ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitHzz4l/Documentation/LeptonSelection.tex
Revision: 1.2
Committed: Tue Nov 8 11:18:58 2011 UTC (13 years, 6 months ago) by khahn
Content type: application/x-tex
Branch: MAIN
Changes since 1.1: +70 -112 lines
Log Message:
stuff corresponding to rough draft

File Contents

# User Rev Content
1 khahn 1.1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 khahn 1.2 \section{Lepton Selection}\label{sec:Leptons}
3 khahn 1.1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4    
5     %++++++++++++++++++++++++++++++++++++++++++++++++++
6     \subsection{Muons}
7     %++++++++++++++++++++++++++++++++++++++++++++++++++
8    
9     %__________________________________________________
10 khahn 1.2 \subsubsection{Offline Muon Selection}\label{sec:muOffline}
11 khahn 1.1 %__________________________________________________
12 khahn 1.2 We select offline muon candidates that satisfy the requirements given in Tables~\ref{tab:muonID} and~\ref{tab:muonIso}. The main difference between these criteria and those of~\cite{baseline} is our inclusion of Tracker muons, which provide us with a high-efficiency low-$p_{T}$ reconstruction path. We also introduce additional quality requirements intended to reduce non-prompt backgrounds and we impose $\eta/p_{T}$ dependent, per-muon PF isolation requirements.
13 khahn 1.1
14     %-------------------------------------------------
15     \begin{table}[tbh]
16     \begin{center}
17     \begin{tabular}{c|c}
18    
19     \hline
20     \multicolumn{2}{c}{General Muon Requirements} \\
21     \hline
22     $p_{T}$ & $< 5~\rm{GeV}$ \\
23     $|\eta|$ & $< 2.4$ \\
24     Tracker hits & $\ge 11$ \\
25     Pixel hits & $> 0$ \\
26     $\sigma(p_{T})/p_{T}$ & $\le 0.1$ \\
27     dz & $< 0.1~\rm{cm}$ \\
28     $\rm |d_{0}|$ & $< 0.02~\rm{cm}$ \\
29     Muon type & Tracker or Global \\
30     \hline
31    
32    
33 khahn 1.2 \multicolumn{2}{}{~} \\
34 khahn 1.1 \hline
35     \multicolumn{2}{c}{Tracker Muons} \\
36     \hline
37 khahn 1.2 Quality Bits & LastStationTight \\
38 khahn 1.1 \hline
39 khahn 1.2 \multicolumn{2}{}{~} \\
40 khahn 1.1 \hline
41     \multicolumn{2}{c}{Global Muons} \\
42     \hline
43     $\chi^{2}_{fit}$ & $< 10$ \\
44     Valid Hits & $\ge 1$ \\
45     \hline
46     \end{tabular}
47     \caption{Muon Identification Criteria.}\label{tab:muonID}
48     \end{center}
49     \end{table}
50     %-------------------------------------------------
51    
52     %-------------------------------------------------
53     \begin{table}[htb]
54     \begin{center}
55     \begin{tabular}{c|c|c}
56     \hline
57     $\rm p_{T}$ & $|\eta|$ & $\rm pfIso03/p_{T}$ \\
58     \hline
59     $> 20$ & $< 1.48$ & $ < 0.13 $ \\
60     $> 20$ & $> 1.48$ & $ < 0.09 $ \\
61     $< 20$ & $< 1.48$ & $ < 0.06 $ \\
62     $< 20$ & $> 1.48$ & $ < 0.05 $ \\
63     \hline
64     \end{tabular}
65     \caption{Muon pfIsolation Criteria.}\label{tab:muonIso}
66     \end{center}
67     \end{table}
68     %-------------------------------------------------
69    
70 khahn 1.2 %
71     We measure the efficiency of this selection using samples of $Z \rightarrow \mu\mu$ events and the ``Tag \& Probe'' technique~\cite{TP}. The $\mathcal{L} = 2.1\rm~fb^{-1}$ dataset contains a sufficient number of $Z$ events for us to obtain selection efficiencies for muons below $10\rm~GeV$, thus we do not utilize separate samples of low-mass resonances for this $p_{T}$ region. We require events containing at least one muon candidate that passes the full set of muon identification criteria (the tag) and at least one additional reconstructed Global or Tracker muon candidate (the probe). The sample is split according to whether the probe passes of fails our selection. We determine efficiency in MC by simply counting the number of events that pass or fail the selection in bins of $p_{T}$ and $\eta$. Efficiency is extracted in data by fitting with MC signal shapes and empirical function for the background. Figures~\ref{fig:muTPhighpt} and~\ref{fig:muTPlowpt} respectively show fits results in the central region for high and low $p_{T}$ bins.
72 khahn 1.1
73     %-------------------------------------------------
74     \begin{figure}[htb]
75     \begin{center}
76     \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/passetapt_6.png}
77     \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/failetapt_6.png}
78     \caption{Tag \& Probe fit results for high-$p_{T}$ offline muon selection in the barrel.\label{fig:muTPhighpt} }
79     \end{center}
80     \end{figure}
81     %-------------------------------------------------
82     %-------------------------------------------------
83     \begin{figure}[htb]
84     \begin{center}
85     \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/passetapt_0.png}
86     \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/failetapt_0.png}
87     \caption{Tag \& Probe fit results for low-$p_{T}$ offline muon selection in the barrel.\label{fig:muTPlowpt} }
88     \end{center}
89     \end{figure}
90     %-------------------------------------------------
91    
92 khahn 1.2 We divide the $p_{T}/\eta$-binned efficiencies from data with corresponding values from MC to determine data/MC efficiency scale factors, $f_{ID,Iso}$. We use these factors to weight selected muons in our MC samples, as is discussed in Sections~\ref{sec:Signal}. Figure~\ref{fig:muEff} shows $f_{ID,Iso}$ for the central and forward regions as a function of $p_{T}$. Table~\ref{tab:musf} lists values for $f_{ID,Iso}$ in our $p_{T}/\eta$ bins.
93 khahn 1.1
94     %-------------------------------------------------
95     \begin{figure}[htb]
96     \begin{center}
97     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
98     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
99 khahn 1.2 \caption{Offline Muon Efficiency Scale Factors.}\label{fig:muEff}
100 khahn 1.1 \end{center}
101     \end{figure}
102     %-------------------------------------------------
103    
104     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
105     \begin{table}[!ht]
106     \begin{center}
107     \begin{tabular}{c|c|c}
108     \hline & $0 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.4$ \\
109     \hline
110     $ 5 < p_T < 10$ & $0.9571 \pm 0.0378$ & $0.9860 \pm 0.0044$ \\
111     $ 10 < p_T < 15$ & $0.9644 \pm 0.0116$ & $0.9888 \pm 0.0058$ \\
112     $ 15 < p_T < 20$ & $0.9870 \pm 0.0057$ & $0.9899 \pm 0.0047$ \\
113     $ 20 < p_T < 30$ & $0.9950 \pm 0.0013$ & $0.9984 \pm 0.0009$ \\
114     $ 30 < p_T < 40$ & $0.9993 \pm 0.0004$ & $0.9988 \pm 0.0003$ \\
115     $ 40 < p_T < 50$ & $0.9989 \pm 0.0002$ & $0.9976 \pm 0.0004$ \\
116     $ 50 < p_T < 100$ & $0.9986 \pm 0.0005$ & $0.9965 \pm 0.0025$ \\
117     $100 < p_T < 7000$ & $0.9978 \pm 0.0027$ & $1.0049 \pm 0.0083$ \\
118     \hline
119     \end{tabular}
120 khahn 1.2 \caption{Write some stuff}\label{tab:musf}
121 khahn 1.1 \end{center}
122     \end{table}
123     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
124    
125 khahn 1.2 Identification and isolation efficiencies for non-prompt and instrumental muon backgrounds are also evaluated with data. We defer discussion of this to Section~\ref{sec:BG}
126 khahn 1.1
127     %csidetermine a background efficiency ({\it i.e} a ``fakerate'' in the terminology of Section~\ref{sec:}) with respect to objects passing the loose subset of muon indentification criteria listed in Table~\ref{tab:muFO}. We calculate the fakerate using data collected with a single muon trigger. We require a jet of at least $30~\rm{Gev}$ with $\Delta R(\eta,\phi) > 1.5$ from the muon candidate in order to enrich this sample in background. Contributions from W, Z and low-mass resonances are reduced by additionally requiring events that contain only one muon denominator object above $10\rm~GeV$, $MET < 20 ~\rm{GeV}$ and $m_{T} < 30~\rm{GeV}$.
128    
129     %__________________________________________________
130 khahn 1.2 \subsubsection{Online Muon Selection}\label{sec:muOnline}
131 khahn 1.1 %__________________________________________________
132 khahn 1.2 We use Tag \& Probe to also measure $p_{T}/\eta$-binned per-leg efficiencies for the \verb|HLT_DoubleMu_7| and \verb|HLT_Mu_13_8| triggers. The trigger efficiencies are calculated with respect to muon candidates that pass the offline requirements described in Section~\ref{sec:muOnline}. We do not use the emulation of these triggers in MC and instead correct the simulation with the absolute efficiencies measured in data. Backgrounds after offline selection are small, so trigger efficiency is determined by simply counting events. Tables~\ref{tab:trigEffMu7}-\ref{tab:trigEffMu13_8_trailing} provide the per-leg efficiencies for our various $p_{T}/eta$ bins.
133 khahn 1.1
134     % figs/mueff/Run2011A_HLT_DoubleMu7/default/extra/dat_eff_table.tex
135     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
136     \begin{table}[!ht]
137     \begin{center}
138     \begin{tabular}{c|c|c|c|c}
139     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
140     \hline
141     $ 5 < p_T < 10$ & $0.7778 \pm 0.1411$ & $0.7812 \pm 0.0978$ & $0.6391 \pm 0.0407$ & $0.5696 \pm 0.0626$ \\
142     $ 10 < p_T < 15$ & $0.9581 \pm 0.0218$ & $0.9172 \pm 0.0282$ & $0.9281 \pm 0.0147$ & $0.8750 \pm 0.0364$ \\
143     $ 15 < p_T < 20$ & $0.9732 \pm 0.0084$ & $0.9613 \pm 0.0130$ & $0.9583 \pm 0.0081$ & $0.9061 \pm 0.0209$ \\
144     $ 20 < p_T < 30$ & $0.9685 \pm 0.0028$ & $0.9381 \pm 0.0057$ & $0.9599 \pm 0.0033$ & $0.9274 \pm 0.0080$ \\
145     $ 30 < p_T < 40$ & $0.9625 \pm 0.0019$ & $0.9321 \pm 0.0039$ & $0.9589 \pm 0.0023$ & $0.9195 \pm 0.0064$ \\
146     $ 40 < p_T < 50$ & $0.9713 \pm 0.0016$ & $0.9401 \pm 0.0033$ & $0.9594 \pm 0.0021$ & $0.9007 \pm 0.0075$ \\
147     $ 50 < p_T < 100$ & $0.9703 \pm 0.0028$ & $0.9411 \pm 0.0060$ & $0.9576 \pm 0.0038$ & $0.9057 \pm 0.0122$ \\
148     $100 < p_T < 7000$ & $0.9801 \pm 0.0189$ & $0.9405 \pm 0.0383$ & $0.9490 \pm 0.0330$ & $1.0000 \pm 0.2313$ \\
149     \hline
150     \end{tabular}
151 khahn 1.2 \caption{Write some stuff}\label{tab:trigEffMu7}
152 khahn 1.1 \end{center}
153     \end{table}
154    
155     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
156    
157     %figs/mueff/Run2011A_HLT_Mu13_Mu8_leading/default/extra/dat_eff_table.tex
158     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
159     \begin{table}[!ht]
160     \begin{center}
161     \begin{tabular}{c|c|c|c|c}
162     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
163     \hline
164     $ 5 < p_T < 10$ & $0.0000 \pm 0.0081$ & $0.0000 \pm 0.0062$ & $0.0000 \pm 0.0013$ & $0.0070 \pm 0.0055$ \\
165     $ 10 < p_T < 15$ & $0.5566 \pm 0.0135$ & $0.5157 \pm 0.0137$ & $0.4765 \pm 0.0083$ & $0.4481 \pm 0.0144$ \\
166     $ 15 < p_T < 20$ & $0.9691 \pm 0.0025$ & $0.9553 \pm 0.0037$ & $0.9443 \pm 0.0027$ & $0.8810 \pm 0.0067$ \\
167     $ 20 < p_T < 30$ & $0.9664 \pm 0.0009$ & $0.9552 \pm 0.0015$ & $0.9508 \pm 0.0011$ & $0.8853 \pm 0.0030$ \\
168     $ 30 < p_T < 40$ & $0.9684 \pm 0.0005$ & $0.9541 \pm 0.0010$ & $0.9518 \pm 0.0008$ & $0.8859 \pm 0.0023$ \\
169     $ 40 < p_T < 50$ & $0.9685 \pm 0.0005$ & $0.9558 \pm 0.0009$ & $0.9524 \pm 0.0007$ & $0.8905 \pm 0.0024$ \\
170     $ 50 < p_T < 100$ & $0.9688 \pm 0.0009$ & $0.9545 \pm 0.0016$ & $0.9503 \pm 0.0012$ & $0.8824 \pm 0.0043$ \\
171     $100 < p_T < 7000$ & $0.9655 \pm 0.0055$ & $0.9500 \pm 0.0098$ & $0.9433 \pm 0.0083$ & $0.9155 \pm 0.0471$ \\
172     \hline
173     \end{tabular}
174     \caption{Write some stuff}
175 khahn 1.2 \label{tab:trigEffMu13_8_leading}
176 khahn 1.1 \end{center}
177     \end{table}
178    
179     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
180    
181     %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
182     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
183     \begin{table}[!ht]
184     \begin{center}
185     \begin{tabular}{c|c|c|c|c}
186     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
187     \hline
188     $ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
189     $ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
190     $ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
191     $ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
192     $ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
193     $ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
194     $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
195     $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
196     \hline
197     \end{tabular}
198     \caption{Write some stuff}
199 khahn 1.2 \label{tab:trigEffMu13_8_trailing}
200 khahn 1.1 \end{center}
201     \end{table}
202    
203     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
204    
205    
206     %++++++++++++++++++++++++++++++++++++++++++++++++++
207     \subsection{Electrons}
208     %++++++++++++++++++++++++++++++++++++++++++++++++++
209     %__________________________________________________
210     \subsection{Offline Selection}
211     %__________________________________________________
212 khahn 1.2 We select electron candidates for the analysis using a multivariate (MV) technique. Our method was developed in concert with an MV-based electron ID scheme for the WW analysis~\cite{si}. The two methods are equivalent, modulo small differences in implementation that address the relative severity of ``fake'' electron backgrounds in the respective analyses.
213 khahn 1.1
214 khahn 1.2 We utilize a TMVA Boosted Decision Tree (BDT) for MV identification. The BDT is trained with separate samples of candidate objects that are enriched in either fake or real electrons. Candidates are defined as reconstructed electrons that pass the minimal set of selection criteria listed in Table~\ref{tab:eleFO}. We construct a signal training sample from pairs of candidates in the DoubleElectron dataset with $|m_{\ell\ell}| < 15~\rm GeV$. Candidates in this sample are required to have $Iso_{comb} < 0.1$ to reduce combinatorial background. Candidates in the background training sample are selected from events that pass a single-electron trigger. We require a $\Delta R(\eta,\phi)$ $p_{T}>35~\rm GeV$ jet and reject events with $\rm MET > 20~GeV$, $\rm m_{T} > 30~GeV$ or containing more than one candidate. We also veto conversions to suppress real electron contamination.
215 khahn 1.1
216     %-------------------------------------------------
217     \begin{table}[tbh]
218     \begin{center}
219 khahn 1.2 \begin{tabular}{c|c}
220     {\bf Quantity} & {\bf Requirement}\\
221 khahn 1.1 \hline
222 khahn 1.2 $> 20$ & $< 1.48$ \\
223     $> 20$ & $> 1.48$ \\
224     $< 20$ & $< 1.48$ \\
225     $< 20$ & $> 1.48$ \\
226 khahn 1.1 \hline
227     \end{tabular}
228 khahn 1.2 \caption{Electron Candidate Definition.\label{tab:eleFO}}
229 khahn 1.1 \end{center}
230     \end{table}
231     %-------------------------------------------------
232    
233     MV discrimination is performed using the following variables :
234    
235     \begin{itemize}
236     \item a
237     \item b
238     \item c
239     \end{itemize}
240    
241 khahn 1.2 {\bf Cuts on these guys? Show correlation plot to motivate BDT?}
242 khahn 1.1
243 khahn 1.2 We train and validate the BDT using statistically independent subsets of events from the samples described above. Training and testing is performed separately for six $\eta/p_{T}$ bins. A cut on the resulting BDT discriminant translates to a specific combination of signal and background efficiency. The locus of signal/background efficiencies yields the performance ({\it i.e:} ROC) curves shown in Figure~\ref{fig:ROC}.
244 khahn 1.1
245     %-------------------------------------------------
246     \begin{figure}[tbp]
247     \begin{center}
248     \includegraphics[width=0.4\linewidth]{figs/br.png}
249 khahn 1.2 \caption{MVA Electron ID Performance. {\bf This should be a ROC curve ...} \label{fig:ROC} }
250 khahn 1.1 \end{center}
251     \end{figure}
252     %-------------------------------------------------
253    
254 khahn 1.2 The plots in Figure~\ref{fig:ROC} include efficiency points corresponding to the ``Cuts in Categories'' (CIC) loose, medium and tight working points defined in~\cite{CIC}. BDT and CIC performances are comparable in the high $p_{T}$ bins, whereas the BDT outperforms CIC at low $p_{T}$. We define a set of loose, medium and tight BDT working points for this analysis by stipulating background efficiencies equivalent to those of the corresponding CIC working points. BDT and CIC signal efficiencies for the various working points are compared in Table~\ref{tab:WPs}.
255 khahn 1.1
256     %-------------------------------------------------
257     \begin{table}[tbh]
258     \begin{center}
259 khahn 1.2 \begin{tabular}{c|c|c}
260     $\epsilon_{B}$ & $\epsilon_{S}(CIC)$ & $\epsilon_{S}(BDT)$ \\
261 khahn 1.1 \hline
262 khahn 1.2 $X$ & $Y$ & $Z$ \\
263     $X$ & $Y$ & $Z$ \\
264     $X$ & $Y$ & $Z$ \\
265     $X$ & $Y$ & $Z$ \\
266 khahn 1.1 \hline
267     \end{tabular}
268     \caption{Working Points and Efficiencies.\label{tab:WPs}}
269     \end{center}
270     \end{table}
271     %-------------------------------------------------
272    
273 khahn 1.2 The efficiencies shown in Figure~\ref{fig:ROC} are determined with respect to the candidate definition in Table~\ref{tab:eleFO}. While these values are useful for performance comparison, efficiencies for the analysis must be taken with respect to reconstructed GSF electron electrons. As with muons, we calculate electron identification/isolation efficiencies for the analysis using Tag \& Probe. Figures~\ref{fig:eleTPmediumhighpt} and ~\ref{fig:eleTPmediumlowpt} (~\ref{fig:eleTPloosehighpt} and ~\ref{fig:eleTPlooselowpt}) show fit results for our medium (loose) MV selection in the central region. %The complete set of offline selection fits from Tag \& Probe are included in Appendix~\ref{app:}.
274 khahn 1.1
275     %-------------------------------------------------
276     \begin{figure}[htb]
277     \begin{center}
278     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_6.png}
279     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_6.png}
280 khahn 1.2 \caption{Tag \& Probe fit results for medium offline selection for high-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
281     \label{fig:eleTPmediumhighpt}
282 khahn 1.1 \end{center}
283     \end{figure}
284     %-------------------------------------------------
285     %-------------------------------------------------
286     \begin{figure}[htb]
287     \begin{center}
288     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_0.png}
289     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_0.png}
290 khahn 1.2 \caption{Tag \& Probe fit results for medium offline selection for low-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
291     \label{fig:eleTPmediumlowpt}
292 khahn 1.1 \end{center}
293     \end{figure}
294     %-------------------------------------------------
295    
296 khahn 1.2 %-------------------------------------------------
297     \begin{figure}[htb]
298 khahn 1.1 \begin{center}
299 khahn 1.2 \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_6.png}
300     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_6.png}
301     \caption{Tag \& Probe fit results for loose offline selection for high-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
302     \label{fig:eleTPloosehighpt}
303 khahn 1.1 \end{center}
304 khahn 1.2 \end{figure}
305     %-------------------------------------------------
306 khahn 1.1 %-------------------------------------------------
307     \begin{figure}[htb]
308     \begin{center}
309 khahn 1.2 \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_0.png}
310     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_0.png}
311     \caption{Tag \& Probe fit results for loose offline selection for low-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
312     \label{fig:eleTPlooselowpt}
313 khahn 1.1 \end{center}
314     \end{figure}
315     %-------------------------------------------------
316    
317 khahn 1.2 We divide the binned data efficiencies with corresponding values from MC to obtain offline efficiency scale factors, $f_{ID,Iso}$. Tables~\ref{tab:eleSFmedium}-~\ref{tab:eleSFloose} list these factors for the medium and loose offline selections. Figures~\ref{fig:eleSFmedium} and ~\ref{fig:eleSFloose} plot the $f_{ID,Iso}$ as functions of $p_{T}$ for the central and forward regions.
318    
319    
320 khahn 1.1 %eleeff/Run2011A_EleWPEffTP-medium/default/extra/sf_table.tex
321     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
322     \begin{table}[!ht]
323     \begin{center}
324     \begin{tabular}{c|c|c}
325     \hline & $0 < |\eta| < 1.5$ & $1.5 < |\eta| < 2.5$ \\
326     \hline
327     $ 7 < p_T < 10$ & $1.3015 \pm 0.1110$ & $1.0341 \pm 0.0437$ \\
328     $ 10 < p_T < 15$ & $1.3508 \pm 0.0100$ & $0.7119 \pm 0.0103$ \\
329     $ 15 < p_T < 20$ & $1.0252 \pm 0.0146$ & $0.9065 \pm 0.0061$ \\
330     $ 20 < p_T < 30$ & $0.9808 \pm 0.0003$ & $1.0214 \pm 0.0030$ \\
331     $ 30 < p_T < 40$ & $0.9994 \pm 0.0005$ & $1.0092 \pm 0.0003$ \\
332     $ 40 < p_T < 50$ & $0.9988 \pm 0.0002$ & $1.0016 \pm 0.0006$ \\
333     $ 50 < p_T < 100$ & $0.9868 \pm 0.0009$ & $0.9967 \pm 0.0011$ \\
334     $100 < p_T < 7000$ & $0.9828 \pm 0.0028$ & $1.0144 \pm 0.0024$ \\
335     \hline
336     \end{tabular}
337 khahn 1.2 \caption{MVA Medium ID scale factors.}
338     \label{tab:eleSFmedium}
339 khahn 1.1 \end{center}
340     \end{table}
341    
342     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
343    
344     %-------------------------------------------------
345     \begin{figure}[htb]
346     \begin{center}
347     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
348     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
349 khahn 1.2 \caption{SF for ele medium. {\bf FIX! Currently muon plots ...}}
350     \label{fig:eleSFmedium}
351 khahn 1.1 \end{center}
352     \end{figure}
353     %-------------------------------------------------
354    
355     %figs/eleeff/Run2011A_EleWPEffTP-loose/default/extra/sf_table.tex
356     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
357     \begin{table}[!ht]
358     \begin{center}
359     \begin{tabular}{c|c|c}
360     \hline & $0 < |\eta| < 1.5$ & $1.5 < |\eta| < 2.5$ \\
361     \hline
362     $ 7 < p_T < 10$ & $1.2642 \pm 0.1061$ & $1.0442 \pm 0.0398$ \\
363     $ 10 < p_T < 15$ & $1.1143 \pm 0.0254$ & $1.1013 \pm 0.0170$ \\
364     $ 15 < p_T < 20$ & $1.0309 \pm 0.0094$ & $1.0877 \pm 0.0065$ \\
365     $ 20 < p_T < 30$ & $0.9841 \pm 0.0011$ & $1.0134 \pm 0.0164$ \\
366     $ 30 < p_T < 40$ & $0.9982 \pm 0.0004$ & $1.0088 \pm 0.0004$ \\
367     $ 40 < p_T < 50$ & $0.9991 \pm 0.0002$ & $1.0014 \pm 0.0006$ \\
368     $ 50 < p_T < 100$ & $0.9996 \pm 0.0006$ & $1.0006 \pm 0.0004$ \\
369     $100 < p_T < 7000$ & $0.9946 \pm 0.0045$ & $1.0134 \pm 0.0067$ \\
370     \hline
371     \end{tabular}
372 khahn 1.2 \caption{MVA Loose ID Efficiency Scale Factors.}
373     \label{tab:eleSFloose}
374 khahn 1.1 \end{center}
375     \end{table}
376    
377     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
378    
379     %-------------------------------------------------
380     \begin{figure}[htb]
381     \begin{center}
382     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
383     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
384 khahn 1.2 \caption{SF for ele loose. {\bf FIX! Currently muon plots ...}}
385     \label{fig:eleSFloose}
386 khahn 1.1 \end{center}
387     \end{figure}
388     %-------------------------------------------------
389    
390 khahn 1.2 Identification and isolation efficiencies for non-prompt and instrumental electron backgrounds are also evaluated with data. We defer discussion of this to Section~\ref{sec:BG}.
391 khahn 1.1
392     %__________________________________________________
393     \subsubsection{Online Selection}\label{sec:eleOnline}
394     %__________________________________________________
395 khahn 1.2 Per-leg efficiencies for the various electron triggers are calculated in the same manner as was described in Section~\ref{sec:muOnline}. Table~\ref{tab:eleTPtrigLeading} lists the luminosity-averaged efficiencies for leading and trailing trigger legs defined with respect to selected offline electrons.
396 khahn 1.1
397     %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
398     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
399     \begin{table}[!ht]
400     \begin{center}
401     \begin{tabular}{c|c|c|c|c}
402     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
403     \hline
404     $ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
405     $ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
406     $ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
407     $ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
408     $ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
409     $ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
410     $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
411     $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
412     \hline
413     \end{tabular}
414 khahn 1.2 \caption{Trigger Efficiency for the Leading Leg of the (luminosity-average) Double Electron trigger. {\bf FIX! Get the correct numbers in here.} }
415     \label{tab:eleTPtrigLeading}
416 khahn 1.1 \end{center}
417     \end{table}
418    
419     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
420    
421     %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
422     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
423     \begin{table}[!ht]
424     \begin{center}
425     \begin{tabular}{c|c|c|c|c}
426     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
427     \hline
428     $ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
429     $ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
430     $ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
431     $ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
432     $ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
433     $ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
434     $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
435     $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
436     \hline
437     \end{tabular}
438 khahn 1.2 \caption{Trigger Efficiency for the Trailing Leg of the (luminosity-average) Double Electron trigger.{\bf FIX! Get the correct numbers in here.}}
439     \label{tab:eleTPtrigTrailing}
440 khahn 1.1 \end{center}
441     \end{table}
442    
443     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
444