ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitHzz4l/Documentation/LeptonSelection.tex
Revision: 1.1
Committed: Sun Nov 6 16:00:05 2011 UTC (13 years, 6 months ago) by khahn
Content type: application/x-tex
Branch: MAIN
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 khahn 1.1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2     \section{Lepton Selection}\label{section:Leptons}
3     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4    
5     %++++++++++++++++++++++++++++++++++++++++++++++++++
6     \subsection{Muons}
7     %++++++++++++++++++++++++++++++++++++++++++++++++++
8    
9     %__________________________________________________
10     \subsubsection{Offline Selection}
11     %__________________________________________________
12     We select offline muon candidates that satisfy the critria in Tables~\ref{tab:muonID} and~\ref{tab:muonIso}. The primary difference between these criteria and those of~\cite{baseline} are our inclusion of Tracker muons, which provide us with a high-efficiency low-$p_{T}$ reconstruction path. We also introduce additional quality requirements intended to reduce non-prompt backgrounds and we impose $\eta/p_{T}$ dependent, per-muon PF isolation requirements.
13    
14     %-------------------------------------------------
15     \begin{table}[tbh]
16     \begin{center}
17     \begin{tabular}{c|c}
18    
19     \hline
20     \multicolumn{2}{c}{General Muon Requirements} \\
21     \hline
22     $p_{T}$ & $< 5~\rm{GeV}$ \\
23     $|\eta|$ & $< 2.4$ \\
24     Tracker hits & $\ge 11$ \\
25     Pixel hits & $> 0$ \\
26     $\sigma(p_{T})/p_{T}$ & $\le 0.1$ \\
27     dz & $< 0.1~\rm{cm}$ \\
28     $\rm |d_{0}|$ & $< 0.02~\rm{cm}$ \\
29     Muon type & Tracker or Global \\
30     \hline
31    
32    
33     \hline
34     \multicolumn{2}{}{~\\} \\
35     \hline
36     \multicolumn{2}{c}{Tracker Muons} \\
37     \hline
38     Qualtity Bits & LastStationTight \\
39     \hline
40     \multicolumn{2}{}{~\\} \\
41     \hline
42     \multicolumn{2}{c}{Global Muons} \\
43     \hline
44     $\chi^{2}_{fit}$ & $< 10$ \\
45     Valid Hits & $\ge 1$ \\
46     \hline
47     \end{tabular}
48     \caption{Muon Identification Criteria.}\label{tab:muonID}
49     \end{center}
50     \end{table}
51     %-------------------------------------------------
52    
53     %-------------------------------------------------
54     \begin{table}[htb]
55     \begin{center}
56     \begin{tabular}{c|c|c}
57     \hline
58     $\rm p_{T}$ & $|\eta|$ & $\rm pfIso03/p_{T}$ \\
59     \hline
60     $> 20$ & $< 1.48$ & $ < 0.13 $ \\
61     $> 20$ & $> 1.48$ & $ < 0.09 $ \\
62     $< 20$ & $< 1.48$ & $ < 0.06 $ \\
63     $< 20$ & $> 1.48$ & $ < 0.05 $ \\
64     \hline
65     \end{tabular}
66     \caption{Muon pfIsolation Criteria.}\label{tab:muonIso}
67     \end{center}
68     \end{table}
69     %-------------------------------------------------
70    
71     % CMS AN-2011/097 TP
72     We measure the efficiency of this selection using samples of $Z \rightarrow \mu\mu$ events and the ``Tag \& Probe'' technique~\cite{TP}. The $\mathcal{L} = 2.1\rm~fb{-1}$ dataset contains a sufficient number of $Z$ events for us to obtain selection efficiencies for muons below $10\rm~GeV$, thus we do not utilize separate samples of low-mass resonances for this region. We require events containing at least one muon candidate that passes the full set of muon identifiation criteria (the tag) and at least one additional reconstructed Global or Tracker muon candidate (the probe). The sample is split according to whether the probe passes of fails our selection. We determine efficiency in MC by simply counting the number of events that pass or fail the selection in bins of $p_{T}$ and $\eta$. Efficiency is extracted in data by fitting with MC signal shapes and empirical functional hypotheses for the background. Figures~\ref{fig:muTPhighpt} and~\ref{fig:muTPlowpt} respectively show fits results in the central region for high and low $p_{T}$ bins. The complete set of fit results are included in Appendix~\ref{app:mufits}.
73    
74     %-------------------------------------------------
75     \begin{figure}[htb]
76     \begin{center}
77     \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/passetapt_6.png}
78     \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/failetapt_6.png}
79     \caption{Tag \& Probe fit results for high-$p_{T}$ offline muon selection in the barrel.\label{fig:muTPhighpt} }
80     \end{center}
81     \end{figure}
82     %-------------------------------------------------
83     %-------------------------------------------------
84     \begin{figure}[htb]
85     \begin{center}
86     \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/passetapt_0.png}
87     \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/failetapt_0.png}
88     \caption{Tag \& Probe fit results for low-$p_{T}$ offline muon selection in the barrel.\label{fig:muTPlowpt} }
89     \end{center}
90     \end{figure}
91     %-------------------------------------------------
92    
93     We divide the $p_{T}/\eta$ binned data efficiencies with correpsonding values from MC to determine data/MC efficiency scale factors, $f_{ID,Iso}$. We use these factors to weight selected muons in our MC samples, as discussed in Sections~\ref{sec:} and~\ref{sec:}. Figure~\ref{fig:muEff} shows $f_{ID,Iso}$ for the central and forward regions as a function of $p_{T}$. Table~\ref{tab:musf} lists values for $f_{ID,Iso}$ in our $p_{T}/\eta$ bins.
94    
95     %-------------------------------------------------
96     \begin{figure}[htb]
97     \begin{center}
98     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
99     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
100     \caption{$\gamma_d$ Branching Ratios.}\label{fig:muEff}
101     \end{center}
102     \end{figure}
103     %-------------------------------------------------
104    
105     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
106     \begin{table}[!ht]
107     \begin{center}
108     \begin{tabular}{c|c|c}
109     \hline & $0 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.4$ \\
110     \hline
111     $ 5 < p_T < 10$ & $0.9571 \pm 0.0378$ & $0.9860 \pm 0.0044$ \\
112     $ 10 < p_T < 15$ & $0.9644 \pm 0.0116$ & $0.9888 \pm 0.0058$ \\
113     $ 15 < p_T < 20$ & $0.9870 \pm 0.0057$ & $0.9899 \pm 0.0047$ \\
114     $ 20 < p_T < 30$ & $0.9950 \pm 0.0013$ & $0.9984 \pm 0.0009$ \\
115     $ 30 < p_T < 40$ & $0.9993 \pm 0.0004$ & $0.9988 \pm 0.0003$ \\
116     $ 40 < p_T < 50$ & $0.9989 \pm 0.0002$ & $0.9976 \pm 0.0004$ \\
117     $ 50 < p_T < 100$ & $0.9986 \pm 0.0005$ & $0.9965 \pm 0.0025$ \\
118     $100 < p_T < 7000$ & $0.9978 \pm 0.0027$ & $1.0049 \pm 0.0083$ \\
119     \hline
120     \end{tabular}
121     \caption{Write some stuff}
122     \label{tab:mytable}
123     \end{center}
124     \end{table}
125     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
126    
127     Identification and isolation efficiencies for non-prompt and instrumental muon backgrounds are also evaluated with data. We defer further discussion of this to Section~{sec:}
128    
129     %csidetermine a background efficiency ({\it i.e} a ``fakerate'' in the terminology of Section~\ref{sec:}) with respect to objects passing the loose subset of muon indentification criteria listed in Table~\ref{tab:muFO}. We calculate the fakerate using data collected with a single muon trigger. We require a jet of at least $30~\rm{Gev}$ with $\Delta R(\eta,\phi) > 1.5$ from the muon candidate in order to enrich this sample in background. Contributions from W, Z and low-mass resonances are reduced by additionally requiring events that contain only one muon denominator object above $10\rm~GeV$, $MET < 20 ~\rm{GeV}$ and $m_{T} < 30~\rm{GeV}$.
130    
131     %__________________________________________________
132     \subsubsection{Online Selection}\label{muOnline}
133     %__________________________________________________
134     We measure $p_{T}/\eta$ binned per-leg efficiencies for the \verb|HLT_DoubleMu_7| and \verb|HLT_Mu_13_8| triggers also using Tag \& Probe. The efficiencies are calculated with respect to the muon candidates that pass the offline requirements described above. We do not use the emulation of these triggers in MC and instead correct the simulation with the absolute efficiency measured in data. Backgrounds after offline selection are so small that we can determine trigger efficiency by simply counting. Tables~\ref{tab:trigEffMu7}-\ref{tab:trigEffMu13_8_trailing} provides the per-leg efficiencies we determine in our various $p_{T}/eta$ bins.
135    
136     % figs/mueff/Run2011A_HLT_DoubleMu7/default/extra/dat_eff_table.tex
137     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
138     \begin{table}[!ht]
139     \begin{center}
140     \begin{tabular}{c|c|c|c|c}
141     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
142     \hline
143     $ 5 < p_T < 10$ & $0.7778 \pm 0.1411$ & $0.7812 \pm 0.0978$ & $0.6391 \pm 0.0407$ & $0.5696 \pm 0.0626$ \\
144     $ 10 < p_T < 15$ & $0.9581 \pm 0.0218$ & $0.9172 \pm 0.0282$ & $0.9281 \pm 0.0147$ & $0.8750 \pm 0.0364$ \\
145     $ 15 < p_T < 20$ & $0.9732 \pm 0.0084$ & $0.9613 \pm 0.0130$ & $0.9583 \pm 0.0081$ & $0.9061 \pm 0.0209$ \\
146     $ 20 < p_T < 30$ & $0.9685 \pm 0.0028$ & $0.9381 \pm 0.0057$ & $0.9599 \pm 0.0033$ & $0.9274 \pm 0.0080$ \\
147     $ 30 < p_T < 40$ & $0.9625 \pm 0.0019$ & $0.9321 \pm 0.0039$ & $0.9589 \pm 0.0023$ & $0.9195 \pm 0.0064$ \\
148     $ 40 < p_T < 50$ & $0.9713 \pm 0.0016$ & $0.9401 \pm 0.0033$ & $0.9594 \pm 0.0021$ & $0.9007 \pm 0.0075$ \\
149     $ 50 < p_T < 100$ & $0.9703 \pm 0.0028$ & $0.9411 \pm 0.0060$ & $0.9576 \pm 0.0038$ & $0.9057 \pm 0.0122$ \\
150     $100 < p_T < 7000$ & $0.9801 \pm 0.0189$ & $0.9405 \pm 0.0383$ & $0.9490 \pm 0.0330$ & $1.0000 \pm 0.2313$ \\
151     \hline
152     \end{tabular}
153     \caption{Write some stuff}
154     \label{tab:mytable}
155     \end{center}
156     \end{table}
157    
158     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
159    
160     %figs/mueff/Run2011A_HLT_Mu13_Mu8_leading/default/extra/dat_eff_table.tex
161     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
162     \begin{table}[!ht]
163     \begin{center}
164     \begin{tabular}{c|c|c|c|c}
165     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
166     \hline
167     $ 5 < p_T < 10$ & $0.0000 \pm 0.0081$ & $0.0000 \pm 0.0062$ & $0.0000 \pm 0.0013$ & $0.0070 \pm 0.0055$ \\
168     $ 10 < p_T < 15$ & $0.5566 \pm 0.0135$ & $0.5157 \pm 0.0137$ & $0.4765 \pm 0.0083$ & $0.4481 \pm 0.0144$ \\
169     $ 15 < p_T < 20$ & $0.9691 \pm 0.0025$ & $0.9553 \pm 0.0037$ & $0.9443 \pm 0.0027$ & $0.8810 \pm 0.0067$ \\
170     $ 20 < p_T < 30$ & $0.9664 \pm 0.0009$ & $0.9552 \pm 0.0015$ & $0.9508 \pm 0.0011$ & $0.8853 \pm 0.0030$ \\
171     $ 30 < p_T < 40$ & $0.9684 \pm 0.0005$ & $0.9541 \pm 0.0010$ & $0.9518 \pm 0.0008$ & $0.8859 \pm 0.0023$ \\
172     $ 40 < p_T < 50$ & $0.9685 \pm 0.0005$ & $0.9558 \pm 0.0009$ & $0.9524 \pm 0.0007$ & $0.8905 \pm 0.0024$ \\
173     $ 50 < p_T < 100$ & $0.9688 \pm 0.0009$ & $0.9545 \pm 0.0016$ & $0.9503 \pm 0.0012$ & $0.8824 \pm 0.0043$ \\
174     $100 < p_T < 7000$ & $0.9655 \pm 0.0055$ & $0.9500 \pm 0.0098$ & $0.9433 \pm 0.0083$ & $0.9155 \pm 0.0471$ \\
175     \hline
176     \end{tabular}
177     \caption{Write some stuff}
178     \label{tab:mytable}
179     \end{center}
180     \end{table}
181    
182     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
183    
184     %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
185     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
186     \begin{table}[!ht]
187     \begin{center}
188     \begin{tabular}{c|c|c|c|c}
189     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
190     \hline
191     $ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
192     $ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
193     $ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
194     $ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
195     $ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
196     $ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
197     $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
198     $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
199     \hline
200     \end{tabular}
201     \caption{Write some stuff}
202     \label{tab:mytable}
203     \end{center}
204     \end{table}
205    
206     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
207    
208    
209     %++++++++++++++++++++++++++++++++++++++++++++++++++
210     \subsection{Electrons}
211     %++++++++++++++++++++++++++++++++++++++++++++++++++
212     %__________________________________________________
213     \subsection{Offline Selection}
214     %__________________________________________________
215     We select electron candidates for the analysis using a multivariate (MV) technique. Our method was developed in parallel with an MV-based electron ID scheme for the WW analysis~\cite{ref:si}. The two methods are equivalent, modulo small differences in implementation that address the relative severity of ``fake'' electron backgrounds in the respectve analyses.
216    
217     We utilize a TMVA Boosted Decision Tree (BDT) for MV identification. The BDT is trained with separate samples of candidate objects that are enriched in either fake or real electrons. Candidates are defined as reconstructed electrons that pass the minimal set of selection criteria given in Table~\ref{tab:eleFO}. We construct a signal training sample from pairs of candidates in the DoubleElectron dataset with $|m_{\ell\ell}| < 15~\rm GeV$. Canidates in the signal training sample are required to have $Iso_{comb} < 0.1$ to reduce combinatoric background. Candidates for the background training sample are selected from events that pass a single-electron trigger. As with muons, we require an $\Delta R(\eta,\phi)$ $p_{T}>35~\rm GeV$ jet and reject events with $\rm MET > 20~GeV$, $\rm m_{T} > 30~GeV$ or containing more than one canididate. In addition, we veto conversions to suppress real electron contamination in the background training sample.
218    
219     %-------------------------------------------------
220     \begin{table}[tbh]
221     \begin{center}
222     \begin{tabular}{c|c|c}
223     \hline
224     \multicolumn{3}{c}{Relative PF Isolation} \\
225     \hline
226     $\rm p_{T}$ & $|\eta|$ & $\rm pfIso03/p_{T}$ \\
227     \hline
228     $> 20$ & $< 1.48$ & $ < 0.13 $ \\
229     $> 20$ & $> 1.48$ & $ < 0.09 $ \\
230     $< 20$ & $< 1.48$ & $ < 0.06 $ \\
231     $< 20$ & $> 1.48$ & $ < 0.05 $ \\
232     \hline
233     \end{tabular}
234     \caption{Electron Candidate Defintion.\label{tab:eleFO}}
235     \end{center}
236     \end{table}
237     %-------------------------------------------------
238    
239     MV discrimination is performed using the following variables :
240    
241     \begin{itemize}
242     \item a
243     \item b
244     \item c
245     \end{itemize}
246    
247     Cuts on these guys? Show correlation plot to motivate BDT?
248    
249     We train and validate the BDT using statistically independet subsets of events from the trainging samples described above. Training and testing is performed separately for six $\eta/p_{T}$ bins. A cut on the resulting BDT discrminant translates to a specific combination of signal and background efficiency. The locus of signal/background efficiences defines the discrimination performance ({\it i.e:} ROC) curves shown in Figure~\ref{fig:ROC}.
250    
251     %-------------------------------------------------
252     \begin{figure}[tbp]
253     \begin{center}
254     \includegraphics[width=0.4\linewidth]{figs/br.png}
255     \includegraphics[width=0.4\linewidth]{figs/br.png}
256     \caption{$\gamma_d$ Branching Ratios.\label{fig:BRs} }
257     \end{center}
258     \end{figure}
259     %-------------------------------------------------
260    
261     The plots in Figure~\ref{fig:ROC} include efficiency points corresponding to the ``Cuts in Categories'' (CIC) loose, medium and tight working points defined in~\cite{ref:CIC}. BDT and CIC performances are comparable in the high $p_{T}$ bins, while the BDT clearly outperforms CIC at low $p_{T}$. We define a set of loose, medium and tight BDT working points for the analysis by stipulating a background effiency equivalent to that of the corresponding CIC point. BDT and CIC signal efficiences for the various working points are compared in Table~\ref{tab:WPs}.
262    
263     %-------------------------------------------------
264     \begin{table}[tbh]
265     \begin{center}
266     \begin{tabular}{|c|c|c|}
267     \hline
268     \multicolumn{3}{|c|}{Relative PF Isolation} \\
269     \hline
270     $\rm p_{T}$ & $|\eta|$ & $\rm pfIso03/p_{T}$ \\
271     \hline
272     $> 20$ & $< 1.48$ & $ < 0.13 $ \\
273     $> 20$ & $> 1.48$ & $ < 0.09 $ \\
274     $< 20$ & $< 1.48$ & $ < 0.06 $ \\
275     $< 20$ & $> 1.48$ & $ < 0.05 $ \\
276     \hline
277     \end{tabular}
278     \caption{Working Points and Efficiencies.\label{tab:WPs}}
279     \end{center}
280     \end{table}
281     %-------------------------------------------------
282    
283     The efficiencies shown above are determined with respect to the candidate definition in Table~\ref{tab:}. While these efficiencies are useful for performance comparisons, efficiencies for the analysis must be taken with respect to reconstructed GSF electron electrons. As with muons, we calculate electron identification/isolation efficiencies for the anlaysis using Tag \& Probe. Figures~\ref{fig:} and ~\ref{fig:} shows fit results for our tight MV selection in the central region. The complete set of offline selection fits from Tag \& Probe are included in Appendix~\ref{app:}.
284    
285     %-------------------------------------------------
286     \begin{figure}[htb]
287     \begin{center}
288     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_6.png}
289     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_6.png}
290     \caption{Tag \& Probe fit results for tight offline selection for high-$p_{T}$ electrons in the barrel.\label{fig:ekeTPhighpt} }
291     \end{center}
292     \end{figure}
293     %-------------------------------------------------
294     %-------------------------------------------------
295     \begin{figure}[htb]
296     \begin{center}
297     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_0.png}
298     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_0.png}
299     \caption{Tag \& Probe fit results for tight offline selection for low-$p_{T}$ electrons in the barrel.\label{fig:eleTPlowpt} }
300     \end{center}
301     \end{figure}
302     %-------------------------------------------------
303    
304     We divide the binned data efficiences with results from MC to obtain offline efficiency scale factors, $f_{ID,Iso}$ in Tables~\ref{tab:eleSFtight}-~\ref{tab:eleSFloose}. Figures~\ref{fig:eleSFtight}-~\ref{fig:eleSFloose} shows plots of the $f_{ID,Iso}$ as a function of $p_{T}$ for the central and forward regions.
305    
306     %figs/eleeff/Run2011A_EleWPEffTP-tight/default/extra/sf_table.tex
307     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
308     \begin{table}[!ht]
309     \begin{center}
310     \begin{tabular}{c|c|c}
311     \hline & $0 < |\eta| < 1.5$ & $1.5 < |\eta| < 2.5$ \\
312     \hline
313     $ 7 < p_T < 10$ & $1.3279 \pm 0.1095$ & $1.0983 \pm 0.0495$ \\
314     $ 10 < p_T < 15$ & $0.5121 \pm 0.0067$ & $1.8054 \pm 0.0101$ \\
315     $ 15 < p_T < 20$ & $1.0371 \pm 0.0090$ & $1.0791 \pm 0.0110$ \\
316     $ 20 < p_T < 30$ & $0.9782 \pm 0.0013$ & $1.0107 \pm 0.0022$ \\
317     $ 30 < p_T < 40$ & $0.9973 \pm 0.0002$ & $1.0106 \pm 0.0047$ \\
318     $ 40 < p_T < 50$ & $0.9947 \pm 0.0002$ & $1.0020 \pm 0.0027$ \\
319     $ 50 < p_T < 100$ & $0.9841 \pm 0.0005$ & $1.0003 \pm 0.0007$ \\
320     $100 < p_T < 7000$ & $1.0040 \pm 0.0041$ & $1.0114 \pm 0.0297$ \\
321     \hline
322     \end{tabular}
323     \caption{Write some stuff}
324     \label{tab:eleSFtight}
325     \end{center}
326     \end{table}
327    
328     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
329    
330     %-------------------------------------------------
331     \begin{figure}[htb]
332     \begin{center}
333     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
334     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
335     \caption{SF for ele tight. Cureently muon plots ...}\label{fig:eleSFtight}
336     \end{center}
337     \end{figure}
338     %-------------------------------------------------
339    
340     %eleeff/Run2011A_EleWPEffTP-medium/default/extra/sf_table.tex
341     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
342     \begin{table}[!ht]
343     \begin{center}
344     \begin{tabular}{c|c|c}
345     \hline & $0 < |\eta| < 1.5$ & $1.5 < |\eta| < 2.5$ \\
346     \hline
347     $ 7 < p_T < 10$ & $1.3015 \pm 0.1110$ & $1.0341 \pm 0.0437$ \\
348     $ 10 < p_T < 15$ & $1.3508 \pm 0.0100$ & $0.7119 \pm 0.0103$ \\
349     $ 15 < p_T < 20$ & $1.0252 \pm 0.0146$ & $0.9065 \pm 0.0061$ \\
350     $ 20 < p_T < 30$ & $0.9808 \pm 0.0003$ & $1.0214 \pm 0.0030$ \\
351     $ 30 < p_T < 40$ & $0.9994 \pm 0.0005$ & $1.0092 \pm 0.0003$ \\
352     $ 40 < p_T < 50$ & $0.9988 \pm 0.0002$ & $1.0016 \pm 0.0006$ \\
353     $ 50 < p_T < 100$ & $0.9868 \pm 0.0009$ & $0.9967 \pm 0.0011$ \\
354     $100 < p_T < 7000$ & $0.9828 \pm 0.0028$ & $1.0144 \pm 0.0024$ \\
355     \hline
356     \end{tabular}
357     \caption{Write some stuff}
358     \label{tab:mytable}
359     \end{center}
360     \end{table}
361    
362     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
363    
364     %-------------------------------------------------
365     \begin{figure}[htb]
366     \begin{center}
367     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
368     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
369     \caption{SF for ele medium. Cureently muon plots ...}\label{fig:eleSFmedium}
370     \end{center}
371     \end{figure}
372     %-------------------------------------------------
373    
374     %figs/eleeff/Run2011A_EleWPEffTP-loose/default/extra/sf_table.tex
375     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
376     \begin{table}[!ht]
377     \begin{center}
378     \begin{tabular}{c|c|c}
379     \hline & $0 < |\eta| < 1.5$ & $1.5 < |\eta| < 2.5$ \\
380     \hline
381     $ 7 < p_T < 10$ & $1.2642 \pm 0.1061$ & $1.0442 \pm 0.0398$ \\
382     $ 10 < p_T < 15$ & $1.1143 \pm 0.0254$ & $1.1013 \pm 0.0170$ \\
383     $ 15 < p_T < 20$ & $1.0309 \pm 0.0094$ & $1.0877 \pm 0.0065$ \\
384     $ 20 < p_T < 30$ & $0.9841 \pm 0.0011$ & $1.0134 \pm 0.0164$ \\
385     $ 30 < p_T < 40$ & $0.9982 \pm 0.0004$ & $1.0088 \pm 0.0004$ \\
386     $ 40 < p_T < 50$ & $0.9991 \pm 0.0002$ & $1.0014 \pm 0.0006$ \\
387     $ 50 < p_T < 100$ & $0.9996 \pm 0.0006$ & $1.0006 \pm 0.0004$ \\
388     $100 < p_T < 7000$ & $0.9946 \pm 0.0045$ & $1.0134 \pm 0.0067$ \\
389     \hline
390     \end{tabular}
391     \caption{Write some stuff}
392     \label{tab:mytable}
393     \end{center}
394     \end{table}
395    
396     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
397    
398     %-------------------------------------------------
399     \begin{figure}[htb]
400     \begin{center}
401     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
402     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
403     \caption{SF for ele loose. Cureently muon plots ...}\label{fig:eleSFloose}
404     \end{center}
405     \end{figure}
406     %-------------------------------------------------
407    
408     Identification and isolation efficiencies for non-prompt and instrumental electron backgrounds are also evaluated with data. We defer further discussion of this to Section~{sec:}
409    
410     %__________________________________________________
411     \subsubsection{Online Selection}\label{sec:eleOnline}
412     %__________________________________________________
413     Per-leg efficiencies for the various electron trigger efficiencies are calculated in the same manner as was described in Section~\ref{sec:muOnline}. Table~\ref{tab:eleTPtrig} lists the luminosity-averaged efficiencies defined with respect to selected offline electrons in bins of $p_{T}$ and $\eta$.
414    
415     %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
416     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
417     \begin{table}[!ht]
418     \begin{center}
419     \begin{tabular}{c|c|c|c|c}
420     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
421     \hline
422     $ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
423     $ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
424     $ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
425     $ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
426     $ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
427     $ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
428     $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
429     $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
430     \hline
431     \end{tabular}
432     \caption{Write some stuff}
433     \label{tab:mytable}
434     \end{center}
435     \end{table}
436    
437     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
438    
439     %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
440     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
441     \begin{table}[!ht]
442     \begin{center}
443     \begin{tabular}{c|c|c|c|c}
444     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
445     \hline
446     $ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
447     $ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
448     $ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
449     $ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
450     $ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
451     $ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
452     $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
453     $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
454     \hline
455     \end{tabular}
456     \caption{Write some stuff}
457     \label{tab:mytable}
458     \end{center}
459     \end{table}
460    
461     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
462    
463    
464     %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
465     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
466     \begin{table}[!ht]
467     \begin{center}
468     \begin{tabular}{c|c|c|c|c}
469     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
470     \hline
471     $ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
472     $ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
473     $ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
474     $ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
475     $ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
476     $ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
477     $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
478     $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
479     \hline
480     \end{tabular}
481     \caption{Write some stuff}
482     \label{tab:mytable}
483     \end{center}
484     \end{table}
485    
486     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS