ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitHzz4l/Documentation/LeptonSelection.tex
Revision: 1.5
Committed: Wed Nov 23 03:08:59 2011 UTC (13 years, 5 months ago) by khahn
Content type: application/x-tex
Branch: MAIN
Changes since 1.4: +12 -29 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 khahn 1.1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 khahn 1.2 \section{Lepton Selection}\label{sec:Leptons}
3 khahn 1.1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4    
5     %++++++++++++++++++++++++++++++++++++++++++++++++++
6     \subsection{Muons}
7     %++++++++++++++++++++++++++++++++++++++++++++++++++
8    
9     %__________________________________________________
10 khahn 1.2 \subsubsection{Offline Muon Selection}\label{sec:muOffline}
11 khahn 1.1 %__________________________________________________
12 khahn 1.5 We select offline muon candidates that satisfy the requirements given in Tables~\ref{tab:muonID} and~\ref{tab:muonIso}. The main difference between these criteria and those of~\cite{baseline} is our inclusion of Tracker muons, which provide a high-efficiency reconstruction path at low-$p_{T}$. We also introduce quality requirements to reduce non-prompt backgrounds and we impose $\eta/p_{T}$ dependent, per-muon PF relative isolation.
13 khahn 1.1
14     %-------------------------------------------------
15     \begin{table}[tbh]
16     \begin{center}
17     \begin{tabular}{c|c}
18     \hline
19     \multicolumn{2}{c}{General Muon Requirements} \\
20     \hline
21     $p_{T}$ & $< 5~\rm{GeV}$ \\
22     $|\eta|$ & $< 2.4$ \\
23     Tracker hits & $\ge 11$ \\
24     Pixel hits & $> 0$ \\
25     $\sigma(p_{T})/p_{T}$ & $\le 0.1$ \\
26     dz & $< 0.1~\rm{cm}$ \\
27     $\rm |d_{0}|$ & $< 0.02~\rm{cm}$ \\
28     Muon type & Tracker or Global \\
29     \hline
30    
31    
32 khahn 1.2 \multicolumn{2}{}{~} \\
33 khahn 1.1 \hline
34     \multicolumn{2}{c}{Tracker Muons} \\
35     \hline
36 khahn 1.2 Quality Bits & LastStationTight \\
37 khahn 1.1 \hline
38 khahn 1.2 \multicolumn{2}{}{~} \\
39 khahn 1.1 \hline
40     \multicolumn{2}{c}{Global Muons} \\
41     \hline
42     $\chi^{2}_{fit}$ & $< 10$ \\
43     Valid Hits & $\ge 1$ \\
44     \hline
45     \end{tabular}
46     \caption{Muon Identification Criteria.}\label{tab:muonID}
47     \end{center}
48     \end{table}
49     %-------------------------------------------------
50    
51     %-------------------------------------------------
52     \begin{table}[htb]
53     \begin{center}
54     \begin{tabular}{c|c|c}
55     \hline
56     $\rm p_{T}$ & $|\eta|$ & $\rm pfIso03/p_{T}$ \\
57     \hline
58     $> 20$ & $< 1.48$ & $ < 0.13 $ \\
59     $> 20$ & $> 1.48$ & $ < 0.09 $ \\
60     $< 20$ & $< 1.48$ & $ < 0.06 $ \\
61     $< 20$ & $> 1.48$ & $ < 0.05 $ \\
62     \hline
63     \end{tabular}
64     \caption{Muon pfIsolation Criteria.}\label{tab:muonIso}
65     \end{center}
66     \end{table}
67     %-------------------------------------------------
68    
69 khahn 1.5 We measure the efficiency of this selection using samples of $Z \rightarrow \mu\mu$ events and the ``Tag \& Probe'' technique~\cite{TP}. The $\mathcal{L} = 4.7\rm~fb^{-1}$ dataset contains a sufficient number of $Z$ events for us to obtain selection efficiencies for $p_{T} < 10\rm~GeV$ muons, thus we do not utilize separate samples of low-mass resonances for this $p_{T}$ region. We require events that contain at least one muon candidate (the tag) that satisfies the full set of muon identification criteria and passes a singleMuon trigger. We then require one additional reconstructed Global or Tracker muon candidate to serve as the probe. We determine efficiency in MC by simply counting the number of probes that pass or fail selection in bins of $p_{T}$ and $\eta$. Binned efficiencies are etermined in data from simultaneous shape fits to the $m(\mu_{tag}\mu_{probe})$ distributions of events in the pass and fail categories. We use MC signal shape templates and an empirical function that describes background when fitting data. Figures~\ref{fig:muTPhighpt} and~\ref{fig:muTPlowpt} show fit results for the high and low $p_{T}$ bins for muons in the central region.
70 khahn 1.1
71     %-------------------------------------------------
72     \begin{figure}[htb]
73     \begin{center}
74     \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/passetapt_6.png}
75     \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/failetapt_6.png}
76     \caption{Tag \& Probe fit results for high-$p_{T}$ offline muon selection in the barrel.\label{fig:muTPhighpt} }
77     \end{center}
78     \end{figure}
79     %-------------------------------------------------
80     %-------------------------------------------------
81     \begin{figure}[htb]
82     \begin{center}
83     \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/passetapt_0.png}
84     \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/failetapt_0.png}
85     \caption{Tag \& Probe fit results for low-$p_{T}$ offline muon selection in the barrel.\label{fig:muTPlowpt} }
86     \end{center}
87     \end{figure}
88     %-------------------------------------------------
89    
90 khahn 1.5 We divide the $p_{T}/\eta$-binned efficiencies from data with corresponding values from MC to determine data/MC efficiency scale factors, $f_{ID,Iso}$. We use these factors to weight selected muons in our MC samples, as discussed in Sections~\ref{sec:Signal}. Figure~\ref{fig:muEff} shows $f_{ID,Iso}$ for the central and forward regions as a function of $p_{T}$. Values for $f_{ID,Iso}$ in each of our $p_{T}/\eta$ bins are given in Table~\ref{tab:musf}.
91 khahn 1.1
92     %-------------------------------------------------
93     \begin{figure}[htb]
94     \begin{center}
95     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
96     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
97 khahn 1.2 \caption{Offline Muon Efficiency Scale Factors.}\label{fig:muEff}
98 khahn 1.1 \end{center}
99     \end{figure}
100     %-------------------------------------------------
101    
102     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
103     \begin{table}[!ht]
104     \begin{center}
105     \begin{tabular}{c|c|c}
106     \hline & $0 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.4$ \\
107     \hline
108     $ 5 < p_T < 10$ & $0.9571 \pm 0.0378$ & $0.9860 \pm 0.0044$ \\
109     $ 10 < p_T < 15$ & $0.9644 \pm 0.0116$ & $0.9888 \pm 0.0058$ \\
110     $ 15 < p_T < 20$ & $0.9870 \pm 0.0057$ & $0.9899 \pm 0.0047$ \\
111     $ 20 < p_T < 30$ & $0.9950 \pm 0.0013$ & $0.9984 \pm 0.0009$ \\
112     $ 30 < p_T < 40$ & $0.9993 \pm 0.0004$ & $0.9988 \pm 0.0003$ \\
113     $ 40 < p_T < 50$ & $0.9989 \pm 0.0002$ & $0.9976 \pm 0.0004$ \\
114     $ 50 < p_T < 100$ & $0.9986 \pm 0.0005$ & $0.9965 \pm 0.0025$ \\
115     $100 < p_T < 7000$ & $0.9978 \pm 0.0027$ & $1.0049 \pm 0.0083$ \\
116     \hline
117     \end{tabular}
118 khahn 1.2 \caption{Write some stuff}\label{tab:musf}
119 khahn 1.1 \end{center}
120     \end{table}
121     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
122    
123 khahn 1.2 Identification and isolation efficiencies for non-prompt and instrumental muon backgrounds are also evaluated with data. We defer discussion of this to Section~\ref{sec:BG}
124 khahn 1.1
125     %csidetermine a background efficiency ({\it i.e} a ``fakerate'' in the terminology of Section~\ref{sec:}) with respect to objects passing the loose subset of muon indentification criteria listed in Table~\ref{tab:muFO}. We calculate the fakerate using data collected with a single muon trigger. We require a jet of at least $30~\rm{Gev}$ with $\Delta R(\eta,\phi) > 1.5$ from the muon candidate in order to enrich this sample in background. Contributions from W, Z and low-mass resonances are reduced by additionally requiring events that contain only one muon denominator object above $10\rm~GeV$, $MET < 20 ~\rm{GeV}$ and $m_{T} < 30~\rm{GeV}$.
126    
127     %__________________________________________________
128 khahn 1.2 \subsubsection{Online Muon Selection}\label{sec:muOnline}
129 khahn 1.1 %__________________________________________________
130 khahn 1.5 Tag \& Probe is also used to measure $p_{T}/\eta$-binned per-leg efficiencies for the \verb|HLT_DoubleMu_7| and \verb|HLT_Mu_13_8| triggers. We calculated trigger efficiencies with respect to muon candidates that pass the offline requirements described in Section~\ref{sec:muOnline}. We do not use the emulation of these triggers in MC and instead correct the simulation with the absolute efficiencies measured in data. Backgrounds after offline selection are small, so trigger efficiency is determined by simply counting events. Tables~\ref{tab:trigEffMu7}-\ref{tab:trigEffMu13_8_trailing} provide the per-leg efficiencies for our various $p_{T}/eta$ bins.
131 khahn 1.1
132     % figs/mueff/Run2011A_HLT_DoubleMu7/default/extra/dat_eff_table.tex
133     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
134     \begin{table}[!ht]
135     \begin{center}
136     \begin{tabular}{c|c|c|c|c}
137     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
138     \hline
139     $ 5 < p_T < 10$ & $0.7778 \pm 0.1411$ & $0.7812 \pm 0.0978$ & $0.6391 \pm 0.0407$ & $0.5696 \pm 0.0626$ \\
140     $ 10 < p_T < 15$ & $0.9581 \pm 0.0218$ & $0.9172 \pm 0.0282$ & $0.9281 \pm 0.0147$ & $0.8750 \pm 0.0364$ \\
141     $ 15 < p_T < 20$ & $0.9732 \pm 0.0084$ & $0.9613 \pm 0.0130$ & $0.9583 \pm 0.0081$ & $0.9061 \pm 0.0209$ \\
142     $ 20 < p_T < 30$ & $0.9685 \pm 0.0028$ & $0.9381 \pm 0.0057$ & $0.9599 \pm 0.0033$ & $0.9274 \pm 0.0080$ \\
143     $ 30 < p_T < 40$ & $0.9625 \pm 0.0019$ & $0.9321 \pm 0.0039$ & $0.9589 \pm 0.0023$ & $0.9195 \pm 0.0064$ \\
144     $ 40 < p_T < 50$ & $0.9713 \pm 0.0016$ & $0.9401 \pm 0.0033$ & $0.9594 \pm 0.0021$ & $0.9007 \pm 0.0075$ \\
145     $ 50 < p_T < 100$ & $0.9703 \pm 0.0028$ & $0.9411 \pm 0.0060$ & $0.9576 \pm 0.0038$ & $0.9057 \pm 0.0122$ \\
146     $100 < p_T < 7000$ & $0.9801 \pm 0.0189$ & $0.9405 \pm 0.0383$ & $0.9490 \pm 0.0330$ & $1.0000 \pm 0.2313$ \\
147     \hline
148     \end{tabular}
149 khahn 1.2 \caption{Write some stuff}\label{tab:trigEffMu7}
150 khahn 1.1 \end{center}
151     \end{table}
152    
153     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
154    
155     %figs/mueff/Run2011A_HLT_Mu13_Mu8_leading/default/extra/dat_eff_table.tex
156     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
157     \begin{table}[!ht]
158     \begin{center}
159     \begin{tabular}{c|c|c|c|c}
160     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
161     \hline
162     $ 5 < p_T < 10$ & $0.0000 \pm 0.0081$ & $0.0000 \pm 0.0062$ & $0.0000 \pm 0.0013$ & $0.0070 \pm 0.0055$ \\
163     $ 10 < p_T < 15$ & $0.5566 \pm 0.0135$ & $0.5157 \pm 0.0137$ & $0.4765 \pm 0.0083$ & $0.4481 \pm 0.0144$ \\
164     $ 15 < p_T < 20$ & $0.9691 \pm 0.0025$ & $0.9553 \pm 0.0037$ & $0.9443 \pm 0.0027$ & $0.8810 \pm 0.0067$ \\
165     $ 20 < p_T < 30$ & $0.9664 \pm 0.0009$ & $0.9552 \pm 0.0015$ & $0.9508 \pm 0.0011$ & $0.8853 \pm 0.0030$ \\
166     $ 30 < p_T < 40$ & $0.9684 \pm 0.0005$ & $0.9541 \pm 0.0010$ & $0.9518 \pm 0.0008$ & $0.8859 \pm 0.0023$ \\
167     $ 40 < p_T < 50$ & $0.9685 \pm 0.0005$ & $0.9558 \pm 0.0009$ & $0.9524 \pm 0.0007$ & $0.8905 \pm 0.0024$ \\
168     $ 50 < p_T < 100$ & $0.9688 \pm 0.0009$ & $0.9545 \pm 0.0016$ & $0.9503 \pm 0.0012$ & $0.8824 \pm 0.0043$ \\
169     $100 < p_T < 7000$ & $0.9655 \pm 0.0055$ & $0.9500 \pm 0.0098$ & $0.9433 \pm 0.0083$ & $0.9155 \pm 0.0471$ \\
170     \hline
171     \end{tabular}
172     \caption{Write some stuff}
173 khahn 1.2 \label{tab:trigEffMu13_8_leading}
174 khahn 1.1 \end{center}
175     \end{table}
176    
177     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
178    
179     %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
180     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
181     \begin{table}[!ht]
182     \begin{center}
183     \begin{tabular}{c|c|c|c|c}
184     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
185     \hline
186     $ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
187     $ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
188     $ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
189     $ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
190     $ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
191     $ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
192     $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
193     $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
194     \hline
195     \end{tabular}
196     \caption{Write some stuff}
197 khahn 1.2 \label{tab:trigEffMu13_8_trailing}
198 khahn 1.1 \end{center}
199     \end{table}
200    
201     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
202    
203    
204     %++++++++++++++++++++++++++++++++++++++++++++++++++
205     \subsection{Electrons}
206     %++++++++++++++++++++++++++++++++++++++++++++++++++
207     %__________________________________________________
208     \subsection{Offline Selection}
209     %__________________________________________________
210 khahn 1.5 We select electron candidates for the analysis using a multivariate (MV) technique. Our method was developed together with an MV-based electron ID scheme for the WW analysis~\cite{si}. The two methods are equivalent, modulo small differences in implementation that address the relative severity of ``fake'' electron backgrounds in the respective analyses.
211 khahn 1.1
212 khahn 1.5 We utilize a TMVA Boosted Decision Tree (BDT) for MV identification. The BDT is trained on separate samples of candidate objects that are enriched in either fake or real electrons. Candidates are defined as reconstructed electrons that pass the minimal set of selection criteria listed in Table~\ref{tab:eleFO}. We construct a signal training sample from pairs of candidates in the DoubleElectron dataset with $|m_{\ell\ell} - M_{Z}| < 15~\rm GeV$. Candidates in the background training sample are selected from events that pass a single-electron trigger. We require a $\Delta R(\eta,\phi) >1~\rm$ jet and reject events with $\rm MET > 20~GeV$, or containing more than one electron candidate. Conversion candidates are vetoed to further suppress real electron contamination.
213 khahn 1.1
214     %-------------------------------------------------
215     \begin{table}[tbh]
216     \begin{center}
217 khahn 1.2 \begin{tabular}{c|c}
218 khahn 1.5 \hline
219 khahn 1.2 {\bf Quantity} & {\bf Requirement}\\
220 khahn 1.1 \hline
221 dkralph 1.3 $|dz|$ & $< 0.1\rm~cm$ \\
222     $H/E$ & $< 0.12(0.1) EB(EE)$ \\
223     $iso_{trk}$ & $<0.3$ \\
224     $iso_{em}$ & $<0.3$ \\
225     $iso_{had}$ & $<0.3$ \\
226 khahn 1.1 \hline
227     \end{tabular}
228 khahn 1.2 \caption{Electron Candidate Definition.\label{tab:eleFO}}
229 khahn 1.1 \end{center}
230     \end{table}
231     %-------------------------------------------------
232    
233 khahn 1.5 MV discrimination is performed using the following variables : $\sigma_{i\eta i\eta}$, $\sigma_{i\phi i\phi}$, $\Delta\eta_{in}$, $\Delta\phi_{in}$, $f_{Brem}$, $n_{Brem}$, $E/P$, $d_{0}$, $E_{seed}/P_{out}$, $E_{seed}/P_{in}$, $1/E - 1/P$. {\bf Cuts on these guys? Show correlation plot to motivate BDT?}
234 khahn 1.1
235 khahn 1.2 We train and validate the BDT using statistically independent subsets of events from the samples described above. Training and testing is performed separately for six $\eta/p_{T}$ bins. A cut on the resulting BDT discriminant translates to a specific combination of signal and background efficiency. The locus of signal/background efficiencies yields the performance ({\it i.e:} ROC) curves shown in Figure~\ref{fig:ROC}.
236 khahn 1.1
237     %-------------------------------------------------
238     \begin{figure}[tbp]
239     \begin{center}
240 dkralph 1.3 \includegraphics[width=0.4\linewidth]{figs/roc-s0_pt1.png}
241     \includegraphics[width=0.4\linewidth]{figs/roc-s2_pt0.png}
242     \caption{MVA Electron ID Performance. \label{fig:ROC} }
243 khahn 1.1 \end{center}
244     \end{figure}
245     %-------------------------------------------------
246    
247 khahn 1.5 The plots in Figure~\ref{fig:ROC} include efficiency points that correspond to the ``Cuts in Categories'' (CIC) loose, medium and tight working points defined in~\cite{CIC}. BDT and CIC performances are comparable in the high $p_{T}$ bins, however the BDT outperforms CIC at low $p_{T}$. We define a set of loose, medium and tight BDT working points for this analysis by stipulating background efficiencies that are equivalent to those of the corresponding CIC working points.
248 dkralph 1.3
249     %% BDT and CIC signal efficiencies for the various working points are compared in Table~\ref{tab:WPs}.
250    
251     %% %-------------------------------------------------
252     %% \begin{table}[tbh]
253     %% \begin{center}
254     %% \begin{tabular}{c|c|c}
255     %% $\epsilon_{B}$ & $\epsilon_{S}(CIC)$ & $\epsilon_{S}(BDT)$ \\
256     %% \hline
257     %% $X$ & $Y$ & $Z$ \\
258     %% $X$ & $Y$ & $Z$ \\
259     %% $X$ & $Y$ & $Z$ \\
260     %% $X$ & $Y$ & $Z$ \\
261     %% \hline
262     %% \end{tabular}
263     %% \caption{Working Points and Efficiencies.\label{tab:WPs}}
264     %% \end{center}
265     %% \end{table}
266     %% %-------------------------------------------------
267 khahn 1.1
268 khahn 1.5 The efficiencies shown in Figure~\ref{fig:ROC} are determined with respect to the candidate definition in Table~\ref{tab:eleFO}. Selection performance can be easily compared with this efficiency definition, however efficiencies for the analysis must be taken with respect to reconstructed GSF electrons. As with muons, we calculate electron identification/isolation efficiencies for the analysis using Tag \& Probe. Figures~\ref{fig:eleTPmediumhighpt} and ~\ref{fig:eleTPmediumlowpt} (~\ref{fig:eleTPloosehighpt} and ~\ref{fig:eleTPlooselowpt}) show fit results for our medium (loose) MV selection in the central region. %The complete set of offline selection fits from Tag \& Probe are included in Appendix~\ref{app:}.
269 khahn 1.1
270     %-------------------------------------------------
271     \begin{figure}[htb]
272     \begin{center}
273     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_6.png}
274     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_6.png}
275 khahn 1.2 \caption{Tag \& Probe fit results for medium offline selection for high-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
276     \label{fig:eleTPmediumhighpt}
277 khahn 1.1 \end{center}
278     \end{figure}
279     %-------------------------------------------------
280     %-------------------------------------------------
281     \begin{figure}[htb]
282     \begin{center}
283     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_0.png}
284     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_0.png}
285 khahn 1.2 \caption{Tag \& Probe fit results for medium offline selection for low-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
286     \label{fig:eleTPmediumlowpt}
287 khahn 1.1 \end{center}
288     \end{figure}
289     %-------------------------------------------------
290    
291 khahn 1.2 %-------------------------------------------------
292     \begin{figure}[htb]
293 khahn 1.1 \begin{center}
294 khahn 1.2 \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_6.png}
295     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_6.png}
296     \caption{Tag \& Probe fit results for loose offline selection for high-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
297     \label{fig:eleTPloosehighpt}
298 khahn 1.1 \end{center}
299 khahn 1.2 \end{figure}
300     %-------------------------------------------------
301 khahn 1.1 %-------------------------------------------------
302     \begin{figure}[htb]
303     \begin{center}
304 khahn 1.2 \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_0.png}
305     \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_0.png}
306     \caption{Tag \& Probe fit results for loose offline selection for low-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
307     \label{fig:eleTPlooselowpt}
308 khahn 1.1 \end{center}
309     \end{figure}
310     %-------------------------------------------------
311    
312 khahn 1.5 We divide the binned efficiencies from data with corresponding values from MC to obtain offline efficiency scale factors, $f_{ID,Iso}$. Tables~\ref{tab:eleSFmedium}-~\ref{tab:eleSFloose} list these factors for the medium and loose offline selections. Figures~\ref{fig:eleSFmedium} and ~\ref{fig:eleSFloose} plot the $f_{ID,Iso}$ as functions of $p_{T}$ for the central and forward regions.
313 khahn 1.2
314 khahn 1.1 %eleeff/Run2011A_EleWPEffTP-medium/default/extra/sf_table.tex
315     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
316     \begin{table}[!ht]
317     \begin{center}
318     \begin{tabular}{c|c|c}
319     \hline & $0 < |\eta| < 1.5$ & $1.5 < |\eta| < 2.5$ \\
320     \hline
321     $ 7 < p_T < 10$ & $1.3015 \pm 0.1110$ & $1.0341 \pm 0.0437$ \\
322     $ 10 < p_T < 15$ & $1.3508 \pm 0.0100$ & $0.7119 \pm 0.0103$ \\
323     $ 15 < p_T < 20$ & $1.0252 \pm 0.0146$ & $0.9065 \pm 0.0061$ \\
324     $ 20 < p_T < 30$ & $0.9808 \pm 0.0003$ & $1.0214 \pm 0.0030$ \\
325     $ 30 < p_T < 40$ & $0.9994 \pm 0.0005$ & $1.0092 \pm 0.0003$ \\
326     $ 40 < p_T < 50$ & $0.9988 \pm 0.0002$ & $1.0016 \pm 0.0006$ \\
327     $ 50 < p_T < 100$ & $0.9868 \pm 0.0009$ & $0.9967 \pm 0.0011$ \\
328     $100 < p_T < 7000$ & $0.9828 \pm 0.0028$ & $1.0144 \pm 0.0024$ \\
329     \hline
330     \end{tabular}
331 khahn 1.2 \caption{MVA Medium ID scale factors.}
332     \label{tab:eleSFmedium}
333 khahn 1.1 \end{center}
334     \end{table}
335    
336     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
337    
338     %-------------------------------------------------
339     \begin{figure}[htb]
340     \begin{center}
341     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
342     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
343 khahn 1.2 \caption{SF for ele medium. {\bf FIX! Currently muon plots ...}}
344     \label{fig:eleSFmedium}
345 khahn 1.1 \end{center}
346     \end{figure}
347     %-------------------------------------------------
348    
349     %figs/eleeff/Run2011A_EleWPEffTP-loose/default/extra/sf_table.tex
350     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
351     \begin{table}[!ht]
352     \begin{center}
353     \begin{tabular}{c|c|c}
354     \hline & $0 < |\eta| < 1.5$ & $1.5 < |\eta| < 2.5$ \\
355     \hline
356     $ 7 < p_T < 10$ & $1.2642 \pm 0.1061$ & $1.0442 \pm 0.0398$ \\
357     $ 10 < p_T < 15$ & $1.1143 \pm 0.0254$ & $1.1013 \pm 0.0170$ \\
358     $ 15 < p_T < 20$ & $1.0309 \pm 0.0094$ & $1.0877 \pm 0.0065$ \\
359     $ 20 < p_T < 30$ & $0.9841 \pm 0.0011$ & $1.0134 \pm 0.0164$ \\
360     $ 30 < p_T < 40$ & $0.9982 \pm 0.0004$ & $1.0088 \pm 0.0004$ \\
361     $ 40 < p_T < 50$ & $0.9991 \pm 0.0002$ & $1.0014 \pm 0.0006$ \\
362     $ 50 < p_T < 100$ & $0.9996 \pm 0.0006$ & $1.0006 \pm 0.0004$ \\
363     $100 < p_T < 7000$ & $0.9946 \pm 0.0045$ & $1.0134 \pm 0.0067$ \\
364     \hline
365     \end{tabular}
366 khahn 1.2 \caption{MVA Loose ID Efficiency Scale Factors.}
367     \label{tab:eleSFloose}
368 khahn 1.1 \end{center}
369     \end{table}
370    
371     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
372    
373     %-------------------------------------------------
374     \begin{figure}[htb]
375     \begin{center}
376     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
377     \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
378 khahn 1.2 \caption{SF for ele loose. {\bf FIX! Currently muon plots ...}}
379     \label{fig:eleSFloose}
380 khahn 1.1 \end{center}
381     \end{figure}
382     %-------------------------------------------------
383    
384 khahn 1.2 Identification and isolation efficiencies for non-prompt and instrumental electron backgrounds are also evaluated with data. We defer discussion of this to Section~\ref{sec:BG}.
385 khahn 1.1
386     %__________________________________________________
387     \subsubsection{Online Selection}\label{sec:eleOnline}
388     %__________________________________________________
389 khahn 1.2 Per-leg efficiencies for the various electron triggers are calculated in the same manner as was described in Section~\ref{sec:muOnline}. Table~\ref{tab:eleTPtrigLeading} lists the luminosity-averaged efficiencies for leading and trailing trigger legs defined with respect to selected offline electrons.
390 khahn 1.1
391     %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
392     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
393     \begin{table}[!ht]
394     \begin{center}
395     \begin{tabular}{c|c|c|c|c}
396     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
397     \hline
398     $ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
399     $ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
400     $ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
401     $ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
402     $ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
403     $ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
404     $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
405     $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
406     \hline
407     \end{tabular}
408 khahn 1.2 \caption{Trigger Efficiency for the Leading Leg of the (luminosity-average) Double Electron trigger. {\bf FIX! Get the correct numbers in here.} }
409     \label{tab:eleTPtrigLeading}
410 khahn 1.1 \end{center}
411     \end{table}
412    
413     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
414    
415     %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
416     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
417     \begin{table}[!ht]
418     \begin{center}
419     \begin{tabular}{c|c|c|c|c}
420     \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
421     \hline
422     $ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
423     $ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
424     $ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
425     $ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
426     $ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
427     $ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
428     $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
429     $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
430     \hline
431     \end{tabular}
432 khahn 1.2 \caption{Trigger Efficiency for the Trailing Leg of the (luminosity-average) Double Electron trigger.{\bf FIX! Get the correct numbers in here.}}
433     \label{tab:eleTPtrigTrailing}
434 khahn 1.1 \end{center}
435     \end{table}
436    
437     %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
438    
439 khahn 1.5 \clearpage