ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitHzz4l/Documentation/Backgrounds.tex
Revision: 1.7
Committed: Sun Nov 20 13:50:56 2011 UTC (13 years, 6 months ago) by dkralph
Content type: application/x-tex
Branch: MAIN
Changes since 1.6: +22 -9 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 khahn 1.1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 khahn 1.3 \section{Backgrounds}\label{sec:BG}
3 khahn 1.1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4     This section reviews our evaluation of background in the $4\ell$ analysis. We discuss expected yields and the predicted $m(4\ell)$ shapes, both of which are used in the limit and sensitivity calculations described in Section~\ref{sec:Extraction}. We estimate Electroweak (EWK) backgrounds with Monte Carlo. Our estimates of instrumental and jet backgrounds are data-driven.
5    
6     %_________________________________________________________________
7     \subsection{Electroweak Backgrounds}\label{sec:EWK}
8     %_________________________________________________________________
9 khahn 1.3 We use the $ZZ$, $WZ$ and $Z\gamma$ MC samples listed in Table~\ref{tab:MC} to estimate yields and $m(4\ell)$ shapes for these backgrounds. We correct the acceptances determined from simulation using the procedures described in Section~\ref{sec:Signal}. We determine background yields using the corrected $4e$, $4\mu$ and $2e2\mu$ acceptances ($\alpha_{c}$) for each process:
10 khahn 1.1
11     \begin{eqnarray}
12 khahn 1.3 N^{exp}_{i} & = & \alpha^{c}_{i}\int\mathcal{L}\sigma_{i}
13 khahn 1.1 \end{eqnarray}
14    
15 khahn 1.3 The cross sections used in formula above are taken from Table~\ref{tab:MC}. Table~\ref{tab:MCBG} lists the $\alpha_{c}$ and the expected $2.1\rm~fb^{-1}$ yields for the diboson backgrounds. Figure~\ref{fig:MCshapes} shows a yield-normalized stack of the corresponding $m(4\ell)$ distributions.
16    
17     %-------------------------------------------------
18     \begin{figure}[htb]
19     \begin{center}
20     \includegraphics[width=0.5\linewidth]{figs/HF1.png}
21     \caption{MC Background Shapes.{\bf put the right plot here} }
22     \label{fig:MCshapes}
23     \end{center}
24     \end{figure}
25     %-------------------------------------------------
26 khahn 1.1
27     %-------------------------------------------------
28     \begin{table}[htb]
29     \begin{center}
30     \begin{tabular}{c|cc|cc|cc}
31 khahn 1.3 {\bf Process} & $\alpha^{c}_{ee}$ & $N^{exp}_{ee}$ & $\alpha^{c}_{\mu\mu}$ & $N^{exp}_{\mu\mu}$ & $\alpha^{c}_{2e2\mu}$ & $N^{exp}_{2e2\mu}$ \\
32 khahn 1.1 \hline
33 khahn 1.3 $ZZ^{*}$ & ~ & ~ & ~ & ~ & ~ & ~ \\
34 khahn 1.1 $WZ$ & ~ & ~ & ~ & ~ & ~ & ~ \\
35     $Z\gamma$ & ~ & ~ & ~ & ~ & ~ & ~ \\
36     \hline
37     \end{tabular}
38 khahn 1.3 \caption{MC Background Yields.}
39     \label{tab:MCBG}
40 khahn 1.1 \end{center}
41     \end{table}
42     %-------------------------------------------------
43    
44 khahn 1.3 We consider two sources of systematic uncertainties on the EWK background predictions. The first is due to the uncertainty on the efficiency scale-factors, which we propagate from the tables of Section~\ref{sec:Leptons} to the corrected acceptance for each channel. {\bf still have to do this}. The second uncertainty concerns the influence of missing higher-orders on the mass shapes and kinematics predicted by the MC. We estimate the magnitude of this effect by reweighting the POWHEG samples at generator-level to the $m(4\ell)$ distributions predicted by MCFM with renormalization and factorization scales varied by $\times 2$, $/2$. We take the relative differences in shape are used as an uncertainty in the limit calculation. Figure~\ref{fig:EWKshapeSys} shows the relative shape differences we obtain after reweighting. {\bf done for ZZ, needed for the others}.
45 khahn 1.1
46     %-------------------------------------------------
47     \begin{figure}[bht]
48     \begin{center}
49     \includegraphics[width=0.5\linewidth]{figs/HF1.png}
50 khahn 1.3 \caption{EWK Shape Differences From MCFM Reweight.{\bf get the right plot in here} }
51     \label{fig:EWKshapeSys}
52 khahn 1.1 \end{center}
53     \end{figure}
54     %-------------------------------------------------
55    
56     %_________________________________________________________________
57     \subsection{Instrumental/Fake Backgrounds}\label{sec:fakes}
58     %_________________________________________________________________
59 khahn 1.3 $Z+jets$ , $Zb\bar{b}/c\bar{c}$ and $t\bar{t}$ backgrounds (collectively, $\ell\ell jj$) contribute to the $4\ell$ signal region when jets in these events are either mismeasured as leptons or produce real leptons through secondary interactions. These processes are difficult to accurately simulate so we estimate their contribution from data. We assess $\ell\ell jj$ backgrounds using the ``fakeable object'' technique~\cite{fakeable}. For this method we define ``fakerates'' with respect to loosely identified lepton candidates, referred to as ``denominator objects''. Electron and muon denominator selections are defined in Table~\ref{tab:fo}.
60 khahn 1.1
61     %-------------------------------------------------
62     \begin{table}[htb]
63     \begin{center}
64 khahn 1.3 \begin{tabular}{c|c|c|c}
65     \multicolumn{2}{c|}{Electron} & \multicolumn{2}{|c}{Muon} \\
66 khahn 1.1 \hline
67     variable & requirement & variable & requirement \\
68     \hline
69 dkralph 1.4 $E_{T}$ & $> 7\rm~GeV$ & $p_{T}$ & $> 5\rm~GeV$ \\
70     $|dz|$ & $< 0.1\rm~cm$ & type & $\rm Global~||~Tracker$ \\
71     $|\eta|$ & $< 2.5\rm~GeV$ & $|d_{0}|$ & $< 2\rm~mm$ \\
72     $H/E$ & $< 0.12(0.1) EB(EE)$ & $Iso^{pf}_{0.3}$ & $< 3\times p_{T}$ \\
73     $iso_{trk}$ & $<0.3$ & ~ & ~ \\
74     $iso_{em}$ & $<0.3$ & ~ & ~ \\
75     $iso_{had}$ & $<0.3$ & ~ & ~ \\
76 khahn 1.1 \end{tabular}
77     \caption{Denominator Object Definitions}\label{tab:fo}
78     \end{center}
79     \end{table}
80     %-------------------------------------------------
81    
82     We calculate the fakerates ($\epsilon_{FR}(p_{T},\eta)$) from samples of events that pass single lepton triggers: \verb|HLT_Ele8| for electrons, \verb|HLT_Mu8| or \verb|HLT_Mu13| for muons. In both channels we reduce contamination from $W\rightarrow \ell\nu$ and $Z/\gamma^{*}\rightarrow\ell\ell$ by vetoing events with $MET > 20\rm~GeV$, or with $m_{T} > 35\rm~GeV$ or with two or more denominator objects of $p_{T} > 10\rm~GeV$. We enrich the samples in background by selecting only those denominator objects opposite to ($\Delta R(\eta,\phi) > 1.0$) a reconstructed $p_{T} > 35\rm~GeV$ jet. Figure~\ref{fig:FR} shows the electron and muon fakerates obtained from this procedure as a function of $p_{T}$.
83    
84     %-------------------------------------------------
85     \begin{figure}[tbp]
86     \begin{center}
87 dkralph 1.4 \includegraphics[width=0.45\linewidth]{figs/bdt-medium-frpt.png}
88 khahn 1.1 \includegraphics[width=0.45\linewidth]{figs/frMu.png}
89 khahn 1.3 \caption{ Muon and Electron Fake Rates.}
90     \label{fig:FR}
91 khahn 1.1 \end{center}
92     \end{figure}
93     %-------------------------------------------------
94    
95     We estimate $\ell\ell jj$ backgrounds in the signal region by applying the fakerates in events that contain a good Z1. First, we select denominator objects that fail identification/isolation to prevent bias from real leptons. Next, we loop over pairs of the denominator objects, weight each leg with $\epsilon_{FR}(p_{T},\eta)/(1-\epsilon_{FR}(p_{T},\eta))$ and apply the Z2 kinematic requirements ($12\rm~GeV < m(Z2) < 120$). The denominator in the weight term accounts for the fact that the we only consider candidates that fail full lepton selection. Weighted pairs that pass the Z2 kinematic selection are summed to obtain an estimate of the $\ell\ell jj$ background.
96    
97 khahn 1.3 Table~\ref{tab:fakes} presents $\ell\ell jj$ background estimates for the $2.1\rm~fb^{-1}$ dataset. We maximize the statistical power of the small $Z1 + \ge 2\rm~denominator$ sample by integrating over the flavor of the $Z1$ leptons and then dividing the $Z1$-inclusive prediction between the $4\ell_{e,\mu}$ and $2\ell_{e,\mu}2\ell_{\mu,e}$ channels. The division is performed by assuming equal $ee$ and $\mu\mu$ $Z1$ branching ratios and using an acceptance factor ($=\sim1$, measured from inclusive $Z\rightarrow ee,\mu\mu$ yields {\bf need to double check this. 1 seems strange}) to account for efficiency differences in the detection of electrons and muons.
98 khahn 1.1
99     %-------------------------------------------------
100     \begin{table}[htb]
101     \begin{center}
102     \begin{tabular}{c|c}
103     \hline
104     \multicolumn{2}{c}{Z1-Inclusive $\ell\ell jj$ Yields} \\
105     \hline
106     $Z1 + \mu\mu$ & $0.057 \pm X$ \\
107 dkralph 1.5 $Z1 + ee$ & $1.8 \pm 1$ \\
108 khahn 1.1 \hline
109     \multicolumn{2}{c}{Per-Channel $\ell\ell jj$ Yields} \\
110     \hline
111     $4\mu$ & $0.044 \pm X$ \\
112 dkralph 1.5 $4e$ & $0.4 \pm 0.3$ \\
113     $2e2\mu$ & $(0.013 + 1.4) \pm 0.9$ \\
114 khahn 1.1 \hline
115     \end{tabular}
116 khahn 1.3 \caption{Expected $\ell\ell jj$ Events.}
117     \label{tab:fakes}
118 khahn 1.1 \end{center}
119     \end{table}
120     %-------------------------------------------------
121    
122 khahn 1.3 It is difficult to predict $m(4\ell)$ and kinematic shapes for $\ell\ell jj$ background with the limited number of events containing a good $Z1$ and two failing denominator objects. Although loosening the denominator and $Z1,2$ selections helps, these requirements must not be made so loose that distributions from the control region no longer resemble those of the signal region. As an alternative, we study shapes using $Z+jets$, $t\bar{t}$ and $Zb\bar{b}$ MC events that pass our nominal selections. Figure~\ref{fig:fakeshapes}, for example, shows the cross section normalized $m(4\ell)$ distributions from these processes.
123 khahn 1.1
124     %-------------------------------------------------
125     \begin{figure}[tbp]
126     \begin{center}
127     \includegraphics[width=0.45\linewidth]{figs/muFakeShape-4m.png}
128 khahn 1.3 \caption{ Predicted $m(4\ell)$ Distributions for $\ell\ell jj$ Events. {\bf this is an old data-driven plot. Put the MC one here.}}
129     \label{fig:fakeshapes}
130 khahn 1.1 \end{center}
131     \end{figure}
132     %-------------------------------------------------
133    
134     %_________________________________________________________________
135     \subsubsection{Cross Check and Systematics: Light Flavor }\label{sec:lflavor}
136     %_________________________________________________________________
137     We cross-check our procedures by predicting the number of fake leptons in independent control regions enriched in light flavor. We require one $p_{T} > 25\rm~GeV$ lepton candidate that passes our nominal lepton selection and $1+$ same-sign, same-flavor denominator objects. We veto events with $m(\ell\ell)$ between $76-106\rm~GeV$ to reduce real lepton contamination from Z decays.
138    
139     In the muon-channel this selection produces a sample of pure background, of which the primary component is $W+jet$ with a jet faking a muon. The smaller multi-jet backgrounds, consisting of both light and heavy flavor, contain at least two jets that both fake muons. We reduce the heavy flavor contribution in this sample by requiring $|\sigma(IP_{3D})/IP_{3D} < 3|$ for all muon candidates and $MET > 25\rm~GeV$. Relative abundances for events in which the denominator muon passes selection are determined by fitting the resulting MET distribution with a same-sign MC template for $W+jets$ and a Rayleigh distribution for multi-jets. The fit result (Figure~\ref{fig:ssMuon}, left) indicates that $W+jets$ constitutes $\sim80\%$ of the sample. Residual contributions from heavy flavor in the same-sign muon sample are therefore small.
140    
141     %-------------------------------------------------
142     \begin{figure}[htb]
143     \begin{center}
144     \includegraphics[width=0.45\linewidth]{figs/ssMuMET.png}
145     \includegraphics[width=0.45\linewidth]{figs/ssMuMZ1.png}
146     \caption{Fakerate Predictions for Same-sign Muon Events.}\label{fig:ssMuon}
147     \end{center}
148     \end{figure}
149     %-------------------------------------------------
150    
151     Next, we attempt to predict the number of events containing two identified and isolated same-sign muons by applying our fakerates to denominator objects that fail selection. We loop over all such objects, weight each with the appropriate factor of $\epsilon_{FR}(p_{T},\eta)/(1-\epsilon_{FR}(p_{T},\eta))$ and sum. The expected and observed $m(\ell\ell)$ distributions are shown in the rightmost plot of Figure~\ref{fig:ssMuon}. The shape of the predicted distribution agrees with the observation, however the yield is under-predicted by $47.2\%$.
152    
153     %This difference can be understood as a result of differences in the composition of the prediction sample (mainly light flavor) and that used to measure the fakerate (a mix of light and heavy flavor).
154    
155 dkralph 1.7 For electrons, in order to isolate a pure sample of W+jets where the jet fakes an electron, a cross-flavor same-sign sample was chosen with a well-identified muon satisfying $iso_{PF}/P_{T} < 0.025$ and $p_{T}>25$. This region also contains Z+jets and dijet backgrounds. The W+jets and Z+jets components are represented by templates from Monte Carlo while the dijet is modelled by a Rayleigh distribution. The three are fitted to the observed same-sign events on the left of Figure~\ref{fig:ssEle}. The region with $MET>30~GeV$ is enriched in W+jets, so is chosen to test closure in the mass spectrum. The center of the same figure shows this observation compared to the fake prediction computed in the same way as in the muon case, and shows an overall under-prediction of $4\%$. The right of this figure shows that the observed shape discrepancy comes from an under-prediction of $33\%$ for $p_{T}<20$ and an over-prediction of $20\%$ for $p_{T}>20$. We thus take an overall systematic of $33\%$ on the fake prediction.
156    
157     An additional cross-check of the electron fake rates was performed on a sample of single-Z plus one fakeable object in both data and $Z+jets$ monte carlo. The largest observed discrepancy between observation and fake rate prediction of these four estimates was $20\%$, well within the systematic used above.
158 khahn 1.1 %For electrons, charge misidentification is significant enough to result in a noticible Z-peak. The jet background is however easily estimated from a fit with a same-sign MC Z template and an exponential background PDF. Events selected in data are shown in Figures~\ref{fig:ssMuon} and (\ref{fig:ssEle}) as points. Table~\ref{tab:ssfakes} lists the total number of observed events in the muon-channel and the electron-channel background determined from the fit.
159    
160     %-------------------------------------------------
161     \begin{figure}[htb]
162     \begin{center}
163 dkralph 1.4 \includegraphics[width=0.45\linewidth]{figs/ssEleMET.png}
164     \includegraphics[width=0.45\linewidth]{figs/ssEleMZ1.png}
165 dkralph 1.7 \includegraphics[width=0.45\linewidth]{figs/ssElePtLoose.png}
166 dkralph 1.6 \caption{ Fakerate Predictions for Same-sign Electron Events.}
167     \label{fig:ssEle}
168 khahn 1.1 \end{center}
169     \end{figure}
170     %-------------------------------------------------
171    
172 dkralph 1.5 Table summarizes the results of this section. We take $47.2\%$ ($15\%$) as the systematic uncertainty on the muon (electron) fakerate to account for potential biases in our prediction due to differences in light flavor composition.
173 khahn 1.1
174     %-------------------------------------------------
175     \begin{table}[tbh]
176     \begin{center}
177 khahn 1.3 \begin{tabular}{c|c|c|c}
178 khahn 1.1 \hline
179 dkralph 1.7 channel & observed & predicted & systematic \\
180 khahn 1.1 \hline
181 dkralph 1.7 ${\rm same~sign} \mu\mu$ & $159$ & $108.04$ & $47.2\%$\\
182     ${\rm same~sign} ee (total) $ & $5333$ & $5132$ & $33\%$ \\
183     ${\rm same~sign} ee (p_{T}<20)$ & $2783$ & $1993$ & $33\%$ \\
184     ${\rm same~sign} ee (p_{T}>20)$ & $1550$ & $3138$ & $20\%$ \\
185 khahn 1.1 \hline
186     \end{tabular}
187 khahn 1.3 \caption{Same-sign Control Yields and Systematic}
188     \label{tab:ssfakes}
189 khahn 1.1 \end{center}
190     \end{table}
191     %-------------------------------------------------
192    
193     %_________________________________________________________________
194     \subsubsection{Cross Check and Systematics : Heavy Flavor }\label{sec:hflavor}
195     %_________________________________________________________________
196 khahn 1.3 Backgrounds from $t\bar{t}$ and $Zb\bar{b}/c\bar{c}$ involve real leptons from heavy flavor decays. As with light flavor, a difference in the fraction of heavy flavor in the fakerate and prediction samples can lead to errors in signal region background estimation. We assess the impact of heavy flavor composition differences by applying our fakerate in a sample of relatively pure $Zb\bar{b}/c\bar{c}$ and $t\bar{t}$.
197 khahn 1.1
198 khahn 1.3 The control region consists of events that contain a pair of leptons passing the $Z1$ selection and at least two additional denominator objects with $\sigma(IP_{3D})/IP_{3D} > 4$. Denominators are defined according to the requirements of Table~\ref{tab:fo}. We make no requirement on denominator charge or flavor. The leftmost plot of Figure~\ref{fig:ZHF} compares the observed $m(Z1)$ distributions for events passing this selection in data with cross section normalized predictions from MC. We observe $71$ events and predict $66.3 \pm 2.0$ with $Zb\bar{b}$ and $t\bar{t}$ MC, which confirms that the data sample is indeed dominated by heavy flavor. {\bf update numbers, they're like 62 and 58 now ...}
199 khahn 1.1
200     Next, we require the high-IP denominator objects to additionally pass the more stringent lepton ID and isolation criteria used in our nominal Z2 selection. We estimate $0.81 \pm 0.21$ events from MC and observe 2. Electron and muon fakerates are then applied to the denominator objects in the original $71$ events and, following the procedures described in Section~\ref{sec:lflavor}, we predict $0.84 \pm 0.10$ events. Given the consistent results, we assign no additional systematic uncertainty on our predicted $\ell\ell jj$ background yields.
201    
202     %We then reinstate the $\sigma_{IP_{3D}}/IP_{3D} < 4$ cut and estimate $2.5 \pm 0.4$ events in the signal region from the $Zb\bar{b}$ and $t\bar{t}$ MC. We take this prediction as an estimate of the heavy flavor contribution to our overall $\ell\ell jj$ background esimtate of $XXX$. We assign a s sysmatic uncertainty on the estimated fraction Considering the We assignconsider th
203    
204     %-------------------------------------------------
205     \begin{figure}[htbp]
206     \begin{center}
207     \includegraphics[width=0.45\linewidth]{figs/HFmZ1.png}
208     \includegraphics[width=0.45\linewidth]{figs/HFm4l.png}
209     \caption{$m(Z1)$ and $m(4\ell)$ in the Heavy Flavor control region.}\label{fig:ZHF}
210     \end{center}
211     \end{figure}
212     %-------------------------------------------------
213    
214 khahn 1.3 %We determine a shape for heavy flavor background in the signal region from the distribution of $m(4\ell)$ from the $Z1 + 2\times$ denominator events. The rightmost plot of Figure~\ref{fig:ZHF} compares the $m(4\ell)$ distributions for this selection in data and (cross-section normalized) simulation. We fit both distributions with Landaus and compare the normalized PDFs in Figure~\ref{fig:HFshape}.
215 khahn 1.1
216     %-------------------------------------------------
217 khahn 1.3 %\begin{figure}[htbp]
218     %\begin{center}
219     %\includegraphics[width=0.5\linewidth]{figs/HFshape.png}
220     %\caption{$m(4\ell)$ shapes in the Heavy Flavor control region.}\label{fig:HFshape}
221     %\end{center}
222     %\end{figure}
223 khahn 1.1 %-------------------------------------------------
224     %_________________________________________________________________
225     \subsection{Cross Check and Systematics: $WZ$ }
226     %_________________________________________________________________
227 khahn 1.3 The estimate of $WZ$ background in Table~\ref{tab:MCBG} is entirely MC-based. In addition to the leptons from $W$ and $Z$ decay, an additional ``fake'' lepton is needed for this process to contribute in the $4\ell$ signal region. We cross-check MC predictions with an estimate obtained from the fakeable object method.
228 khahn 1.1
229 dkralph 1.7 We begin by requiring three fully selected leptons (two from the Z1 plus one additional) and $1+$ denominator objects. We then perform a single loop to associate the denominator objects with the third lepton. As before, we weight the denominators with $\epsilon_{FR}(p_{T},\eta)/(1-\epsilon_{FR}(p_{T},\eta))$, apply opposite-sign, same-flavor and kinematic selections and sum. The additional, identified lepton with which the denominators are paired is either a fake (from $Z+jets$) or a real lepton (from $WZ$, $Z\gamma$, or $ZZ$ where one of the leptons is not reconstructed). In order to extract the $WZ$ component of the measurement, we need to subtract off the $3\ell$ contribution predicted by MC for $ZZ$ and $Z\gamma$, as well as the double-fake estimate described in Section~\ref{sec:fakes}. The latter is double-counted when performing a single denominator loop.
230 khahn 1.1
231     \begin{eqnarray}
232 khahn 1.3 N(WZ) &=& \ell\ell\ell~\Sigma_{i=0}^{Nd}~\frac{\epsilon(\eta^{i},p_{T}^{i})}{1-\epsilon(\eta^{i},p_{T}^{i})} \\
233     ~ &-& 2\times \ell\ell~\Sigma_{i=0}^{Nd}\Sigma_{j=i+1}^{Nd}~\frac{\epsilon(\eta^{i},p_{T}^{i})}{1-\epsilon(\eta^{i},p_{T}^{i})}~\frac{\epsilon(\eta^{j},p_{T}^{j})}{1-\epsilon(\eta^{j},p_{T}^{j})} \\
234 dkralph 1.7 ~ &-& N(ZZ)
235 khahn 1.1 \end{eqnarray}
236    
237 khahn 1.3 Table~\ref{tab:WZfake} lists values for the terms in the equation above. The result ... {\bf fill in the table and quote a systematic for WZ}.
238 khahn 1.1
239     %-------------------------------------------------
240     \begin{table}[tbh]
241     \begin{center}
242 dkralph 1.7 \begin{tabular}{|c|c|c|c|}
243     \hline
244     & $4e$ & $4\mu$ & $2e2\mu$ \\
245     \hline
246     single loop & $9.1\pm 2$ & $Z\pm Y$ & $6.6 + Z\pm 1.7 + Y$ \\
247     \hline
248     double loop & $2.6\pm 0.5$ & $Z\pm Y$ & $2.2 + \pm 0.4 + Y$ \\
249     \hline
250     $ZZ$ & $0.49\pm 0.005$ & $Z\pm Y$ & $0.67 + Z\pm 0.01 + Y$ \\
251 khahn 1.1 \hline
252 dkralph 1.7 $Z\gamma$ & $0.9\pm 0.4$ & $Z\pm Y$ & $0.8 + Z\pm 0.5 + Y$ \\
253 khahn 1.1 \hline
254 dkralph 1.7 WZ estimate & $2.5\pm 2.1$ & $Z\pm Y$ & $0.7 + Z\pm 1.8 + Y$ \\
255 khahn 1.1 \hline
256     \end{tabular}
257 khahn 1.3 \caption{Data-driven Expected $WZ$ Yields}
258     \label{tab:WZfake}
259 khahn 1.1 \end{center}
260     \end{table}
261     %-------------------------------------------------
262    
263