1 |
khahn |
1.1 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
2 |
khahn |
1.2 |
\section{Lepton Selection}\label{sec:Leptons}
|
3 |
khahn |
1.1 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
4 |
|
|
|
5 |
|
|
%++++++++++++++++++++++++++++++++++++++++++++++++++
|
6 |
|
|
\subsection{Muons}
|
7 |
|
|
%++++++++++++++++++++++++++++++++++++++++++++++++++
|
8 |
|
|
|
9 |
|
|
%__________________________________________________
|
10 |
khahn |
1.2 |
\subsubsection{Offline Muon Selection}\label{sec:muOffline}
|
11 |
khahn |
1.1 |
%__________________________________________________
|
12 |
khahn |
1.5 |
We select offline muon candidates that satisfy the requirements given in Tables~\ref{tab:muonID} and~\ref{tab:muonIso}. The main difference between these criteria and those of~\cite{baseline} is our inclusion of Tracker muons, which provide a high-efficiency reconstruction path at low-$p_{T}$. We also introduce quality requirements to reduce non-prompt backgrounds and we impose $\eta/p_{T}$ dependent, per-muon PF relative isolation.
|
13 |
khahn |
1.1 |
|
14 |
|
|
%-------------------------------------------------
|
15 |
|
|
\begin{table}[tbh]
|
16 |
|
|
\begin{center}
|
17 |
|
|
\begin{tabular}{c|c}
|
18 |
|
|
\hline
|
19 |
|
|
\multicolumn{2}{c}{General Muon Requirements} \\
|
20 |
|
|
\hline
|
21 |
|
|
$p_{T}$ & $< 5~\rm{GeV}$ \\
|
22 |
|
|
$|\eta|$ & $< 2.4$ \\
|
23 |
|
|
Tracker hits & $\ge 11$ \\
|
24 |
|
|
Pixel hits & $> 0$ \\
|
25 |
|
|
$\sigma(p_{T})/p_{T}$ & $\le 0.1$ \\
|
26 |
|
|
dz & $< 0.1~\rm{cm}$ \\
|
27 |
|
|
$\rm |d_{0}|$ & $< 0.02~\rm{cm}$ \\
|
28 |
|
|
Muon type & Tracker or Global \\
|
29 |
|
|
\hline
|
30 |
|
|
|
31 |
|
|
|
32 |
khahn |
1.2 |
\multicolumn{2}{}{~} \\
|
33 |
khahn |
1.1 |
\hline
|
34 |
|
|
\multicolumn{2}{c}{Tracker Muons} \\
|
35 |
|
|
\hline
|
36 |
khahn |
1.2 |
Quality Bits & LastStationTight \\
|
37 |
khahn |
1.1 |
\hline
|
38 |
khahn |
1.2 |
\multicolumn{2}{}{~} \\
|
39 |
khahn |
1.1 |
\hline
|
40 |
|
|
\multicolumn{2}{c}{Global Muons} \\
|
41 |
|
|
\hline
|
42 |
|
|
$\chi^{2}_{fit}$ & $< 10$ \\
|
43 |
|
|
Valid Hits & $\ge 1$ \\
|
44 |
|
|
\hline
|
45 |
|
|
\end{tabular}
|
46 |
|
|
\caption{Muon Identification Criteria.}\label{tab:muonID}
|
47 |
|
|
\end{center}
|
48 |
|
|
\end{table}
|
49 |
|
|
%-------------------------------------------------
|
50 |
|
|
|
51 |
|
|
%-------------------------------------------------
|
52 |
|
|
\begin{table}[htb]
|
53 |
|
|
\begin{center}
|
54 |
|
|
\begin{tabular}{c|c|c}
|
55 |
|
|
\hline
|
56 |
|
|
$\rm p_{T}$ & $|\eta|$ & $\rm pfIso03/p_{T}$ \\
|
57 |
|
|
\hline
|
58 |
|
|
$> 20$ & $< 1.48$ & $ < 0.13 $ \\
|
59 |
|
|
$> 20$ & $> 1.48$ & $ < 0.09 $ \\
|
60 |
|
|
$< 20$ & $< 1.48$ & $ < 0.06 $ \\
|
61 |
|
|
$< 20$ & $> 1.48$ & $ < 0.05 $ \\
|
62 |
|
|
\hline
|
63 |
|
|
\end{tabular}
|
64 |
|
|
\caption{Muon pfIsolation Criteria.}\label{tab:muonIso}
|
65 |
|
|
\end{center}
|
66 |
|
|
\end{table}
|
67 |
|
|
%-------------------------------------------------
|
68 |
|
|
|
69 |
khahn |
1.5 |
We measure the efficiency of this selection using samples of $Z \rightarrow \mu\mu$ events and the ``Tag \& Probe'' technique~\cite{TP}. The $\mathcal{L} = 4.7\rm~fb^{-1}$ dataset contains a sufficient number of $Z$ events for us to obtain selection efficiencies for $p_{T} < 10\rm~GeV$ muons, thus we do not utilize separate samples of low-mass resonances for this $p_{T}$ region. We require events that contain at least one muon candidate (the tag) that satisfies the full set of muon identification criteria and passes a singleMuon trigger. We then require one additional reconstructed Global or Tracker muon candidate to serve as the probe. We determine efficiency in MC by simply counting the number of probes that pass or fail selection in bins of $p_{T}$ and $\eta$. Binned efficiencies are etermined in data from simultaneous shape fits to the $m(\mu_{tag}\mu_{probe})$ distributions of events in the pass and fail categories. We use MC signal shape templates and an empirical function that describes background when fitting data. Figures~\ref{fig:muTPhighpt} and~\ref{fig:muTPlowpt} show fit results for the high and low $p_{T}$ bins for muons in the central region.
|
70 |
khahn |
1.1 |
|
71 |
|
|
%-------------------------------------------------
|
72 |
|
|
\begin{figure}[htb]
|
73 |
|
|
\begin{center}
|
74 |
|
|
\includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/passetapt_6.png}
|
75 |
|
|
\includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/failetapt_6.png}
|
76 |
|
|
\caption{Tag \& Probe fit results for high-$p_{T}$ offline muon selection in the barrel.\label{fig:muTPhighpt} }
|
77 |
|
|
\end{center}
|
78 |
|
|
\end{figure}
|
79 |
|
|
%-------------------------------------------------
|
80 |
|
|
%-------------------------------------------------
|
81 |
|
|
\begin{figure}[htb]
|
82 |
|
|
\begin{center}
|
83 |
|
|
\includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/passetapt_0.png}
|
84 |
|
|
\includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/failetapt_0.png}
|
85 |
|
|
\caption{Tag \& Probe fit results for low-$p_{T}$ offline muon selection in the barrel.\label{fig:muTPlowpt} }
|
86 |
|
|
\end{center}
|
87 |
|
|
\end{figure}
|
88 |
|
|
%-------------------------------------------------
|
89 |
|
|
|
90 |
khahn |
1.5 |
We divide the $p_{T}/\eta$-binned efficiencies from data with corresponding values from MC to determine data/MC efficiency scale factors, $f_{ID,Iso}$. We use these factors to weight selected muons in our MC samples, as discussed in Sections~\ref{sec:Signal}. Figure~\ref{fig:muEff} shows $f_{ID,Iso}$ for the central and forward regions as a function of $p_{T}$. Values for $f_{ID,Iso}$ in each of our $p_{T}/\eta$ bins are given in Table~\ref{tab:musf}.
|
91 |
khahn |
1.1 |
|
92 |
|
|
%-------------------------------------------------
|
93 |
|
|
\begin{figure}[htb]
|
94 |
|
|
\begin{center}
|
95 |
|
|
\includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
|
96 |
|
|
\includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
|
97 |
khahn |
1.2 |
\caption{Offline Muon Efficiency Scale Factors.}\label{fig:muEff}
|
98 |
khahn |
1.1 |
\end{center}
|
99 |
|
|
\end{figure}
|
100 |
|
|
%-------------------------------------------------
|
101 |
|
|
|
102 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
103 |
|
|
\begin{table}[!ht]
|
104 |
|
|
\begin{center}
|
105 |
|
|
\begin{tabular}{c|c|c}
|
106 |
|
|
\hline & $0 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.4$ \\
|
107 |
|
|
\hline
|
108 |
|
|
$ 5 < p_T < 10$ & $0.9571 \pm 0.0378$ & $0.9860 \pm 0.0044$ \\
|
109 |
|
|
$ 10 < p_T < 15$ & $0.9644 \pm 0.0116$ & $0.9888 \pm 0.0058$ \\
|
110 |
|
|
$ 15 < p_T < 20$ & $0.9870 \pm 0.0057$ & $0.9899 \pm 0.0047$ \\
|
111 |
|
|
$ 20 < p_T < 30$ & $0.9950 \pm 0.0013$ & $0.9984 \pm 0.0009$ \\
|
112 |
|
|
$ 30 < p_T < 40$ & $0.9993 \pm 0.0004$ & $0.9988 \pm 0.0003$ \\
|
113 |
|
|
$ 40 < p_T < 50$ & $0.9989 \pm 0.0002$ & $0.9976 \pm 0.0004$ \\
|
114 |
|
|
$ 50 < p_T < 100$ & $0.9986 \pm 0.0005$ & $0.9965 \pm 0.0025$ \\
|
115 |
|
|
$100 < p_T < 7000$ & $0.9978 \pm 0.0027$ & $1.0049 \pm 0.0083$ \\
|
116 |
|
|
\hline
|
117 |
|
|
\end{tabular}
|
118 |
khahn |
1.2 |
\caption{Write some stuff}\label{tab:musf}
|
119 |
khahn |
1.1 |
\end{center}
|
120 |
|
|
\end{table}
|
121 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
122 |
|
|
|
123 |
khahn |
1.2 |
Identification and isolation efficiencies for non-prompt and instrumental muon backgrounds are also evaluated with data. We defer discussion of this to Section~\ref{sec:BG}
|
124 |
khahn |
1.1 |
|
125 |
|
|
%csidetermine a background efficiency ({\it i.e} a ``fakerate'' in the terminology of Section~\ref{sec:}) with respect to objects passing the loose subset of muon indentification criteria listed in Table~\ref{tab:muFO}. We calculate the fakerate using data collected with a single muon trigger. We require a jet of at least $30~\rm{Gev}$ with $\Delta R(\eta,\phi) > 1.5$ from the muon candidate in order to enrich this sample in background. Contributions from W, Z and low-mass resonances are reduced by additionally requiring events that contain only one muon denominator object above $10\rm~GeV$, $MET < 20 ~\rm{GeV}$ and $m_{T} < 30~\rm{GeV}$.
|
126 |
|
|
|
127 |
|
|
%__________________________________________________
|
128 |
khahn |
1.2 |
\subsubsection{Online Muon Selection}\label{sec:muOnline}
|
129 |
khahn |
1.1 |
%__________________________________________________
|
130 |
khahn |
1.5 |
Tag \& Probe is also used to measure $p_{T}/\eta$-binned per-leg efficiencies for the \verb|HLT_DoubleMu_7| and \verb|HLT_Mu_13_8| triggers. We calculated trigger efficiencies with respect to muon candidates that pass the offline requirements described in Section~\ref{sec:muOnline}. We do not use the emulation of these triggers in MC and instead correct the simulation with the absolute efficiencies measured in data. Backgrounds after offline selection are small, so trigger efficiency is determined by simply counting events. Tables~\ref{tab:trigEffMu7}-\ref{tab:trigEffMu13_8_trailing} provide the per-leg efficiencies for our various $p_{T}/eta$ bins.
|
131 |
khahn |
1.1 |
|
132 |
|
|
% figs/mueff/Run2011A_HLT_DoubleMu7/default/extra/dat_eff_table.tex
|
133 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
134 |
|
|
\begin{table}[!ht]
|
135 |
|
|
\begin{center}
|
136 |
|
|
\begin{tabular}{c|c|c|c|c}
|
137 |
|
|
\hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
|
138 |
|
|
\hline
|
139 |
|
|
$ 5 < p_T < 10$ & $0.7778 \pm 0.1411$ & $0.7812 \pm 0.0978$ & $0.6391 \pm 0.0407$ & $0.5696 \pm 0.0626$ \\
|
140 |
|
|
$ 10 < p_T < 15$ & $0.9581 \pm 0.0218$ & $0.9172 \pm 0.0282$ & $0.9281 \pm 0.0147$ & $0.8750 \pm 0.0364$ \\
|
141 |
|
|
$ 15 < p_T < 20$ & $0.9732 \pm 0.0084$ & $0.9613 \pm 0.0130$ & $0.9583 \pm 0.0081$ & $0.9061 \pm 0.0209$ \\
|
142 |
|
|
$ 20 < p_T < 30$ & $0.9685 \pm 0.0028$ & $0.9381 \pm 0.0057$ & $0.9599 \pm 0.0033$ & $0.9274 \pm 0.0080$ \\
|
143 |
|
|
$ 30 < p_T < 40$ & $0.9625 \pm 0.0019$ & $0.9321 \pm 0.0039$ & $0.9589 \pm 0.0023$ & $0.9195 \pm 0.0064$ \\
|
144 |
|
|
$ 40 < p_T < 50$ & $0.9713 \pm 0.0016$ & $0.9401 \pm 0.0033$ & $0.9594 \pm 0.0021$ & $0.9007 \pm 0.0075$ \\
|
145 |
|
|
$ 50 < p_T < 100$ & $0.9703 \pm 0.0028$ & $0.9411 \pm 0.0060$ & $0.9576 \pm 0.0038$ & $0.9057 \pm 0.0122$ \\
|
146 |
|
|
$100 < p_T < 7000$ & $0.9801 \pm 0.0189$ & $0.9405 \pm 0.0383$ & $0.9490 \pm 0.0330$ & $1.0000 \pm 0.2313$ \\
|
147 |
|
|
\hline
|
148 |
|
|
\end{tabular}
|
149 |
khahn |
1.2 |
\caption{Write some stuff}\label{tab:trigEffMu7}
|
150 |
khahn |
1.1 |
\end{center}
|
151 |
|
|
\end{table}
|
152 |
|
|
|
153 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
154 |
|
|
|
155 |
|
|
%figs/mueff/Run2011A_HLT_Mu13_Mu8_leading/default/extra/dat_eff_table.tex
|
156 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
157 |
|
|
\begin{table}[!ht]
|
158 |
|
|
\begin{center}
|
159 |
|
|
\begin{tabular}{c|c|c|c|c}
|
160 |
|
|
\hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
|
161 |
|
|
\hline
|
162 |
|
|
$ 5 < p_T < 10$ & $0.0000 \pm 0.0081$ & $0.0000 \pm 0.0062$ & $0.0000 \pm 0.0013$ & $0.0070 \pm 0.0055$ \\
|
163 |
|
|
$ 10 < p_T < 15$ & $0.5566 \pm 0.0135$ & $0.5157 \pm 0.0137$ & $0.4765 \pm 0.0083$ & $0.4481 \pm 0.0144$ \\
|
164 |
|
|
$ 15 < p_T < 20$ & $0.9691 \pm 0.0025$ & $0.9553 \pm 0.0037$ & $0.9443 \pm 0.0027$ & $0.8810 \pm 0.0067$ \\
|
165 |
|
|
$ 20 < p_T < 30$ & $0.9664 \pm 0.0009$ & $0.9552 \pm 0.0015$ & $0.9508 \pm 0.0011$ & $0.8853 \pm 0.0030$ \\
|
166 |
|
|
$ 30 < p_T < 40$ & $0.9684 \pm 0.0005$ & $0.9541 \pm 0.0010$ & $0.9518 \pm 0.0008$ & $0.8859 \pm 0.0023$ \\
|
167 |
|
|
$ 40 < p_T < 50$ & $0.9685 \pm 0.0005$ & $0.9558 \pm 0.0009$ & $0.9524 \pm 0.0007$ & $0.8905 \pm 0.0024$ \\
|
168 |
|
|
$ 50 < p_T < 100$ & $0.9688 \pm 0.0009$ & $0.9545 \pm 0.0016$ & $0.9503 \pm 0.0012$ & $0.8824 \pm 0.0043$ \\
|
169 |
|
|
$100 < p_T < 7000$ & $0.9655 \pm 0.0055$ & $0.9500 \pm 0.0098$ & $0.9433 \pm 0.0083$ & $0.9155 \pm 0.0471$ \\
|
170 |
|
|
\hline
|
171 |
|
|
\end{tabular}
|
172 |
|
|
\caption{Write some stuff}
|
173 |
khahn |
1.2 |
\label{tab:trigEffMu13_8_leading}
|
174 |
khahn |
1.1 |
\end{center}
|
175 |
|
|
\end{table}
|
176 |
|
|
|
177 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
178 |
|
|
|
179 |
|
|
%figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
|
180 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
181 |
|
|
\begin{table}[!ht]
|
182 |
|
|
\begin{center}
|
183 |
|
|
\begin{tabular}{c|c|c|c|c}
|
184 |
|
|
\hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
|
185 |
|
|
\hline
|
186 |
|
|
$ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
|
187 |
|
|
$ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
|
188 |
|
|
$ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
|
189 |
|
|
$ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
|
190 |
|
|
$ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
|
191 |
|
|
$ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
|
192 |
|
|
$ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
|
193 |
|
|
$100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
|
194 |
|
|
\hline
|
195 |
|
|
\end{tabular}
|
196 |
|
|
\caption{Write some stuff}
|
197 |
khahn |
1.2 |
\label{tab:trigEffMu13_8_trailing}
|
198 |
khahn |
1.1 |
\end{center}
|
199 |
|
|
\end{table}
|
200 |
|
|
|
201 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
202 |
|
|
|
203 |
|
|
|
204 |
|
|
%++++++++++++++++++++++++++++++++++++++++++++++++++
|
205 |
|
|
\subsection{Electrons}
|
206 |
|
|
%++++++++++++++++++++++++++++++++++++++++++++++++++
|
207 |
|
|
%__________________________________________________
|
208 |
|
|
\subsection{Offline Selection}
|
209 |
|
|
%__________________________________________________
|
210 |
khahn |
1.5 |
We select electron candidates for the analysis using a multivariate (MV) technique. Our method was developed together with an MV-based electron ID scheme for the WW analysis~\cite{si}. The two methods are equivalent, modulo small differences in implementation that address the relative severity of ``fake'' electron backgrounds in the respective analyses.
|
211 |
khahn |
1.1 |
|
212 |
khahn |
1.5 |
We utilize a TMVA Boosted Decision Tree (BDT) for MV identification. The BDT is trained on separate samples of candidate objects that are enriched in either fake or real electrons. Candidates are defined as reconstructed electrons that pass the minimal set of selection criteria listed in Table~\ref{tab:eleFO}. We construct a signal training sample from pairs of candidates in the DoubleElectron dataset with $|m_{\ell\ell} - M_{Z}| < 15~\rm GeV$. Candidates in the background training sample are selected from events that pass a single-electron trigger. We require a $\Delta R(\eta,\phi) >1~\rm$ jet and reject events with $\rm MET > 20~GeV$, or containing more than one electron candidate. Conversion candidates are vetoed to further suppress real electron contamination.
|
213 |
khahn |
1.1 |
|
214 |
|
|
%-------------------------------------------------
|
215 |
|
|
\begin{table}[tbh]
|
216 |
|
|
\begin{center}
|
217 |
khahn |
1.2 |
\begin{tabular}{c|c}
|
218 |
khahn |
1.5 |
\hline
|
219 |
khahn |
1.2 |
{\bf Quantity} & {\bf Requirement}\\
|
220 |
khahn |
1.1 |
\hline
|
221 |
dkralph |
1.3 |
$|dz|$ & $< 0.1\rm~cm$ \\
|
222 |
|
|
$H/E$ & $< 0.12(0.1) EB(EE)$ \\
|
223 |
|
|
$iso_{trk}$ & $<0.3$ \\
|
224 |
|
|
$iso_{em}$ & $<0.3$ \\
|
225 |
|
|
$iso_{had}$ & $<0.3$ \\
|
226 |
khahn |
1.1 |
\hline
|
227 |
|
|
\end{tabular}
|
228 |
khahn |
1.2 |
\caption{Electron Candidate Definition.\label{tab:eleFO}}
|
229 |
khahn |
1.1 |
\end{center}
|
230 |
|
|
\end{table}
|
231 |
|
|
%-------------------------------------------------
|
232 |
|
|
|
233 |
khahn |
1.5 |
MV discrimination is performed using the following variables : $\sigma_{i\eta i\eta}$, $\sigma_{i\phi i\phi}$, $\Delta\eta_{in}$, $\Delta\phi_{in}$, $f_{Brem}$, $n_{Brem}$, $E/P$, $d_{0}$, $E_{seed}/P_{out}$, $E_{seed}/P_{in}$, $1/E - 1/P$. {\bf Cuts on these guys? Show correlation plot to motivate BDT?}
|
234 |
khahn |
1.1 |
|
235 |
khahn |
1.2 |
We train and validate the BDT using statistically independent subsets of events from the samples described above. Training and testing is performed separately for six $\eta/p_{T}$ bins. A cut on the resulting BDT discriminant translates to a specific combination of signal and background efficiency. The locus of signal/background efficiencies yields the performance ({\it i.e:} ROC) curves shown in Figure~\ref{fig:ROC}.
|
236 |
khahn |
1.1 |
|
237 |
|
|
%-------------------------------------------------
|
238 |
|
|
\begin{figure}[tbp]
|
239 |
|
|
\begin{center}
|
240 |
dkralph |
1.3 |
\includegraphics[width=0.4\linewidth]{figs/roc-s0_pt1.png}
|
241 |
|
|
\includegraphics[width=0.4\linewidth]{figs/roc-s2_pt0.png}
|
242 |
|
|
\caption{MVA Electron ID Performance. \label{fig:ROC} }
|
243 |
khahn |
1.1 |
\end{center}
|
244 |
|
|
\end{figure}
|
245 |
|
|
%-------------------------------------------------
|
246 |
|
|
|
247 |
khahn |
1.5 |
The plots in Figure~\ref{fig:ROC} include efficiency points that correspond to the ``Cuts in Categories'' (CIC) loose, medium and tight working points defined in~\cite{CIC}. BDT and CIC performances are comparable in the high $p_{T}$ bins, however the BDT outperforms CIC at low $p_{T}$. We define a set of loose, medium and tight BDT working points for this analysis by stipulating background efficiencies that are equivalent to those of the corresponding CIC working points.
|
248 |
dkralph |
1.3 |
|
249 |
|
|
%% BDT and CIC signal efficiencies for the various working points are compared in Table~\ref{tab:WPs}.
|
250 |
|
|
|
251 |
|
|
%% %-------------------------------------------------
|
252 |
|
|
%% \begin{table}[tbh]
|
253 |
|
|
%% \begin{center}
|
254 |
|
|
%% \begin{tabular}{c|c|c}
|
255 |
|
|
%% $\epsilon_{B}$ & $\epsilon_{S}(CIC)$ & $\epsilon_{S}(BDT)$ \\
|
256 |
|
|
%% \hline
|
257 |
|
|
%% $X$ & $Y$ & $Z$ \\
|
258 |
|
|
%% $X$ & $Y$ & $Z$ \\
|
259 |
|
|
%% $X$ & $Y$ & $Z$ \\
|
260 |
|
|
%% $X$ & $Y$ & $Z$ \\
|
261 |
|
|
%% \hline
|
262 |
|
|
%% \end{tabular}
|
263 |
|
|
%% \caption{Working Points and Efficiencies.\label{tab:WPs}}
|
264 |
|
|
%% \end{center}
|
265 |
|
|
%% \end{table}
|
266 |
|
|
%% %-------------------------------------------------
|
267 |
khahn |
1.1 |
|
268 |
khahn |
1.5 |
The efficiencies shown in Figure~\ref{fig:ROC} are determined with respect to the candidate definition in Table~\ref{tab:eleFO}. Selection performance can be easily compared with this efficiency definition, however efficiencies for the analysis must be taken with respect to reconstructed GSF electrons. As with muons, we calculate electron identification/isolation efficiencies for the analysis using Tag \& Probe. Figures~\ref{fig:eleTPmediumhighpt} and ~\ref{fig:eleTPmediumlowpt} (~\ref{fig:eleTPloosehighpt} and ~\ref{fig:eleTPlooselowpt}) show fit results for our medium (loose) MV selection in the central region. %The complete set of offline selection fits from Tag \& Probe are included in Appendix~\ref{app:}.
|
269 |
khahn |
1.1 |
|
270 |
|
|
%-------------------------------------------------
|
271 |
|
|
\begin{figure}[htb]
|
272 |
|
|
\begin{center}
|
273 |
|
|
\includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_6.png}
|
274 |
|
|
\includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_6.png}
|
275 |
khahn |
1.2 |
\caption{Tag \& Probe fit results for medium offline selection for high-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
|
276 |
|
|
\label{fig:eleTPmediumhighpt}
|
277 |
khahn |
1.1 |
\end{center}
|
278 |
|
|
\end{figure}
|
279 |
|
|
%-------------------------------------------------
|
280 |
|
|
%-------------------------------------------------
|
281 |
|
|
\begin{figure}[htb]
|
282 |
|
|
\begin{center}
|
283 |
|
|
\includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_0.png}
|
284 |
|
|
\includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_0.png}
|
285 |
khahn |
1.2 |
\caption{Tag \& Probe fit results for medium offline selection for low-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
|
286 |
|
|
\label{fig:eleTPmediumlowpt}
|
287 |
khahn |
1.1 |
\end{center}
|
288 |
|
|
\end{figure}
|
289 |
|
|
%-------------------------------------------------
|
290 |
|
|
|
291 |
khahn |
1.2 |
%-------------------------------------------------
|
292 |
|
|
\begin{figure}[htb]
|
293 |
khahn |
1.1 |
\begin{center}
|
294 |
khahn |
1.2 |
\includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_6.png}
|
295 |
|
|
\includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_6.png}
|
296 |
|
|
\caption{Tag \& Probe fit results for loose offline selection for high-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
|
297 |
|
|
\label{fig:eleTPloosehighpt}
|
298 |
khahn |
1.1 |
\end{center}
|
299 |
khahn |
1.2 |
\end{figure}
|
300 |
|
|
%-------------------------------------------------
|
301 |
khahn |
1.1 |
%-------------------------------------------------
|
302 |
|
|
\begin{figure}[htb]
|
303 |
|
|
\begin{center}
|
304 |
khahn |
1.2 |
\includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_0.png}
|
305 |
|
|
\includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_0.png}
|
306 |
|
|
\caption{Tag \& Probe fit results for loose offline selection for low-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
|
307 |
|
|
\label{fig:eleTPlooselowpt}
|
308 |
khahn |
1.1 |
\end{center}
|
309 |
|
|
\end{figure}
|
310 |
|
|
%-------------------------------------------------
|
311 |
|
|
|
312 |
khahn |
1.5 |
We divide the binned efficiencies from data with corresponding values from MC to obtain offline efficiency scale factors, $f_{ID,Iso}$. Tables~\ref{tab:eleSFmedium}-~\ref{tab:eleSFloose} list these factors for the medium and loose offline selections. Figures~\ref{fig:eleSFmedium} and ~\ref{fig:eleSFloose} plot the $f_{ID,Iso}$ as functions of $p_{T}$ for the central and forward regions.
|
313 |
khahn |
1.2 |
|
314 |
khahn |
1.1 |
%eleeff/Run2011A_EleWPEffTP-medium/default/extra/sf_table.tex
|
315 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
316 |
|
|
\begin{table}[!ht]
|
317 |
|
|
\begin{center}
|
318 |
|
|
\begin{tabular}{c|c|c}
|
319 |
|
|
\hline & $0 < |\eta| < 1.5$ & $1.5 < |\eta| < 2.5$ \\
|
320 |
|
|
\hline
|
321 |
|
|
$ 7 < p_T < 10$ & $1.3015 \pm 0.1110$ & $1.0341 \pm 0.0437$ \\
|
322 |
|
|
$ 10 < p_T < 15$ & $1.3508 \pm 0.0100$ & $0.7119 \pm 0.0103$ \\
|
323 |
|
|
$ 15 < p_T < 20$ & $1.0252 \pm 0.0146$ & $0.9065 \pm 0.0061$ \\
|
324 |
|
|
$ 20 < p_T < 30$ & $0.9808 \pm 0.0003$ & $1.0214 \pm 0.0030$ \\
|
325 |
|
|
$ 30 < p_T < 40$ & $0.9994 \pm 0.0005$ & $1.0092 \pm 0.0003$ \\
|
326 |
|
|
$ 40 < p_T < 50$ & $0.9988 \pm 0.0002$ & $1.0016 \pm 0.0006$ \\
|
327 |
|
|
$ 50 < p_T < 100$ & $0.9868 \pm 0.0009$ & $0.9967 \pm 0.0011$ \\
|
328 |
|
|
$100 < p_T < 7000$ & $0.9828 \pm 0.0028$ & $1.0144 \pm 0.0024$ \\
|
329 |
|
|
\hline
|
330 |
|
|
\end{tabular}
|
331 |
khahn |
1.2 |
\caption{MVA Medium ID scale factors.}
|
332 |
|
|
\label{tab:eleSFmedium}
|
333 |
khahn |
1.1 |
\end{center}
|
334 |
|
|
\end{table}
|
335 |
|
|
|
336 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
337 |
|
|
|
338 |
|
|
%-------------------------------------------------
|
339 |
|
|
\begin{figure}[htb]
|
340 |
|
|
\begin{center}
|
341 |
|
|
\includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
|
342 |
|
|
\includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
|
343 |
khahn |
1.2 |
\caption{SF for ele medium. {\bf FIX! Currently muon plots ...}}
|
344 |
|
|
\label{fig:eleSFmedium}
|
345 |
khahn |
1.1 |
\end{center}
|
346 |
|
|
\end{figure}
|
347 |
|
|
%-------------------------------------------------
|
348 |
|
|
|
349 |
|
|
%figs/eleeff/Run2011A_EleWPEffTP-loose/default/extra/sf_table.tex
|
350 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
351 |
|
|
\begin{table}[!ht]
|
352 |
|
|
\begin{center}
|
353 |
|
|
\begin{tabular}{c|c|c}
|
354 |
|
|
\hline & $0 < |\eta| < 1.5$ & $1.5 < |\eta| < 2.5$ \\
|
355 |
|
|
\hline
|
356 |
|
|
$ 7 < p_T < 10$ & $1.2642 \pm 0.1061$ & $1.0442 \pm 0.0398$ \\
|
357 |
|
|
$ 10 < p_T < 15$ & $1.1143 \pm 0.0254$ & $1.1013 \pm 0.0170$ \\
|
358 |
|
|
$ 15 < p_T < 20$ & $1.0309 \pm 0.0094$ & $1.0877 \pm 0.0065$ \\
|
359 |
|
|
$ 20 < p_T < 30$ & $0.9841 \pm 0.0011$ & $1.0134 \pm 0.0164$ \\
|
360 |
|
|
$ 30 < p_T < 40$ & $0.9982 \pm 0.0004$ & $1.0088 \pm 0.0004$ \\
|
361 |
|
|
$ 40 < p_T < 50$ & $0.9991 \pm 0.0002$ & $1.0014 \pm 0.0006$ \\
|
362 |
|
|
$ 50 < p_T < 100$ & $0.9996 \pm 0.0006$ & $1.0006 \pm 0.0004$ \\
|
363 |
|
|
$100 < p_T < 7000$ & $0.9946 \pm 0.0045$ & $1.0134 \pm 0.0067$ \\
|
364 |
|
|
\hline
|
365 |
|
|
\end{tabular}
|
366 |
khahn |
1.2 |
\caption{MVA Loose ID Efficiency Scale Factors.}
|
367 |
|
|
\label{tab:eleSFloose}
|
368 |
khahn |
1.1 |
\end{center}
|
369 |
|
|
\end{table}
|
370 |
|
|
|
371 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
372 |
|
|
|
373 |
|
|
%-------------------------------------------------
|
374 |
|
|
\begin{figure}[htb]
|
375 |
|
|
\begin{center}
|
376 |
|
|
\includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
|
377 |
|
|
\includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
|
378 |
khahn |
1.2 |
\caption{SF for ele loose. {\bf FIX! Currently muon plots ...}}
|
379 |
|
|
\label{fig:eleSFloose}
|
380 |
khahn |
1.1 |
\end{center}
|
381 |
|
|
\end{figure}
|
382 |
|
|
%-------------------------------------------------
|
383 |
|
|
|
384 |
khahn |
1.2 |
Identification and isolation efficiencies for non-prompt and instrumental electron backgrounds are also evaluated with data. We defer discussion of this to Section~\ref{sec:BG}.
|
385 |
khahn |
1.1 |
|
386 |
|
|
%__________________________________________________
|
387 |
|
|
\subsubsection{Online Selection}\label{sec:eleOnline}
|
388 |
|
|
%__________________________________________________
|
389 |
khahn |
1.2 |
Per-leg efficiencies for the various electron triggers are calculated in the same manner as was described in Section~\ref{sec:muOnline}. Table~\ref{tab:eleTPtrigLeading} lists the luminosity-averaged efficiencies for leading and trailing trigger legs defined with respect to selected offline electrons.
|
390 |
khahn |
1.1 |
|
391 |
|
|
%figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
|
392 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
393 |
|
|
\begin{table}[!ht]
|
394 |
|
|
\begin{center}
|
395 |
|
|
\begin{tabular}{c|c|c|c|c}
|
396 |
|
|
\hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
|
397 |
|
|
\hline
|
398 |
|
|
$ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
|
399 |
|
|
$ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
|
400 |
|
|
$ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
|
401 |
|
|
$ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
|
402 |
|
|
$ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
|
403 |
|
|
$ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
|
404 |
|
|
$ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
|
405 |
|
|
$100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
|
406 |
|
|
\hline
|
407 |
|
|
\end{tabular}
|
408 |
khahn |
1.2 |
\caption{Trigger Efficiency for the Leading Leg of the (luminosity-average) Double Electron trigger. {\bf FIX! Get the correct numbers in here.} }
|
409 |
|
|
\label{tab:eleTPtrigLeading}
|
410 |
khahn |
1.1 |
\end{center}
|
411 |
|
|
\end{table}
|
412 |
|
|
|
413 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
414 |
|
|
|
415 |
|
|
%figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
|
416 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
417 |
|
|
\begin{table}[!ht]
|
418 |
|
|
\begin{center}
|
419 |
|
|
\begin{tabular}{c|c|c|c|c}
|
420 |
|
|
\hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
|
421 |
|
|
\hline
|
422 |
|
|
$ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
|
423 |
|
|
$ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
|
424 |
|
|
$ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
|
425 |
|
|
$ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
|
426 |
|
|
$ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
|
427 |
|
|
$ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
|
428 |
|
|
$ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
|
429 |
|
|
$100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
|
430 |
|
|
\hline
|
431 |
|
|
\end{tabular}
|
432 |
khahn |
1.2 |
\caption{Trigger Efficiency for the Trailing Leg of the (luminosity-average) Double Electron trigger.{\bf FIX! Get the correct numbers in here.}}
|
433 |
|
|
\label{tab:eleTPtrigTrailing}
|
434 |
khahn |
1.1 |
\end{center}
|
435 |
|
|
\end{table}
|
436 |
|
|
|
437 |
|
|
%KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
|
438 |
|
|
|
439 |
khahn |
1.5 |
\clearpage
|