq.ijkerr[1] == 3) {
803 os << " Too many iterations ( "
804 << _ctvmq.ijkerr[2] << "(." << endl;
805 }
806 if (_ctvmq.ijkerr[1] == 4) {
807 os << " Convergence failure." << endl;
808 }
809 if (_ctvmq.ijkerr[1] == 5) {
810 os << " Bad convergence." << endl;
811 }
812 if (_ctvmq.ijkerr[1] == 9) {
813 os << " Ill-formed covariance matrix." << endl;
814 }
815 }
816 else {
817 os << " The error codes above are not recognized." << endl
818 << " Contact MultiVertexFitter expert " << _expert << "." << endl;
819 }
820 return;
821 }
822
823 //--------------------------------------------------------------------------------------------------
824 void MultiVertexFitter::getIJKErr(int& err0, int& err1, int& err2) const
825 {
826 err0 = _ctvmq.ijkerr[0];
827 err1 = _ctvmq.ijkerr[1];
828 err2 = _ctvmq.ijkerr[2];
829 return;
830 }
831
832 //--------------------------------------------------------------------------------------------------
833 int MultiVertexFitter::getIJKErr0() const
834 {
835 return _ctvmq.ijkerr[0];
836 }
837
838 //--------------------------------------------------------------------------------------------------
839 int MultiVertexFitter::getIJKErr1() const
840 {
841 return _ctvmq.ijkerr[1];
842 }
843
844 //--------------------------------------------------------------------------------------------------
845 int MultiVertexFitter::getIJKErr2() const
846 {
847 return _ctvmq.ijkerr[2];
848 }
849
850 //--------------------------------------------------------------------------------------------------
851 int MultiVertexFitter::getErrTrackId() const
852 {
853 if (status() == 0) return 0;
854 int trkId = 0;
855 // Problems with track in CTVM01 or track has negative id in CTVM00 See PrintErr() for a more
856 // detailed list of error codes.
857 if ((_ctvmq.ijkerr[0] == 2 && _ctvmq.ijkerr[1] == 20) ||
858 _ctvmq.ijkerr[0] == 3) {
859 trkId = _ctvmq.list[_ctvmq.ijkerr[2]-1];
860 }
861
862 return trkId;
863 }
864
865 //--------------------------------------------------------------------------------------------------
866 string MultiVertexFitter::expert() const
867 {
868 return _expert;
869 }
870
871 //--------------------------------------------------------------------------------------------------
872 int MultiVertexFitter::status() const
873 {
874 return _stat;
875 }
876
877 //--------------------------------------------------------------------------------------------------
878 float MultiVertexFitter::chisq() const
879 {
880 // Chi-square of fit
881 return _ctvmq.chisqr[0];
882 }
883
884 //--------------------------------------------------------------------------------------------------
885 int MultiVertexFitter::ndof() const
886 {
887 // Number of degrees of freedom of fit.
888 if (_ctvmq.chisqr[0] >= 0)
889 return _ctvmq.ndof;
890 else
891 return 0;
892 }
893
894 //--------------------------------------------------------------------------------------------------
895 float MultiVertexFitter::prob() const
896 {
897 // Probability of chi-square of fit
898 if (_ctvmq.chisqr[0]>=0.) {
899 float chisq = _ctvmq.chisqr[0];
900 int nd = _ctvmq.ndof;
901 return TMath::Prob(chisq,nd);
902 }
903 else
904 return -999.;
905 }
906
907 //--------------------------------------------------------------------------------------------------
908 float MultiVertexFitter::chisq(const int trkId) const
909 {
910 // This method returns the chisquare contribution for one track If fit not successful or not done
911 // yet, return -1.
912 if (_ctvmq.chisqr[0] < 0)
913 return -1.;
914 // Look for this track in the list of tracks.
915 for (int jt = 0; jt < _ctvmq.ntrack; ++jt) {
916 if (trkId == _ctvmq.list[jt]) {
917 // Found the track, so return its chisquare contribution.
918 return _ctvmq.chit[jt];
919 }
920 }
921 // If track is not in list, return -1.
922 return -1.;
923 }
924
925 //--------------------------------------------------------------------------------------------------
926 float MultiVertexFitter::chisq_rphi() const
927 {
928 // This method returns the chisquare contribution in the r-phi plane.
929 int index[3] = {0,1,3};
930 // If fit not successful or not done yet, return -1.
931 if (_ctvmq.chisqr[0] < 0)
932 return -1.;
933 // Loop over the tracks in the event.
934 float chisq = 0.;
935 for (int jt=0; jt<_ctvmq.ntrack; ++jt) {
936 // Double loop over the relevant parameter indices.
937 for (int k1=0; k1<3; ++k1) {
938 for (int k2=0; k2<3; ++k2)
939 // Add contribution to chisquare.
940 chisq += _ctvmq.pardif[jt][index[k1]] *
941 _ctvmq.g[jt][index[k1]][index[k2]] *
942 _ctvmq.pardif[jt][index[k2]];
943 }
944 }
945 // Return the chisquare.
946 return chisq;
947 }
948
949 //--------------------------------------------------------------------------------------------------
950 float MultiVertexFitter::chisq_z() const
951 {
952 // This method returns the chisquare contribution in the z direction.
953 int index[2] = {2,4};
954 // If fit not successful or not done yet, return -1.
955 if (_ctvmq.chisqr[0] < 0)
956 return -1.;
957 // Loop over the tracks in the event.
958 float chisq = 0.;
959 for (int jt=0; jt<_ctvmq.ntrack; ++jt) {
960 // Double loop over the relevant parameter indices.
961 for (int k1=0; k1<2; ++k1) {
962 for (int k2=0; k2<2; ++k2)
963 // Add contribution to chisquare.
964 chisq += _ctvmq.pardif[jt][index[k1]] *
965 _ctvmq.g[jt][index[k1]][index[k2]] *
966 _ctvmq.pardif[jt][index[k2]];
967 }
968 }
969 // Return the chisquare.
970 return chisq;
971 }
972
973 //--------------------------------------------------------------------------------------------------
974 float MultiVertexFitter::chisq_rphiz() const
975 {
976 // This method returns the chisquare contribution of the cross
977 // terms in the r-phi and z directions.
978 int index1[2] = {2,4};
979 int index2[3] = {0,1,3};
980 // If fit not successful or not done yet, return -1.
981 if (_ctvmq.chisqr[0] < 0)
982 return -1.;
983 // Loop over the tracks in the event.
984 float chisq = 0.;
985 for (int jt=0; jt<_ctvmq.ntrack; ++jt) {
986 // Double loop over the relevant parameter indices.
987 for (int k1=0; k1<2; ++k1) {
988 for (int k2=0; k2<3; ++k2)
989 // Add contribution to chisquare.
990 chisq += _ctvmq.pardif[jt][index1[k1]] *
991 _ctvmq.g[jt][index1[k1]][index2[k2]] *
992 _ctvmq.pardif[jt][index2[k2]];
993 }
994 }
995
996 // Return the chisquare.
997 return 2.0 * chisq;
998 }
999
1000 //--------------------------------------------------------------------------------------------------
1001 float MultiVertexFitter::chisq_rphi(const int trkId) const
1002 {
1003 // This method returns the chisquare contribution in the r-phi plane.
1004 int index[3] = {0,1,3};
1005 // If fit not successful or not done yet, return -1.
1006 if (_ctvmq.chisqr[0] < 0)
1007 return -1.;
1008 // Loop over the tracks in the event, looking for the one we want
1009 for (int jt=0; jt<_ctvmq.ntrack; ++jt) {
1010 if (trkId == _ctvmq.list[jt]) {
1011 // Found the track, so calculate its chisquare contribution.
1012 float chisq = 0.;
1013 // Double loop over the relevant parameter indices.
1014 for (int k1=0; k1<3; ++k1) {
1015 for (int k2=0; k2<3; ++k2) {
1016 // Add contribution to chisquare.
1017 chisq += _ctvmq.pardif[jt][index[k1]] *
1018 _ctvmq.g[jt][index[k1]][index[k2]] *
1019 _ctvmq.pardif[jt][index[k2]];
1020 }
1021 }
1022 return chisq;
1023 }
1024 }
1025
1026 // Track not found, return -1.
1027 return -1.;
1028 }
1029
1030 //--------------------------------------------------------------------------------------------------
1031 float MultiVertexFitter::chisq_z(const int trkId) const
1032 {
1033 // This method returns the chisquare contribution in the z direction.
1034 int index[2] = {2,4};
1035 // If fit not successful or not done yet, return -1.
1036 if (_ctvmq.chisqr[0] < 0)
1037 return -1.;
1038 // Loop over the tracks in the event, looking for the one we want.
1039 for (int jt=0; jt<_ctvmq.ntrack; ++jt) {
1040 if (trkId == _ctvmq.list[jt]) {
1041 // Found the track, so calculate its chisquare contribution.
1042 float chisq = 0.;
1043 // Double loop over the relevant parameter indices.
1044 for (int k1=0; k1<2; ++k1) {
1045 for (int k2=0; k2<2; ++k2)
1046 // Add contribution to chisquare.
1047 chisq += _ctvmq.pardif[jt][index[k1]] *
1048 _ctvmq.g[jt][index[k1]][index[k2]] *
1049 _ctvmq.pardif[jt][index[k2]];
1050 }
1051 return chisq;
1052 }
1053 }
1054
1055 // Track not found - return -1.
1056 return -1.;
1057 }
1058
1059 //--------------------------------------------------------------------------------------------------
1060 float MultiVertexFitter::chisq_rphiz(const int trkId) const
1061 {
1062 // This method returns the chisquare contribution of the cross terms in the r-phi and z
1063 // directions
1064 int index1[2] = { 2,4 };
1065 int index2[3] = { 0,1,3 };
1066 // If fit not successful or not done yet, return -1
1067 if (_ctvmq.chisqr[0] < 0)
1068 return -1.;
1069 // Loop over the tracks in the event
1070 for (int jt=0; jt<_ctvmq.ntrack; ++jt) {
1071 if (trkId == _ctvmq.list[jt]) {
1072 // Found the track, so calculate its chisquare contribution
1073 float chisq = 0.;
1074 // Double loop over the relevant parameter indices
1075 for (int k1=0; k1<2; ++k1) {
1076 for (int k2=0; k2<3; ++k2)
1077 // Add contribution to chisquare
1078 chisq += _ctvmq.pardif[jt][index1[k1]] *
1079 _ctvmq.g[jt][index1[k1]][index2[k2]] *
1080 _ctvmq.pardif[jt][index2[k2]];
1081 }
1082 return 2.0 * chisq;
1083 }
1084 }
1085 // Track not found so return -1.
1086 return -1.;
1087 }
1088
1089 //--------------------------------------------------------------------------------------------------
1090 FourVector MultiVertexFitter::getTrackP4(const int trkId) const
1091 {
1092 if (_stat != 0)
1093 return FourVector(0,0,0,0);
1094 // return four momentum of fit track
1095 for (int jt=0; jt<_ctvmq.ntrack; ++jt) {
1096 // Find which track matches this Id.
1097 if (trkId == _ctvmq.list[jt]) {
1098 FourVector p4((double)_ctvmq.trkp4[0][jt], (double)_ctvmq.trkp4[1][jt],
1099 (double)_ctvmq.trkp4[2][jt], (double)_ctvmq.trkp4[3][jt]);
1100 return p4;
1101 }
1102 }
1103 return FourVector(0,0,0,0);
1104 }
1105
1106 //--------------------------------------------------------------------------------------------------
1107 float MultiVertexFitter::getMass(int ntrk, const int trkIds[], float &dmass) const
1108 {
1109 // #if (defined(LINUX) && defined(__USE_BSD)) || defined(OSF1)
1110 // struct sigaction myaction = {MultiVertexFitterSetStatus, 0, 0, 0}, oldaction;
1111 // sigaction(SIGFPE, &myaction, &oldaction);
1112 // if (setjmp(env)!=0) {
1113 // sigaction(SIGFPE, &oldaction,0);
1114 // return -999;
1115 // }
1116 // #endif
1117
1118 dmass = -999.;
1119 if (_stat!=0)
1120 return -999.;
1121 // Get fit invariant mass of ntrk tracks listed in array tracks. dmass is the error on the mass.
1122 dmass=-999.;
1123 if (ntrk <= 0)
1124 return 0;
1125 int jtrks[_maxtrk];
1126 for (int jt=0; jt<ntrk; ++jt) {
1127 bool found = false;
1128 for (int kt=0; kt<_ctvmq.ntrack; ++kt) {
1129 if (trkIds[jt] == _ctvmq.list[kt]) {
1130 found = true;
1131 jtrks[jt]=kt+1;
1132 }
1133 }
1134 if (!found)
1135 return 0;
1136 }
1137 // Copy information into CTVMFT common blocks
1138 *_ctvmq_com = _ctvmq;
1139 *_ctvmfr_com = _ctvmfr;
1140 int ntr = ntrk;
1141 float mass;
1142 double p4[4];
1143 mcalc_(ntr, jtrks, mass, dmass, p4);
1144
1145 // #if (defined(LINUX) && defined(__USE_BSD)) || defined(OSF1)
1146 // sigaction(SIGFPE, &oldaction,0);
1147 // #endif
1148
1149 return mass;
1150 }
1151
1152 //--------------------------------------------------------------------------------------------------
1153 float MultiVertexFitter::getDecayLength(vertexNumber nv, vertexNumber mv,
1154 const Hep3Vector& dir, float& dlerr) const
1155 {
1156 dlerr = -999.;
1157 if (_stat!=0)
1158 return -999.;
1159
1160 // Get the signed decay length from vertex nv to vertex mv along the x-y direction defined by the
1161 // 3 vector dir. dlerr is the error on the decay length including the full error matrix. Check
1162 // that vertices are within range.
1163 if (nv<0 || nv>=_ctvmq.nvertx)
1164 return -999.;
1165 if (mv<1 || mv>_ctvmq.nvertx)
1166 return -999.;
1167 if (nv>=mv)
1168 return -999.;
1169
1170 float dir_t = sqrt(dir.x()*dir.x()+dir.y()*dir.y());
1171 if (dir_t <= 0.)
1172 return -999.;
1173
1174 Hep3Vector dv = getVertexHep(mv)-getVertexHep(nv);
1175 float dl = (dv.x()*dir.x()+dv.y()*dir.y())/dir_t;
1176 // Set up the column matrix of derivatives
1177 HepMatrix A(4,1);
1178 A(1,1) = dir.x()/dir_t;
1179 A(2,1) = dir.y()/dir_t;
1180 A(3,1) = -dir.x()/dir_t;
1181 A(4,1) = -dir.y()/dir_t;
1182 // Check if first vertex (nv) is primary vertex. If it is, check if it was used in the primary
1183 // vertex. If not, all of the corresponding error matrix elements are those supplied for the
1184 // primary vertex.
1185 int nvf = 0;
1186 if (nv==0) {
1187 nvf=-1;
1188 for (int jv=0; jv<_ctvmq.nvertx; ++jv) {
1189 if (_ctvmq.vtxpnt[0][jv]==0)
1190 nvf=0;
1191 }
1192 }
1193 // Get the relevant submatrix of the full error matrix.
1194 HepMatrix V(4,4,0);
1195 if (nvf < 0) {
1196 V(1,1) = getErrorMatrixHep(_ctvmq.voff[mv-1]+1,_ctvmq.voff[mv-1]+1);
1197 V(1,2) = getErrorMatrixHep(_ctvmq.voff[mv-1]+1,_ctvmq.voff[mv-1]+2);
1198 V(2,1) = getErrorMatrixHep(_ctvmq.voff[mv-1]+2,_ctvmq.voff[mv-1]+1);
1199 V(2,2) = getErrorMatrixHep(_ctvmq.voff[mv-1]+2,_ctvmq.voff[mv-1]+2);
1200 V(3,3) = _ctvmq.exyzpv[0][0];
1201 V(3,4) = _ctvmq.exyzpv[0][1];
1202 V(4,3) = _ctvmq.exyzpv[1][0];
1203 V(4,4) = _ctvmq.exyzpv[1][1];
1204 }
1205 else {
1206 // Get the indices into the error matrix vmat
1207 int index[4] = { _ctvmq.voff[mv-1]+1,_ctvmq.voff[mv-1]+2,0,0 };
1208 if (nv==0) {
1209 index[2] = 1;
1210 index[3] = 2;
1211 }
1212 else {
1213 index[2] = _ctvmq.voff[nv-1]+1;
1214 index[3] = _ctvmq.voff[nv-1]+2;
1215 }
1216 for (int j=0; j<4; ++j) {
1217 for (int k=0; k<4; ++k) {
1218 V[j][k] = getErrorMatrixHep(index[j],index[k]);
1219 }
1220 }
1221 }
1222
1223 // Calculate square of dlerr
1224 dlerr = (A.T()*V*A)(1,1);
1225 if (dlerr >= 0.)
1226 dlerr = sqrt(dlerr);
1227 else
1228 dlerr = -sqrt(-dlerr);
1229
1230 return dl;
1231 }
1232
1233 //--------------------------------------------------------------------------------------------------
1234 float MultiVertexFitter::getDecayLength(vertexNumber nv, vertexNumber mv,
1235 const ThreeVector& dir, float& dlerr) const
1236 {
1237 Hep3Vector dirHep(dir.x(),dir.y(),dir.z());
1238 return getDecayLength(nv, mv, dirHep, dlerr);
1239 }
1240
1241 //--------------------------------------------------------------------------------------------------
1242 float MultiVertexFitter::getZDecayLength(vertexNumber nv, vertexNumber mv,
1243 const Hep3Vector& mom, float& dlerr) const
1244 {
1245 //----------------------------------------------------------------------------
1246 // Get the signed decay length from vertex nv to vertex mv along the
1247 // z direction of the momentum vector, mom.
1248 // dlerr is the error on the decay length including the full error
1249 // matrix.
1250 //----------------------------------------------------------------------------
1251 // Start with good initialization
1252 dlerr = -999.;
1253
1254 // Check that the fit worked
1255 if (_stat != 0)
1256 return -999.;
1257
1258 // Check that vertices are within range.
1259 if (nv<0 || nv>=_ctvmq.nvertx)
1260 return -999.;
1261 if (mv<1 || mv> _ctvmq.nvertx)
1262 return -999.;
1263 if (nv >= mv)
1264 return -999.;
1265
1266 // Calculate the vector length
1267 float length = fabs(mom.z());
1268 if (length <= 0.)
1269 return -999.;
1270
1271 // Get the vector pointing from first vertex (nv) to second vertex (mv)
1272 Hep3Vector dv = getVertexHep(mv) - getVertexHep(nv);
1273
1274 //----------------------------------------------------------------------------
1275 // Calculate the "decay distance"
1276 //----------------------------------------------------------------------------
1277 // Project the vertex vector onto the momentum vector direction
1278 float dl = (dv.z()*mom.z())/length;
1279
1280 //----------------------------------------------------------------------------
1281 // Calculate the error on that distance
1282 //----------------------------------------------------------------------------
1283 // Set up the column matrix of derivatives
1284 HepMatrix A(2,1);
1285 A(1,1) = mom.z()/length;
1286 A(2,1) = -mom.z()/length;
1287
1288 // Need to catch the special case if the first vertex is the primary
1289 int nvf = 0;
1290 if (nv == 0) {
1291 nvf = -1;
1292 for (int jv=0; jv<_ctvmq.nvertx; ++jv) {
1293 if (_ctvmq.vtxpnt[0][jv] == 0)
1294 nvf = 0;
1295 }
1296 }
1297 // Get the relevant submatrix of the full error matrix.
1298 HepMatrix V(2,2,0);
1299 if (nvf < 0) {
1300 // Geometric uncertainties (positions second vertex)
1301 V(1,1) = getErrorMatrixHep(_ctvmq.voff[mv-1]+3,_ctvmq.voff[mv-1]+3);
1302 // Geometric uncertainties (positions first vertex)
1303 V(2,2) = _ctvmq.exyzpv[2][2];
1304 }
1305 else {
1306 // Get the indices into the error matrix vmat
1307 int index[2] = { _ctvmq.voff[mv-1]+3,_ctvmq.voff[nv-1]+3 };
1308 // Handeling the case of the primary vertex
1309 if (nv == 0)
1310 index[1] = 3;
1311 // All right... copy
1312 for(int j=0; j<2; ++j)
1313 for(int k=0; k<2; ++k)
1314 V[j][k] = getErrorMatrixHep(index[j],index[k]);
1315 }
1316 // Calculate square of dlerr
1317 dlerr = (A.T() * V * A )(1,1);
1318 if (dlerr >= 0.)
1319 dlerr = sqrt(dlerr);
1320 else
1321 dlerr = -sqrt(-dlerr);
1322
1323 return dl;
1324 }
1325
1326 //--------------------------------------------------------------------------------------------------
1327 float MultiVertexFitter::getZDecayLength(vertexNumber nv, vertexNumber mv,
1328 const ThreeVector& mom, float& dlerr) const
1329 {
1330 Hep3Vector momHep(mom.x(),mom.y(),mom.z());
1331 return getZDecayLength(nv, mv, momHep, dlerr);
1332 }
1333
1334 //--------------------------------------------------------------------------------------------------
1335 float MultiVertexFitter::getImpactPar(vertexNumber prdV, vertexNumber dcyV,
1336 const Hep3Vector &v, float &dxyerr) const
1337 {
1338 Hep3Vector PVtx = getVertexHep (prdV);
1339 Hep3Vector DVtx = getVertexHep (dcyV);
1340 HepSymMatrix PVtxCv = getErrorMatrixHep(prdV);
1341 HepSymMatrix DVtxCv = getErrorMatrixHep(dcyV);
1342
1343 double norma = v.perp();
1344 if (norma <= 0) {
1345 dxyerr = -999.;
1346 return -999.0;
1347 }
1348 double dxy = ((v.cross(DVtx-PVtx)).z())/norma;
1349
1350 // Calculate error on B impact parameter:
1351 double cosPhi = cos(v.phi());
1352 double sinPhi = sin(v.phi());
1353 dxyerr = cosPhi * cosPhi * (DVtxCv[1][1] + PVtxCv[1][1])
1354 + sinPhi * sinPhi * (DVtxCv[0][0] + PVtxCv[0][0])
1355 - 2.0 * cosPhi * sinPhi * (DVtxCv[0][1] + PVtxCv[0][1]);
1356 dxyerr = (dxyerr>0.0) ? sqrt(dxyerr) : -999.;
1357
1358 return dxy;
1359 }
1360
1361 //--------------------------------------------------------------------------------------------------
1362 float MultiVertexFitter::getImpactPar(vertexNumber prdV, vertexNumber dcyV,
1363 const ThreeVector &v, float &dxyerr) const
1364 {
1365 Hep3Vector vHep(v.x(),v.y(),v.z());
1366 return getImpactPar(prdV, dcyV, vHep, dxyerr);
1367 }
1368
1369 //--------------------------------------------------------------------------------------------------
1370 float MultiVertexFitter::get_dr(vertexNumber nv, vertexNumber mv, float& drerr) const
1371 {
1372 drerr = -999.;
1373 if (_stat!=0)
1374 return -999.;
1375 // Get the transvese distance between vertices nv and mv and return it as the function value.
1376 // drerr is the uncertainty on the transverse distance, calculated from the full error matrix
1377 // including correlations.
1378 float dxyz[3];
1379 float dr;
1380 float dz;
1381 float dl[3];
1382
1383 int mvert = mv;
1384 int nvert = nv;
1385 // Copy information into CTVMFT common blocks
1386 *_ctvmq_com = _ctvmq;
1387 *_ctvmfr_com = _ctvmfr;
1388 // Do calculation
1389 dcalc_(mvert,nvert,dxyz,dr,dz,dl);
1390 drerr = dl[0];
1391 return dr;
1392 }
1393
1394 //--------------------------------------------------------------------------------------------------
1395 float MultiVertexFitter::get_dz(vertexNumber nv, vertexNumber mv, float& dzerr) const
1396 {
1397 dzerr = -999.;
1398 if (_stat!=0)
1399 return -999.;
1400 // Get the longitudinal distance between vertices nv and mv and return it as the function value.
1401 // dzerr is the uncertainty on the longitudinal distance, calculated from the full error matrix
1402 // including correlations.
1403 float dxyz[3];
1404 float dr;
1405 float dz;
1406 float dl[3];
1407
1408 int mvert = mv;
1409 int nvert = nv;
1410 // Copy information into CTVMFT common blocks
1411 *_ctvmq_com = _ctvmq;
1412 *_ctvmfr_com = _ctvmfr;
1413
1414 // Do calculation
1415 dcalc_(mvert,nvert,dxyz,dr,dz,dl);
1416 dzerr = dl[1];
1417 return dz;
1418 }
1419
1420 //--------------------------------------------------------------------------------------------------
1421 Hep3Vector MultiVertexFitter::getVertexHep(vertexNumber nv) const
1422 {
1423 if (_stat!=0)
1424 return Hep3Vector(-999,-999,-999);
1425 // Return x,y,z position of vertex nv.
1426 if (nv<0 || nv>_ctvmq.nvertx)
1427 return Hep3Vector(0,0,0);
1428 // Check if first vertex (nv) is primary vertex. If it is, check if it was used in the primary
1429 // vertex. If not, all of the corresponding error matrix elements are those supplied for the
1430 // primary vertex.
1431 int nvf=0;
1432 if (nv==0) {
1433 nvf=-1;
1434 for (int jv=0; jv<_ctvmq.nvertx; ++jv) {
1435 if (_ctvmq.vtxpnt[0][jv]==0)
1436 nvf=0;
1437 }
1438 }
1439 Hep3Vector vertex;
1440 // If primary vertex was not part of fit, take vertex location as supplied.
1441 if (nvf < 0) {
1442 vertex.setX(_ctvmq.xyzpv0[0]);
1443 vertex.setY(_ctvmq.xyzpv0[1]);
1444 vertex.setZ(_ctvmq.xyzpv0[2]);
1445 }
1446 else {
1447 vertex.setX(_ctvmq.xyzvrt[nv][0]);
1448 vertex.setY(_ctvmq.xyzvrt[nv][1]);
1449 vertex.setZ(_ctvmq.xyzvrt[nv][2]);
1450 }
1451 //// If we have a different reference point, need to add it back in
1452 //vertex += _referencePoint;
1453 return vertex;
1454 }
1455
1456 //--------------------------------------------------------------------------------------------------
1457 ThreeVector MultiVertexFitter::getVertex(vertexNumber nv) const
1458 {
1459 if (_stat!=0)
1460 return ThreeVector(-999,-999,-999);
1461 // Return x,y,z position of vertex nv.
1462 if (nv<0 || nv>_ctvmq.nvertx)
1463 return ThreeVector(0,0,0);
1464 // Check if first vertex (nv) is primary vertex. If it is, check if it was used in the primary
1465 // vertex. If not, all of the corresponding error matrix elements are those supplied for the
1466 // primary vertex.
1467 int nvf=0;
1468 if (nv==0) {
1469 nvf=-1;
1470 for (int jv=0; jv<_ctvmq.nvertx; ++jv) {
1471 if (_ctvmq.vtxpnt[0][jv]==0)
1472 nvf=0;
1473 }
1474 }
1475 ThreeVector vertex;
1476 // If primary vertex was not part of fit, take vertex location as supplied.
1477 if (nvf < 0) {
1478 vertex.SetX(_ctvmq.xyzpv0[0]);
1479 vertex.SetY(_ctvmq.xyzpv0[1]);
1480 vertex.SetZ(_ctvmq.xyzpv0[2]);
1481 }
1482 else {
1483 vertex.SetX(_ctvmq.xyzvrt[nv][0]);
1484 vertex.SetY(_ctvmq.xyzvrt[nv][1]);
1485 vertex.SetZ(_ctvmq.xyzvrt[nv][2]);
1486 }
1487 // If we have a different reference point, need to add it back in
1488 vertex += _referencePoint;
1489 return vertex;
1490 }
1491
1492 //--------------------------------------------------------------------------------------------------
1493 ThreeSymMatrix MultiVertexFitter::getErrorMatrix(MultiVertexFitter::vertexNumber nv) const
1494 {
1495 // return errors for vertex nv
1496 ThreeSymMatrix cov;
1497
1498 // if this is the primary vertex, return the error matrix the user supplied
1499 if (nv==PRIMARY_VERTEX) {
1500 for (int j=0; j<3; j++)
1501 for (int k=0; k<3; k++)
1502 cov(j,k) = _ctvmq.exyzpv[j][k];
1503 return cov;
1504 }
1505
1506 if (_stat!=0)
1507 return cov;
1508 // return x,y,z position of vertex nv
1509 if (nv<VERTEX_1 || nv>_ctvmq.nvertx)
1510 return cov;
1511 // get offset for vertex nv
1512 int voff = _ctvmq.voff[nv-1];
1513 // fill matrix
1514 for (int i = 0 ; i < 3 ; ++i)
1515 for (int j = i ; j < 3 ; ++j)
1516 cov(i,j) = _ctvmfr.vmat[voff+i][voff+j];
1517 return cov;
1518 }
1519
1520 //--------------------------------------------------------------------------------------------------
1521 double MultiVertexFitter::getErrorMatrixHep(int j, int k) const
1522 {
1523 if (_stat!=0)
1524 return -999.;
1525 // Return the j,k element of the full error matrix VMAT. Since the CTVMFT documentation assumes
1526 // the indices start from 1 (ala Fortran), we will also assume this and convert the C++ indices.
1527 // Note also the that order of Fortran and C++ indices is different. We assume that j and k are
1528 // in the Fortran order.
1529 if (j<1 || k<1 || j>_maxdim+1 || k>_maxdim)
1530 return -999.;
1531
1532 return _ctvmfr.vmat[k-1][j-1];
1533 }
1534
1535 //--------------------------------------------------------------------------------------------------
1536 HepSymMatrix MultiVertexFitter::getErrorMatrixHep(MultiVertexFitter::vertexNumber nv) const
1537 {
1538 // return errors for vertex nv
1539 HepSymMatrix cov(3,0);
1540
1541 // if this is the primary vertex, return the error matrix the user supplied
1542 if (nv==PRIMARY_VERTEX) {
1543 for (int j=0; j<3; j++)
1544 for (int k=0; k<3; k++)
1545 cov[j][k] = _ctvmq.exyzpv[j][k];
1546 return cov;
1547 }
1548
1549 if (_stat!=0)
1550 return cov;
1551 // return x,y,z position of vertex nv
1552 if (nv<VERTEX_1 || nv>_ctvmq.nvertx)
1553 return cov;
1554 // get offset for vertex nv
1555 int voff = _ctvmq.voff[nv-1];
1556 // fill matrix
1557 for (int i = 0 ; i < 3 ; ++i)
1558 for (int j = i ; j < 3 ; ++j)
1559 cov[i][j] = _ctvmfr.vmat[voff+i][voff+j];
1560 return cov;
1561 }
1562
1563 //--------------------------------------------------------------------------------------------------
1564 HepSymMatrix MultiVertexFitter::getErrorMatrixHep(const int trkId) const
1565 {
1566 HepSymMatrix cov(3,0);
1567 if (_stat != 0)
1568 return cov;
1569
1570 for (int nt=0; nt<_ctvmq.ntrack; ++nt) {
1571
1572 // Find which track matches this Id
1573 if (trkId == _ctvmq.list[nt]) {
1574
1575 // Position of track nt get offset for track nt
1576 int toff = _ctvmq.toff[nt];
1577
1578 // Fill matrix -- Crv,Phi,Ctg
1579 for (int i = 0 ; i < 3 ; ++i)
1580 for (int j = i ; j < 3 ; ++j)
1581 cov[i][j] = _ctvmfr.vmat[toff+i][toff+j];
1582 }
1583 }
1584 return cov;
1585 }
1586
1587 //--------------------------------------------------------------------------------------------------
1588 float MultiVertexFitter::getPtError(const int trkId) const
1589 {
1590 if (_stat != 0)
1591 return 0;
1592
1593 int toff;
1594 float pt,curv,curvErr,ptErr;
1595
1596 for (int nt=0; nt<_ctvmq.ntrack; ++nt) {
1597
1598 // Find which track matches this Id
1599 if (trkId == _ctvmq.list[nt]) {
1600
1601 // Position of track nt get offset for track nt
1602 toff = _ctvmq.toff[nt];
1603
1604 // Curvature error
1605 pt = sqrt(_ctvmq.trkp4[0][nt]*_ctvmq.trkp4[0][nt] +
1606 _ctvmq.trkp4[1][nt]*_ctvmq.trkp4[1][nt]);
1607 curv = _ctvmq.pscale/pt;
1608 curvErr = sqrt(_ctvmfr.vmat[toff+0][toff+0]);
1609 ptErr = _ctvmq.pscale/curv/curv*curvErr;
1610 return ptErr;
1611 }
1612 }
1613
1614 return 0;
1615 }
1616
1617 //--------------------------------------------------------------------------------------------------
1618 void MultiVertexFitter::getPosMomErr(HepMatrix& errors) const
1619 {
1620 // A c++ rewrite of the FORTRAN MASSAG function The result of this function is an error matrix in
1621 // position-momentum basis. A 7x7 matrix of errors where the rows/columns are x, y, z, px, py,
1622 // pz, e.
1623
1624 double cosph [_maxtrk];
1625 double sinph [_maxtrk];
1626 double cosdph[_maxtrk];
1627 double sindph[_maxtrk];
1628 Hep3Vector mom3 [_maxtrk];
1629 HepLorentzVector pmom [_maxtrk];
1630 HepLorentzVector total_mom;
1631
1632 for (int lvtx = 0; lvtx < _ctvmq.nvertx; lvtx++) {
1633 for (int ltrk = 0; ltrk < _ctvmq.ntrack; ltrk++) {
1634 if (!_ctvmq.trkvtx[lvtx][ltrk])
1635 continue;
1636 cosph[ltrk] = cos(_ctvmq.par[ltrk][1]);
1637 sinph[ltrk] = sin(_ctvmq.par[ltrk][1]);
1638 double dphi = 0;
1639 sindph[ltrk] = 2 * _ctvmq.par[ltrk][0] *
1640 (_ctvmq.xyzvrt[lvtx + 1][0] * cosph[ltrk] +
1641 _ctvmq.xyzvrt[lvtx + 1][1] * sinph[ltrk]);
1642 cosdph[ltrk] = sqrt(1.0 - sindph[ltrk] * sindph[ltrk]);
1643 if (fabs(sindph[ltrk]) <= 1.0){
1644 dphi = asin(sindph[ltrk]);
1645 }
1646 double pt = _ctvmq.pscale * fabs(1./_ctvmq.par[ltrk][0]);
1647 mom3[ltrk].setX(pt * cos(_ctvmq.par[ltrk][1] + dphi));
1648 mom3[ltrk].setY(pt * sin(_ctvmq.par[ltrk][1] + dphi));
1649 mom3[ltrk].setZ(pt * _ctvmq.par[ltrk][2]);
1650 double e = sqrt(_ctvmq.tmass[ltrk] * _ctvmq.tmass[ltrk]
1651 + mom3[ltrk].mag2());
1652 pmom[ltrk].setVect(mom3[ltrk]);
1653 pmom[ltrk].setE(e);
1654
1655 total_mom += pmom[ltrk];
1656 }
1657 }
1658
1659 // Easy so far, but now it gets ugly: fill dp_dpar with the derivatives of the position and
1660 // momentum with respect to the parameters
1661
1662 int ctvmft_dim = 3 * (_ctvmq.nvertx + _ctvmq.ntrack);
1663 HepMatrix deriv(ctvmft_dim, 7, 0);
1664 //HepMatrix dp_dpar[_maxvtx] = { deriv, deriv, deriv };
1665 HepMatrix dp_dpar[_maxvtx] = { deriv };
1666
1667 // Fill the x, y, z rows:
1668 for (int nvtx = 0; nvtx < _ctvmq.nvertx; nvtx++) {
1669 for (int lcomp = 0; lcomp < 3; lcomp++){
1670 dp_dpar[nvtx][(3 * nvtx) + lcomp][lcomp] = 1.0;
1671 }
1672
1673 // Fill the px, py, pz, e rows:
1674 for (int lvtx = 0; lvtx < _ctvmq.nvertx; lvtx++){
1675 for (int ltrk = 0; ltrk < _ctvmq.ntrack; ltrk++){
1676 if (!_ctvmq.trkvtx[lvtx][ltrk])
1677 continue;
1678
1679 // Find the derivatives of dphi with respect to x, y, curvature, and phi0:
1680 double dphi_dx = 2.0 * _ctvmq.par[ltrk][0] * cosph[ltrk]/cosdph[ltrk];
1681 double dphi_dy = 2.0 * _ctvmq.par[ltrk][0] * sinph[ltrk]/cosdph[ltrk];
1682 double dphi_dc = 2.0 *
1683 (_ctvmq.xyzvrt[lvtx + 1][0] * cosph[ltrk] +
1684 _ctvmq.xyzvrt[lvtx + 1][1] * sinph[ltrk])/cosdph[ltrk];
1685 double dphi_dp = 2.0 * _ctvmq.par[ltrk][0] *
1686 (-_ctvmq.xyzvrt[lvtx + 1][0] * sinph[ltrk] +
1687 _ctvmq.xyzvrt[lvtx + 1][1] * cosph[ltrk])/cosdph[ltrk];
1688
1689 // Now load the derivative matrix
1690 int lvele = 3 * lvtx;
1691 // dPx/dx:
1692 dp_dpar[nvtx][lvele][3] += -pmom[ltrk].y() * dphi_dx;
1693 // dPy/dx:
1694 dp_dpar[nvtx][lvele][4] += pmom[ltrk].x() * dphi_dx;
1695 // dPz/dx:
1696 dp_dpar[nvtx][lvele][5] = 0.;
1697 // dPy/dx:
1698 dp_dpar[nvtx][lvele][6] = 0.;
1699
1700 lvele++;
1701 // dPx/dy:
1702 dp_dpar[nvtx][lvele][3] += -pmom[ltrk].y() * dphi_dy;
1703 // dPy/dy:
1704 dp_dpar[nvtx][lvele][4] += pmom[ltrk].x() * dphi_dy;
1705 // dPz/dy:
1706 dp_dpar[nvtx][lvele][5] = 0.;
1707 // dE/dy:
1708 dp_dpar[nvtx][lvele][6] = 0.;
1709
1710 lvele++;
1711 // dPx/dz:
1712 dp_dpar[nvtx][lvele][3] = 0.;
1713 // dPy/dz:
1714 dp_dpar[nvtx][lvele][4] = 0.;
1715 // dPz/dz:
1716 dp_dpar[nvtx][lvele][5] = 0.;
1717 // dE/dz:
1718 dp_dpar[nvtx][lvele][6] = 0.;
1719
1720 lvele = 3 * (ltrk + _ctvmq.nvertx);
1721 // dPx/dcurv[ltrk]:
1722 dp_dpar[nvtx][lvele][3] = -(pmom[ltrk].x()/_ctvmq.par[ltrk][0])
1723 - pmom[ltrk].y() * dphi_dc;
1724 // dPy/dcurv[ltrk]:
1725 dp_dpar[nvtx][lvele][4] = -(pmom[ltrk].y()/_ctvmq.par[ltrk][0])
1726 + pmom[ltrk].x() * dphi_dc;
1727 // dPz/dcurv[ltrk]:
1728 dp_dpar[nvtx][lvele][5] = -(pmom[ltrk].z()/_ctvmq.par[ltrk][0]);
1729 // dE/dcurv[ltrk]:
1730 dp_dpar[nvtx][lvele][6] =
1731 -mom3[ltrk].mag2()/(_ctvmq.par[ltrk][0] * pmom[ltrk].e());
1732
1733 lvele++;
1734 // dPx/dphi[ltrk]:
1735 dp_dpar[nvtx][lvele][3] = -pmom[ltrk].y() * (1.0 + dphi_dp);
1736 // dPy/dphi[ltrk]:
1737 dp_dpar[nvtx][lvele][4] = pmom[ltrk].x() * (1.0 + dphi_dp);
1738 // dPz/dphi[ltrk]:
1739 dp_dpar[nvtx][lvele][5] = 0.;
1740 // dE/dphi[ltrk]:
1741 dp_dpar[nvtx][lvele][6] = 0.;
1742
1743 lvele++;
1744 // dPx/dcot[ltrk]:
1745 dp_dpar[nvtx][lvele][3] = 0;
1746 // dPy/dcot[ltrk]:
1747 dp_dpar[nvtx][lvele][4] = 0;
1748 // dPz/dcot[ltrk]:
1749 dp_dpar[nvtx][lvele][5] = pmom[ltrk].perp();
1750 // dE/dcot[ltrk]:
1751 dp_dpar[nvtx][lvele][6] =
1752 pmom[ltrk].perp2() * _ctvmq.par[ltrk][2] / pmom[ltrk].e();
1753 }
1754 }
1755 }
1756
1757 // -----------------------------------------------------------------------------------------------
1758 // Now calculate the new error matrix
1759 // -----------------------------------------------------------------------------------------------
1760 // Extract the interesting bits from VMAT
1761 HepMatrix vmat(ctvmft_dim,ctvmft_dim,0);
1762 for (int lpar = 0; lpar < ctvmft_dim; lpar++){
1763 int l = lpar%3;
1764 int lvele = 0;
1765 if (lpar < 3 * _ctvmq.nvertx){
1766 int lvtx = lpar/3;
1767 lvele = _ctvmq.voff[lvtx] + l;
1768 }
1769 else {
1770 int ltrk = (lpar - 3 * _ctvmq.nvertx)/3;
1771 lvele = _ctvmq.toff[ltrk] + l;
1772 }
1773 for (int kpar = 0; kpar < ctvmft_dim; kpar++) {
1774 int k = kpar%3;
1775 int kvele = 0;
1776 if (kpar < 3 * _ctvmq.nvertx) {
1777 int kvtx = kpar/3;
1778 kvele = _ctvmq.voff[kvtx] + k;
1779 }
1780 else{
1781 int ktrk = (kpar - 3 * _ctvmq.nvertx)/3;
1782 kvele = _ctvmq.toff[ktrk] + k;
1783 }
1784 vmat[kpar][lpar] = _ctvmfr.vmat[kvele][lvele];
1785 }
1786 }
1787
1788 // Just about done
1789 HepMatrix ans(7,7,0);
1790 //HepMatrix answer[_maxvtx] = { ans, ans, ans };
1791 HepMatrix answer[_maxvtx] = { ans };
1792 for (int nvtx = 0; nvtx < _ctvmq.nvertx; nvtx++)
1793 answer[nvtx] = (dp_dpar[nvtx].T() * vmat) * dp_dpar[nvtx];
1794 errors = answer[0];
1795 }
1796
1797 //--------------------------------------------------------------------------------------------------
1798 int MultiVertexFitter::vOff(vertexNumber jv) const
1799 {
1800 if (jv < VERTEX_1 || jv > _maxvtx)
1801 return -999;
1802 else
1803 return _ctvmq.voff[jv-1];
1804 }
1805
1806 //--------------------------------------------------------------------------------------------------
1807 int MultiVertexFitter::tOff(const int trkId) const
1808 {
1809 for (int kt=0; kt<_ctvmq.ntrack; ++kt) {
1810 if (trkId == _ctvmq.list[kt])
1811 return _ctvmq.toff[kt];
1812 }
1813 return -999;
1814 }
1815
1816 //--------------------------------------------------------------------------------------------------
1817 int MultiVertexFitter::pOff(int lp) const
1818 {
1819 if (lp < 1)
1820 return -999;
1821 else
1822 return _ctvmq.poff[lp-1];
1823 }
1824
1825 //--------------------------------------------------------------------------------------------------
1826 int MultiVertexFitter::cOff(int lc) const
1827 {
1828 if (lc < 1)
1829 return -999;
1830 else
1831 return _ctvmq.coff[lc-1];
1832 }
1833
1834 //--------------------------------------------------------------------------------------------------
1835 int MultiVertexFitter::mOff() const
1836 {
1837 return _ctvmq.moff;
1838 }
1839
1840 //--------------------------------------------------------------------------------------------------
1841 double MultiVertexFitter::VMat(int i, int j) const
1842 {
1843 if (i <0 || j < 0)
1844 return -999.;
1845 else
1846 return _ctvmfr.vmat[i][j];
1847 }
1848
1849 // Facilitates CandNode recursion. CandNodes have no way of deciding which vertex they are, and
1850 // these trivial functions help them do that.
1851 //--------------------------------------------------------------------------------------------------
1852 MultiVertexFitter::vertexNumber MultiVertexFitter::allocateVertexNumber()
1853 {
1854 if ((_currentAllocatedVertexNumber < PRIMARY_VERTEX) ||
1855 (_currentAllocatedVertexNumber > _maxvtx)) {
1856 cout << "MultiVertexFitter::allocateVertexNumber: out of range!" << endl;
1857 return PRIMARY_VERTEX;
1858 }
1859 return vertexNumber(++_currentAllocatedVertexNumber);
1860 }
1861
1862 //--------------------------------------------------------------------------------------------------
1863 void MultiVertexFitter::resetAllocatedVertexNumber()
1864 {
1865 _currentAllocatedVertexNumber = 0;
1866 }
1867
1868 //--------------------------------------------------------------------------------------------------
1869 void MultiVertexFitter::restoreFromCommons()
1870 {
1871 _stat = 0;
1872 _ctvmq_com = (CTVMQ*) ctvmq_address_();
1873 _ctvmfr_com = (CTVMFR*) ctvmfr_address_();
1874 _fiddle_com = (FIDDLE*) fiddle_address_();
1875 _trkprm_com = (TRKPRM*) trkprm_address_();
1876 _ctvmq = *_ctvmq_com;
1877 _ctvmfr = *_ctvmfr_com;
1878 _fiddle = *_fiddle_com;
1879 _trkprm = *_trkprm_com;
1880 }