ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitHzz4l/Documentation/Backgrounds.tex
(Generate patch)

Comparing UserCode/MitHzz4l/Documentation/Backgrounds.tex (file contents):
Revision 1.5 by dkralph, Tue Nov 8 21:13:31 2011 UTC vs.
Revision 1.12 by dkralph, Fri Nov 25 20:20:15 2011 UTC

# Line 1 | Line 1
1   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2   \section{Backgrounds}\label{sec:BG}
3   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 < This section reviews our evaluation of background in the $4\ell$ analysis.  We discuss expected yields and the predicted $m(4\ell)$ shapes, both of which are used in the limit and sensitivity calculations described in Section~\ref{sec:Extraction}.  We estimate Electroweak (EWK) backgrounds with Monte Carlo.  Our estimates of instrumental and jet backgrounds are data-driven.
4 > This section reviews our evaluation of background in the $4\ell$ analysis.  We discuss expected yields and the predicted $m(4\ell)$ shapes used in the limit and sensitivity calculations of Section~\ref{sec:Extraction}.  We estimate diboson backgrounds with Monte Carlo.  Our estimates of instrumental and jet backgrounds are data-driven.
5  
6   %_________________________________________________________________
7 < \subsection{Electroweak Backgrounds}\label{sec:EWK}
7 > \subsection{Diboson Backgrounds}\label{sec:DiB}
8   %_________________________________________________________________
9 < We use the $ZZ$, $WZ$ and $Z\gamma$ MC samples listed in Table~\ref{tab:MC} to estimate yields and $m(4\ell)$ shapes for these backgrounds.  We correct the acceptances determined from simulation using the procedures described in Section~\ref{sec:Signal}.  We determine background yields using the corrected $4e$, $4\mu$ and $2e2\mu$ acceptances ($\alpha_{c}$) for each process:
10 <
11 < \begin{eqnarray}
12 < N^{exp}_{i}  & = & \alpha^{c}_{i}\int\mathcal{L}\sigma_{i}
13 < \end{eqnarray}
14 <
15 < The cross sections used in formula above are taken from Table~\ref{tab:MC}.  Table~\ref{tab:MCBG} lists the $\alpha_{c}$ and the expected $2.1\rm~fb^{-1}$ yields for the diboson backgrounds.  Figure~\ref{fig:MCshapes} shows a yield-normalized stack of the corresponding $m(4\ell)$ distributions.
9 > We use the $ZZ$, $WZ$ and $Z\gamma$ MC samples listed in Table~\ref{tab:MC} to estimate yields and $m(4\ell)$ shapes for these backgrounds.  We correct the acceptances from simulation using the procedures described in Section~\ref{sec:Signal}.  Background yields are determined from the $\alpha_{C}$, luminosity and cross sections from Table~\ref{tab:MC}.  Table~\ref{tab:MCBG} lists the $4.7\rm~fb^{-1}$ expectations for diboson backgrounds.  Figure~\ref{fig:MCshapes} shows the corresponding $m(4\ell)$ distributions.  The contribution from $WZ$ is included in this plot but is too small to be visible.
10  
11   %-------------------------------------------------
12   \begin{figure}[htb]
13   \begin{center}
14 < \includegraphics[width=0.5\linewidth]{figs/HF1.png}
15 < \caption{MC Background Shapes.{\bf put the right plot here} }
14 > \includegraphics[width=0.5\linewidth]{figs/dibosonExpectedM4L.png}
15 > \caption{Expected Diboson $m(4\ell)$ Distributions for $4.7\rm~fb^{-1}$.}
16   \label{fig:MCshapes}
17   \end{center}
18   \end{figure}
# Line 27 | Line 21 | The cross sections used in formula above
21   %-------------------------------------------------
22   \begin{table}[htb]
23   \begin{center}
24 < \begin{tabular}{c|cc|cc|cc}
25 < {\bf Process}   & $\alpha^{c}_{ee}$  & $N^{exp}_{ee}$ & $\alpha^{c}_{\mu\mu}$  & $N^{exp}_{\mu\mu}$ & $\alpha^{c}_{2e2\mu}$  & $N^{exp}_{2e2\mu}$ \\
24 > \begin{tabular}{c|c|c|c}
25 > \hline
26 > {\bf Process}   & $4e$ & $4\mu$ & $2e2\mu$ \\
27   \hline
28 < $ZZ^{*}$     &  ~                 & ~              &  ~                 & ~              &  ~                 & ~              \\
29 < $WZ$      &  ~                 & ~              &  ~                 & ~              &  ~                 & ~              \\
30 < $Z\gamma$ &  ~                 & ~              &  ~                 & ~              &  ~                 & ~              \\
28 > $qq\rightarrow ZZ^{*}$     &  $9.39$             & $11.53$        & $25.05$ \\
29 > $gg\rightarrow ZZ^{*}$     &  $2.00$             & $2.10$         & $4.26$ \\
30 > $WZ$                      &  $0.18$             & $<10^{-4}$     & $0.19$ \\
31 > $Z\gamma^{*}$             &  $1.14$             & $<10^{-4}$     & $1.12$ \\
32 > \hline
33 > Total Diboson             &  $12.71$            & $13.6301$      & $30.62$ \\
34   \hline
35   \end{tabular}
36 < \caption{MC Background Yields.}
36 > \caption{Expected $4.7\rm~fb^{-1}$ Diboson Yields. {\bf INCLUDE uncertainties from Eff \& Scale}}
37   \label{tab:MCBG}
38   \end{center}
39   \end{table}
40   %-------------------------------------------------
41  
42 < We consider two sources of systematic uncertainties on the EWK background predictions.  The first is due to the uncertainty on the efficiency scale-factors, which we propagate from the tables of Section~\ref{sec:Leptons} to the corrected acceptance for each channel. {\bf still have to do this}.  The second uncertainty concerns the influence of missing higher-orders on the mass shapes and kinematics predicted by the MC.  We estimate the magnitude of this effect by reweighting the POWHEG samples at generator-level to the $m(4\ell)$ distributions predicted by MCFM with renormalization and factorization scales varied by $\times 2$, $/2$.  We take the relative differences in shape are used as an uncertainty in the limit calculation.    Figure~\ref{fig:EWKshapeSys} shows the relative shape differences we obtain after reweighting. {\bf done for ZZ, needed for the others}.
42 > We consider two sources of systematic uncertainties on diboson background yields.  The first is due to the uncertainty on the efficiency and energy scale-factors, which we propagate from the tables of Section~\ref{sec:Leptons} to the corrected acceptance for each channel. {\bf still have to do this}.  We also propagate PDF uncertainties following standard LHA prescriptions~\cite{LHA}.  We quote the combined uncertainties from these two sources in Table~\ref{tab:MCBG}.
43  
44   %-------------------------------------------------
45   \begin{figure}[bht]
46   \begin{center}
47 < \includegraphics[width=0.5\linewidth]{figs/HF1.png}
48 < \caption{EWK Shape Differences From MCFM Reweight.{\bf get the right plot in here} }
49 < \label{fig:EWKshapeSys}
47 > \includegraphics[width=0.5\linewidth]{figs/ewk-shape-mcfm.png}
48 > \caption{Diboson Shape Differences From MCFM Reweighting. }
49 > \label{fig:DiBshapeSys}
50   \end{center}
51   \end{figure}
52   %-------------------------------------------------
# Line 56 | Line 54 | We consider two sources of systematic un
54   %_________________________________________________________________
55   \subsection{Instrumental/Fake Backgrounds}\label{sec:fakes}
56   %_________________________________________________________________
57 < $Z+jets$ , $Zb\bar{b}/c\bar{c}$ and $t\bar{t}$ backgrounds (collectively, $\ell\ell jj$) contribute to the $4\ell$ signal region when jets in these events are either mismeasured as leptons or produce real leptons through secondary interactions.  These processes are difficult to accurately simulate so we estimate their contribution from data.  We assess $\ell\ell jj$  backgrounds using the ``fakeable object'' technique~\cite{fakeable}.  For this method we define ``fakerates'' with respect to loosely identified lepton candidates, referred to as ``denominator objects''.  Electron and muon denominator selections are defined in Table~\ref{tab:fo}.
57 > $Z+jets$ , $Zb\bar{b}/c\bar{c}$ and $t\bar{t}$ backgrounds (collectively, $\ell\ell jj$) contribute to the $4\ell$ signal region when jets in these events are either mismeasured as leptons or produce real leptons through secondary interactions.  These processes are difficult to accurately simulate thus we estimate their contribution from data.  We assess $\ell\ell jj$  backgrounds using the ``fakeable object'' technique~\cite{fakeable}.  For this method we define ``fakerates'' with respect to loosely identified lepton candidates, referred to as ``denominator objects''.  Electron and muon denominator selections are defined in Table~\ref{tab:fo}.
58  
59   %-------------------------------------------------
60   \begin{table}[htb]
61   \begin{center}
62   \begin{tabular}{c|c|c|c}
65 \multicolumn{2}{c|}{Electron}                    & \multicolumn{2}{|c}{Muon}  \\
63   \hline
64 < variable               & requirement              & variable   & requirement          \\
64 > \multicolumn{2}{c|}{{\bf Electron}}                    & \multicolumn{2}{|c}{{\bf Muon}}  \\
65 > \hline
66 > {\bf Variable}               & {\bf Requirement}              & {\bf Variable}   & {\bf Requirement}          \\
67   \hline
68   $E_{T}$   &  $> 7\rm~GeV$            &             $p_{T}$                & $> 5\rm~GeV$            \\
69   $|dz|$    &   $< 0.1\rm~cm$          &             type                   & $\rm Global~||~Tracker$  \\
70 < $|\eta|$  & $< 2.5\rm~GeV$           &             $|d_{0}|$              & $< 2\rm~mm$             \\
70 > $|\eta|$  & $< 2.5\rm~$              &             $|d_{0}|$              & $< 2\rm~mm$             \\
71   $H/E$     &    $< 0.12(0.1) EB(EE)$  &            $Iso^{pf}_{0.3}$       & $< 3\times p_{T}$        \\
72 < $iso_{trk}$ & $<0.3$                 &                                  ~                      & ~                        \\  
73 < $iso_{em}$  & $<0.3$                 &                                  ~                      & ~                        \\  
74 < $iso_{had}$ & $<0.3$                 &                                  ~                      & ~                        \\
72 > $iso_{PF}~(p_{T}<20)$ & $<1.0$                 &                                  ~                      & ~                        \\  
73 > $iso_{PF}~(p_{T}>20)$ & $<1.15(1.2)~EB(EE)$    &                                  ~                      & ~                        \\  
74 > \hline
75   \end{tabular}
76   \caption{Denominator Object Definitions}\label{tab:fo}
77   \end{center}
78   \end{table}
79   %-------------------------------------------------
80  
81 < We calculate the fakerates ($\epsilon_{FR}(p_{T},\eta)$) from samples of events that pass single lepton triggers: \verb|HLT_Ele8| for electrons, \verb|HLT_Mu8| or \verb|HLT_Mu13| for muons.  In both channels we reduce contamination from $W\rightarrow \ell\nu$ and $Z/\gamma^{*}\rightarrow\ell\ell$ by vetoing events with $MET > 20\rm~GeV$, or with $m_{T} > 35\rm~GeV$ or with two or more denominator objects of $p_{T} > 10\rm~GeV$.  We enrich the samples in background by selecting only those denominator objects opposite to  ($\Delta R(\eta,\phi) > 1.0$) a reconstructed $p_{T} > 35\rm~GeV$ jet.  Figure~\ref{fig:FR} shows the electron and muon fakerates obtained from this procedure as a function of $p_{T}$.
81 > We calculate the fakerates ($\epsilon_{FR}(p_{T},\eta)$) in samples of events that pass single lepton triggers: \verb|HLT_Ele8| for electrons, \verb|HLT_Mu8| or \verb|HLT_Mu13| for muons.  In both channels we reduce contamination from $W\rightarrow \ell\nu$ and $Z/\gamma^{*}\rightarrow\ell\ell$ by vetoing events with $MET > 20\rm~GeV$, or with $m_{T} > 35\rm~GeV$ or with two or more denominator objects of $p_{T} > 10\rm~GeV$.  We enrich the samples in background by selecting only those denominator objects opposite to  ($\Delta R(\eta,\phi) > 1.0$) a reconstructed $p_{T} > 35\rm~GeV$ jet.  Figure~\ref{fig:FR} shows the electron and muon fakerates obtained from this procedure as a function of $p_{T}$.
82  
83   %-------------------------------------------------
84   \begin{figure}[tbp]
# Line 92 | Line 91 | We calculate the fakerates ($\epsilon_{F
91   \end{figure}
92   %-------------------------------------------------
93  
94 < We estimate $\ell\ell jj$ backgrounds in the signal region by applying the fakerates in events that contain a good Z1.  First, we select denominator objects that fail identification/isolation to prevent bias from real leptons.  Next, we loop over pairs of the denominator objects, weight each leg with $\epsilon_{FR}(p_{T},\eta)/(1-\epsilon_{FR}(p_{T},\eta))$  and apply the Z2 kinematic requirements ($12\rm~GeV < m(Z2) < 120$).  The denominator in the weight term accounts for the fact that the we only consider candidates that fail full lepton selection.  Weighted pairs that pass the Z2 kinematic selection are summed to obtain an estimate of the $\ell\ell jj$ background.  
94 > We estimate $\ell\ell jj$ backgrounds in the signal region by applying the $\epsilon_{FR}$ in events that contain a good $Z1$.  First, we select denominator objects that fail identification/isolation to prevent bias from real leptons.  Next, we loop over pairs of the denominator objects, weight each leg with $\epsilon_{FR}(p_{T},\eta)/(1-\epsilon_{FR}(p_{T},\eta))$  and apply the $Z2$ kinematic requirements ($12\rm~GeV < m(Z2) < 120$).  The denominator in the weight term accounts for the fact that the we only consider candidates that fail full lepton selection.  Weighted pairs that pass the $Z2$ kinematic selection are summed to obtain an estimate of the $\ell\ell jj$ background.  
95  
96 < Table~\ref{tab:fakes} presents $\ell\ell jj$ background estimates for the $2.1\rm~fb^{-1}$ dataset.  We maximize the statistical power of the small $Z1 + \ge 2\rm~denominator$ sample by integrating over the flavor of the $Z1$ leptons and then dividing the $Z1$-inclusive prediction between the $4\ell_{e,\mu}$ and $2\ell_{e,\mu}2\ell_{\mu,e}$ channels.  The division is performed by assuming equal $ee$ and $\mu\mu$ $Z1$ branching ratios and using an acceptance factor ($=\sim1$, measured from inclusive $Z\rightarrow ee,\mu\mu$ yields {\bf need to double check this. 1 seems strange}) to account for efficiency differences in the detection of electrons and muons.
96 > Table~\ref{tab:fakes} presents $\ell\ell jj$ background estimates for the $4.7\rm~fb^{-1}$ dataset.  We maximize the statistical power of the small $Z1 + \ge 2\rm~denominator$ sample by integrating over the flavor of the $Z1$ leptons and then dividing the $Z1$-inclusive prediction between the $4\ell_{e,\mu}$ and $2\ell_{e,\mu}2\ell_{\mu,e}$ channels.  The division is performed by assuming equal $ee$ and $\mu\mu$ $Z1$ branching ratios and using an acceptance factor ($=\sim 1$), measured from inclusive $Z\rightarrow ee,\mu\mu$ yields {\bf need to double check this. 1 seems strange}) to account for efficiency differences in the detection of electrons and muons.
97  
98   %-------------------------------------------------
99   \begin{table}[htb]
# Line 119 | Line 118 | $2e2\mu$    & $(0.013 + 1.4) \pm 0.9$
118   \end{table}
119   %-------------------------------------------------
120  
121 < It is difficult to predict $m(4\ell)$ and kinematic shapes for $\ell\ell jj$ background with the limited number of events containing a good $Z1$ and two failing denominator objects.  Although loosening the denominator and $Z1,2$ selections helps, these requirements must not be made so loose that distributions from the control region no longer resemble those of the signal region.  As an alternative, we study shapes using $Z+jets$, $t\bar{t}$ and $Zb\bar{b}$ MC events that pass our nominal selections.  Figure~\ref{fig:fakeshapes}, for example, shows the cross section normalized $m(4\ell)$ distributions from these processes.
121 > It is difficult to predict $m(4\ell)$ and kinematic shapes for $\ell\ell jj$ background with the limited number of events containing a good $Z1$ and two failing denominator objects.  Loosening the denominator and $Z1,2$ selections in data helps, however these requirements must not be made so loose that background from the control region no longer resemble those of the signal region.  For this reason we instead estimate $\ell\ell jjs$ shapes by applying a loose selection in $Z+jets$ and $t\bar{t}$ MC events.  Figure~\ref{fig:fakeshapes} shows the cross section normalized $m(4\ell)$ distributions from these processes.
122  
123   %-------------------------------------------------
124   \begin{figure}[tbp]
# Line 134 | Line 133 | It is difficult to predict $m(4\ell)$ an
133   %_________________________________________________________________
134   \subsubsection{Cross Check and Systematics: Light Flavor }\label{sec:lflavor}
135   %_________________________________________________________________
136 < We cross-check our procedures by predicting the number of fake leptons in independent control regions enriched in light flavor.  We require one $p_{T} > 25\rm~GeV$ lepton candidate that passes our nominal lepton selection and $1+$ same-sign, same-flavor denominator objects.  We veto events with $m(\ell\ell)$ between $76-106\rm~GeV$ to reduce real lepton contamination from Z decays.  
136 > We cross-check our procedures by predicting the number of fake leptons in independent control regions that are enriched in light flavor.  We require one $p_{T} > 25\rm~GeV$ lepton candidate that passes our nominal lepton selection and $1+$ same-sign, same-flavor denominator objects.  This selection produces a sample of nearly pure background, of which the primary component is $W+jet$ with a jet faking a lepton.  Smaller multi-jet backgrounds consist of both light and heavy flavor and contain at least two jets that both fake leptons.  We reduce heavy flavor contributions by requiring $|\sigma(IP_{3D})/IP_{3D} < 3|$ for all denominator objects and $MET > 25\rm~GeV$.  
137  
138 < In the muon-channel this selection produces a sample of pure background, of which the primary component is $W+jet$ with a jet faking a muon.  The smaller multi-jet backgrounds, consisting of both light and heavy flavor, contain at least two jets that both fake muons.  We reduce the heavy flavor contribution in this sample by requiring $|\sigma(IP_{3D})/IP_{3D} < 3|$ for all muon candidates and $MET > 25\rm~GeV$.  Relative abundances for events in which the denominator muon passes selection are determined by fitting the resulting MET distribution with a same-sign MC template for $W+jets$ and a Rayleigh distribution for multi-jets.  The fit result (Figure~\ref{fig:ssMuon}, left) indicates that $W+jets$ constitutes $\sim80\%$ of the sample.  Residual contributions from heavy flavor in the same-sign muon sample are therefore small.
138 > Relative abundances for muon-channel events passing these selections are determined by fitting the resulting $m_{T}$ distribution with a same-sign MC template for $W+jets$ and a Rayleigh distribution for multi-jets.  The fit result (Figure~\ref{fig:ssMuon}, left) indicates that $W+jets$ constitutes $\sim95\%$ of the sample for $m_{T} > 45\rm~GeV$.
139  
140   %-------------------------------------------------
141   \begin{figure}[htb]
142   \begin{center}
143 < \includegraphics[width=0.45\linewidth]{figs/ssMuMET.png}
144 < \includegraphics[width=0.45\linewidth]{figs/ssMuMZ1.png}
145 < \caption{Fakerate Predictions for Same-sign Muon Events.}\label{fig:ssMuon}
143 > \includegraphics[width=0.45\linewidth]{figs/ssMuMT.png}
144 > \includegraphics[width=0.45\linewidth]{figs/mufakes_mZ1.png}
145 > \caption{Sample Composition and Fakerate Predictions for Same-sign Muon Events.}\label{fig:ssMuon}
146   \end{center}
147   \end{figure}
148   %-------------------------------------------------
149  
150 < Next, we attempt to predict the number of events containing two identified and isolated same-sign muons by applying our fakerates to denominator objects that fail selection.  We loop over all such objects, weight each with the appropriate factor of $\epsilon_{FR}(p_{T},\eta)/(1-\epsilon_{FR}(p_{T},\eta))$ and sum.  The expected and observed $m(\ell\ell)$ distributions are shown in the rightmost plot of Figure~\ref{fig:ssMuon}.  The shape of the predicted distribution agrees with the observation, however the yield is under-predicted by $47.2\%$.  
150 > Next, we attempt to predict the number of events containing two identified and isolated same-sign muons by applying our fakerates to denominator objects in the sample.  We loop over all fakeable objects, weight each with the appropriate $\epsilon_{FR}(p_{T},\eta)$ and sum.  The expected and observed $m(\ell\ell)$ distributions are shown in the rightmost plot of Figure~\ref{fig:ssMuon}.  The shape of the predicted distribution agrees with the observation, however the yield is under-predicted by $12.3\%$.  We round up to $13\%$ and take this difference as a systematic uncertainty on the muon fakerate.  
151  
152 < %This difference can be understood as a result of differences in the composition of the prediction sample (mainly light flavor) and that used to measure the fakerate (a mix of light and heavy flavor).  
152 > For electrons, in order to isolate a pure sample of W+jets where the jet fakes an electron, a cross-flavor same-sign sample was chosen with a well-identified muon satisfying $iso_{PF}/P_{T} < 0.025$ and $p_{T}>25$. This region also contains Z+jets and dijet backgrounds. The W+jets and Z+jets components are represented by templates from Monte Carlo while the dijet is modelled by a Rayleigh distribution. The three are fitted to the observed same-sign events on the left of Figure~\ref{fig:ssEle}. The region with $MET>30~GeV$ is enriched in W+jets, so is chosen to test closure in the mass spectrum. The center of the same figure shows this observation compared to the fake prediction computed in the same way as in the muon case, and shows an overall under-prediction of $4\%$. The right of this figure shows that the observed shape discrepancy comes from an under-prediction of $33\%$ for $p_{T}<20$ and an over-prediction of $20\%$ for $p_{T}>20$. We thus take an overall systematic of $33\%$ on the fake prediction.
153  
154 < For electrons, in order to isolate a pure sample of W+jets where the jet fakes an electron, a cross-flavor same-sign sample was chosen with a well-identified muon satisfying $iso_{PF}/P_{T} < 0.025$ and $p_{T}>30$. This region also contains Z+jets and dijet backgrounds. The W+jets and Z+jets components are represented by templates from Monte Carlo while the dijet is modelled by a Rayleigh distribution. The three are fitted to the observed same-sign events on the left of Figure~\ref{fig:ssEle}. The region with $MET>30~GeV$ is enriched in W+jets, so is chosen to test closure in the mass spectrum. The right of the same figure shows this observation compared to the fake prediction computed in the same way as in the muon case, and shows an under-prediction of $15\%$.
156 < %For electrons, charge misidentification is significant enough to result in a noticible Z-peak.  The jet background is however easily estimated from a fit with a same-sign MC Z template and an exponential background PDF.  Events selected in data are shown in Figures~\ref{fig:ssMuon} and (\ref{fig:ssEle}) as points.  Table~\ref{tab:ssfakes} lists the total number of observed events in the muon-channel and the electron-channel background determined from the fit.
154 > An additional cross-check of the electron fake rates was performed on a sample of single-Z plus one fakeable object in both data and $Z+jets$ monte carlo. The largest observed discrepancy between observation and fake rate prediction of these four estimates was $20\%$, well within the systematic used above.
155  
156   %-------------------------------------------------
157   \begin{figure}[htb]
158   \begin{center}
159   \includegraphics[width=0.45\linewidth]{figs/ssEleMET.png}
160   \includegraphics[width=0.45\linewidth]{figs/ssEleMZ1.png}
161 < \caption{ Fakerate Predictions for Same-sign Electron Events.
162 < \label{fig:ssEle}
161 > \caption{ Sample Composition and Fakerate Predictions for Same-sign Electron Events.}
162 > \label{fig:ssEle}
163   \end{center}
164   \end{figure}
165   %-------------------------------------------------
166  
167 < Table summarizes the results of this section.  We take $47.2\%$ ($15\%$) as the systematic uncertainty on the muon (electron) fakerate to account for potential biases in our prediction due to differences in light flavor composition.
167 > Table summarizes the results of this section.  We take $13\%$ ($15\%$) as the systematic uncertainty on the muon (electron) fakerate to account for potential biases in our prediction due to differences in light flavor composition.
168  
169   %-------------------------------------------------
170   \begin{table}[tbh]
171   \begin{center}
172   \begin{tabular}{c|c|c|c}
173   \hline
174 < channel                 & observed & predicted  & systematic     \\
174 > {\bf Channel}                   & {\bf Observed} & {\bf Predicted}  & {\bf Systematic}     \\
175   \hline
176 < ${\rm same~sign} \mu\mu$      & $159$    & $108.04$  & $47.2\%$\\
177 < ${\rm same~sign} ee$          & $400$      & $346$       &  $15\%$ \\
176 > ${\rm same~sign}~\mu\mu$        & $336$    & $299.2$   & $13\%$\\
177 > ${\rm same~sign}~ee (total) $   & $5333$   & $5132$    & $33\%$ \\
178 > ${\rm same~sign}~ee (p_{T}<20)$ & $2783$   & $1993$    & $33\%$ \\
179 > ${\rm same~sign}~ee (p_{T}>20)$ & $2550$   & $3138$    & $20\%$ \\
180   \hline
181   \end{tabular}
182 < \caption{Same-sign Control Yields and Systematic}
182 > \caption{Same-sign Control Yields and Systematic Uncertainty.}
183   \label{tab:ssfakes}
184   \end{center}
185   \end{table}
# Line 190 | Line 190 | ${\rm same~sign} ee$          & $400$
190   %_________________________________________________________________
191   Backgrounds from $t\bar{t}$ and $Zb\bar{b}/c\bar{c}$ involve real leptons from heavy flavor decays.  As with light flavor, a difference in the fraction of heavy flavor in the fakerate and prediction samples can lead to errors in signal region background estimation.  We assess the impact of heavy flavor composition differences by applying our fakerate in a sample of relatively pure $Zb\bar{b}/c\bar{c}$ and $t\bar{t}$.
192  
193 < The control region consists of events that contain a pair of leptons passing the $Z1$ selection and at least two additional denominator objects with $\sigma(IP_{3D})/IP_{3D} > 4$.  Denominators are defined according to the requirements of Table~\ref{tab:fo}.  We make no requirement on denominator charge or flavor.  The leftmost plot of Figure~\ref{fig:ZHF} compares the observed $m(Z1)$ distributions for events passing this selection in data with cross section normalized predictions from MC.  We observe $71$ events and predict $66.3 \pm 2.0$ with $Zb\bar{b}$ and $t\bar{t}$ MC, which confirms that the data sample is indeed dominated by heavy flavor. {\bf update numbers, they're like 62 and 58 now ...}
193 > The control region consists of events that contain a pair of leptons passing the $Z1$ selection and at least two additional denominator objects with $\sigma(IP_{3D})/IP_{3D} > 3$, of which at least one has $\sigma(IP_{3D})/IP_{3D} > 5$ .  Denominators are defined according to the requirements of Table~\ref{tab:fo}.  We make no requirement on denominator charge or flavor.  The leftmost plot of Figure~\ref{fig:ZHF} compares the observed $m(Z1)$ distributions for events passing this selection in data with cross section normalized predictions from MC.  We observe $153$ events and predict $154.9 \pm 4.2$ with $Zb\bar{b}$ and $t\bar{t}$ MC, which confirms that the data sample is indeed dominated by heavy flavor.
194  
195 < Next, we require the high-IP denominator objects to additionally pass the more stringent lepton ID and isolation criteria used in our nominal Z2 selection.  We estimate $0.81 \pm 0.21$ events from MC and observe 2.  Electron and muon fakerates are then applied to the denominator objects in the original $71$ events and, following the procedures described in Section~\ref{sec:lflavor}, we predict $0.84 \pm 0.10$ events.  Given the consistent results, we assign no additional systematic uncertainty on our predicted  $\ell\ell jj$ background yields.
195 > Next, we require the denominator objects to additionally pass the more stringent lepton ID and isolation criteria used in our nominal Z2 selection.  Of the $107$ ($214$) electron (muon) denominators in the sample $17$ ($11$) satisfy the selection requirements.  We then weight the denominators with the appropriate electron and muon fakerates and predict $21.1$ ($20.3$) electrons (muons).  We assign an additional $20\%$ ($46\%$) systematic uncertainty on the electron (muon) fakerates from the difference between observation and prediction.
196 >
197 > %We estimate $0.81 \pm 0.21$ events from MC and observe 2.  Electron and muon fakerates are then applied to the denominator objects in the original $71$ events and, following the procedures described in Section~\ref{sec:lflavor}, we predict $0.84 \pm 0.10$ events.  Given the consistent results, we assign no additional systematic uncertainty on our predicted  $\ell\ell jj$ background yields.
198  
199   %We then reinstate the $\sigma_{IP_{3D}}/IP_{3D} < 4$ cut and estimate $2.5 \pm 0.4$ events in the signal region from the $Zb\bar{b}$ and $t\bar{t}$ MC.  We take this prediction as an estimate of the heavy flavor contribution to our overall $\ell\ell jj$ background esimtate of $XXX$.  We assign a s sysmatic uncertainty on the estimated fraction Considering the We assignconsider th
200  
# Line 221 | Line 223 | Next, we require the high-IP denominator
223   %_________________________________________________________________
224   The estimate of $WZ$ background in Table~\ref{tab:MCBG} is entirely MC-based.  In addition to the leptons from $W$ and $Z$ decay, an additional ``fake'' lepton is needed for this process to contribute in the $4\ell$ signal region.  We cross-check MC predictions with an estimate obtained from the fakeable object method.  
225  
226 < We begin by requiring three fully selected leptons (two from the Z1 plus one additional) and $1+$ denominator objects.  We then perform a single loop to associate the denominator objects with the third lepton.  As before, we weight the denominators with $\epsilon_{FR}(p_{T},\eta)/(1-\epsilon_{FR}(p_{T},\eta))$, apply opposite-sign, same-flavor and kinematic selections and sum.  The additional, identified lepton with which the denominators are paired is either a fake (from $Z+jets$) or a real lepton (from $WZ$ or $ZZ$ where one of the leptons is not reconstructed).  In order to extract the $WZ$ component of the measurement, we need to subtract off the $3\ell$ contribution predicted by MC for $ZZ$ as well as the double-fake estimate described in Section~\ref{sec:fakes}.  The latter is double-counted when performing a single denominator loop.
226 > We begin by requiring three fully selected leptons (two from the $Z1$ plus one additional) and $1+$ denominator objects.  We then perform a single loop to associate the denominator objects with the third lepton.  As before, we weight the denominators with $\epsilon_{FR}(p_{T},\eta)/(1-\epsilon_{FR}(p_{T},\eta))$, apply opposite-sign, same-flavor and kinematic selections and sum.  The additional, identified lepton with which the denominators are paired is either a fake (from $Z+jets$) or a real lepton (from $WZ$, $Z\gamma$, or $ZZ$ where one of the leptons is not reconstructed).  In order to extract the $WZ$ component of the measurement, we need to subtract off the $3\ell$ contribution predicted by MC for $ZZ$ and $Z\gamma$, as well as the double-fake estimate described in Section~\ref{sec:fakes}.  The latter is double-counted when performing a single denominator loop.
227 >
228 > The single loop fake prediction is shown in Figure~\ref{fig:ssElepredict}.
229  
230   \begin{eqnarray}
231   N(WZ) &=& \ell\ell\ell~\Sigma_{i=0}^{Nd}~\frac{\epsilon(\eta^{i},p_{T}^{i})}{1-\epsilon(\eta^{i},p_{T}^{i})}   \\
232       ~ &-& 2\times \ell\ell~\Sigma_{i=0}^{Nd}\Sigma_{j=i+1}^{Nd}~\frac{\epsilon(\eta^{i},p_{T}^{i})}{1-\epsilon(\eta^{i},p_{T}^{i})}~\frac{\epsilon(\eta^{j},p_{T}^{j})}{1-\epsilon(\eta^{j},p_{T}^{j})} \\
233 <     ~ &-& N(WZ)
233 >     ~ &-& N(ZZ)
234   \end{eqnarray}
235  
236 < Table~\ref{tab:WZfake} lists values for the terms in the equation above.  The result ... {\bf fill in the table and quote a systematic for WZ}.
236 > Table~\ref{tab:WZfake} lists values for the terms in the equation above.
237  
238   %-------------------------------------------------
239   \begin{table}[tbh]
240   \begin{center}
241 < \begin{tabular}{|c|c|c|}
241 > \begin{tabular}{|c|c|c|c|}
242 > \hline
243 >            &  $4e$            &         $4\mu$   &       $2e2\mu$ \\
244   \hline
245 < $4e$    &         $4\mu$  &       $2e2\mu$ \\
245 > single loop &  $7.6\pm 1.7$    &         $Z\pm Y$ &       $5.8 + Z\pm 1.6 + Y$ \\
246   \hline
247 < $X\pm Y$ &         $Z\pm Y$ &       $Z\pm Y$  \\
247 > double loop &  $2.3\pm 0.4$    &         $Z\pm Y$ &       $1.8 +  \pm 0.3 + Y$ \\
248 > \hline
249 > $ZZ$        &  $0.47\pm 0.005$ &         $Z\pm Y$ &       $0.66 + Z\pm 0.01 + Y$ \\
250 > \hline
251 > $Z\gamma$   &  $0.74\pm 0.4$   &         $Z\pm Y$ &       $0.74 + Z\pm 0.5 + Y$ \\
252 > \hline
253 > $WZ$ estimate &  $1.7\pm 1.8$  &         $Z\pm Y$ &       $0.5 + Z\pm 1.7 + Y$ \\
254   \hline
255   \end{tabular}
256   \caption{Data-driven Expected $WZ$ Yields}
257   \label{tab:WZfake}
258   \end{center}
259   \end{table}
248 %-------------------------------------------------
249
260  
261 + %-------------------------------------------------
262 + \begin{figure}[htb]
263 + \begin{center}
264 + \includegraphics[width=0.45\linewidth]{figs/m4l-ele-fake-prediction.png}
265 + \caption{ Four-lepton mass distribution for the single-loop fake prediction. }
266 + \label{fig:ssElepredict}
267 + \end{center}
268 + \end{figure}
269 + %-------------------------------------------------

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines