ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitHzz4l/Documentation/LeptonSelection.tex
(Generate patch)

Comparing UserCode/MitHzz4l/Documentation/LeptonSelection.tex (file contents):
Revision 1.1 by khahn, Sun Nov 6 16:00:05 2011 UTC vs.
Revision 1.4 by khahn, Tue Nov 22 01:57:58 2011 UTC

# Line 1 | Line 1
1   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 < \section{Lepton Selection}\label{section:Leptons}
2 > \section{Lepton Selection}\label{sec:Leptons}
3   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4  
5   %++++++++++++++++++++++++++++++++++++++++++++++++++
# Line 7 | Line 7
7   %++++++++++++++++++++++++++++++++++++++++++++++++++
8  
9   %__________________________________________________
10 < \subsubsection{Offline Selection}
10 > \subsubsection{Offline Muon Selection}\label{sec:muOffline}
11   %__________________________________________________
12 < We select offline muon candidates that satisfy the critria in Tables~\ref{tab:muonID} and~\ref{tab:muonIso}.  The primary difference between these criteria and those of~\cite{baseline} are our inclusion of Tracker muons, which provide us with a high-efficiency low-$p_{T}$ reconstruction path.  We also introduce additional quality requirements intended to reduce non-prompt backgrounds and we impose $\eta/p_{T}$ dependent, per-muon PF isolation requirements.
12 > We select offline muon candidates that satisfy the requirements given in Tables~\ref{tab:muonID} and~\ref{tab:muonIso}.  The main difference between these criteria and those of~\cite{baseline} is our inclusion of Tracker muons, which provide a high-efficiency reconstruction path at low-$p_{T}$.  We also introduce additional quality requirements designed to reduce non-prompt backgrounds and we impose $\eta/p_{T}$ dependent, per-muon PF relative isolation.
13  
14   %-------------------------------------------------
15   \begin{table}[tbh]
# Line 30 | Line 30 | Muon type                      & Tracker
30   \hline
31  
32  
33 < \hline
34 < \multicolumn{2}{}{~\\}                                        \\
33 > \multicolumn{2}{}{~}                                        \\
34   \hline
35   \multicolumn{2}{c}{Tracker Muons}                           \\
36   \hline
37 < Qualtity Bits                  & LastStationTight             \\
37 > Quality Bits                  & LastStationTight             \\
38   \hline
39 < \multicolumn{2}{}{~\\}                                        \\
39 > \multicolumn{2}{}{~}                                        \\
40   \hline
41   \multicolumn{2}{c}{Global Muons}                  \\
42   \hline
# Line 68 | Line 67 | $< 20$        & $> 1.48$      & $ < 0.05
67   \end{table}
68   %-------------------------------------------------
69  
70 < % CMS AN-2011/097 TP
71 < We measure the efficiency of this selection using samples of $Z \rightarrow \mu\mu$ events and the ``Tag \& Probe'' technique~\cite{TP}.  The $\mathcal{L} = 2.1\rm~fb{-1}$ dataset contains a sufficient number of $Z$ events for us to obtain selection efficiencies for muons below $10\rm~GeV$, thus we do not utilize separate samples of low-mass resonances for this region.  We require events containing at least one muon candidate that passes the full set of muon identifiation criteria (the tag) and at least one additional reconstructed Global or Tracker muon candidate (the probe).  The sample is split according to whether the probe passes of fails our selection.  We determine efficiency in MC by simply counting the number of events that pass or fail the selection in bins of $p_{T}$ and $\eta$.  Efficiency is extracted in data by fitting with MC signal shapes and empirical functional hypotheses for the background.  Figures~\ref{fig:muTPhighpt} and~\ref{fig:muTPlowpt} respectively show fits results in the central region for high and low $p_{T}$ bins.  The complete set of fit results are included in Appendix~\ref{app:mufits}.
70 > %
71 > We measure the efficiency of this selection using samples of $Z \rightarrow \mu\mu$ events and the ``Tag \& Probe'' technique~\cite{TP}.  The $\mathcal{L} = 4.7\rm~fb^{-1}$ dataset contains a sufficient number of $Z$ events to obtain selection efficiencies for muons below $10\rm~GeV$ -- we do not utilize separate samples of low-mass resonances for this $p_{T}$ region.  We require events that contain at least one muon candidate passing the full set of muon identification criteria (the tag) and at least one additional reconstructed Global or Tracker muon candidate (the probe).  The sample is split according to whether the probe passes of fails our selection.  We determine efficiency in MC by simply counting the number of events that pass or fail the selection in bins of $p_{T}$ and $\eta$.  Efficiency is extracted in data by fitting with MC signal shapes and empirical function for the background.  Figures~\ref{fig:muTPhighpt} and~\ref{fig:muTPlowpt} respectively show fits results in the central region for high and low $p_{T}$ bins.  
72  
73   %-------------------------------------------------
74   \begin{figure}[htb]
# Line 90 | Line 89 | We measure the efficiency of this select
89   \end{figure}
90   %-------------------------------------------------
91  
92 < We divide the $p_{T}/\eta$ binned data efficiencies with correpsonding values from MC to determine data/MC efficiency scale factors, $f_{ID,Iso}$.  We use these factors to weight selected muons in our MC samples, as discussed in Sections~\ref{sec:} and~\ref{sec:}.  Figure~\ref{fig:muEff} shows $f_{ID,Iso}$ for the central and forward regions as a function of $p_{T}$.  Table~\ref{tab:musf} lists values for $f_{ID,Iso}$ in our $p_{T}/\eta$ bins.
92 > We divide the $p_{T}/\eta$-binned efficiencies from data with corresponding values from MC to determine data/MC efficiency scale factors, $f_{ID,Iso}$.  We use these factors to weight selected muons in our MC samples, as is discussed in Sections~\ref{sec:Signal}.  Figure~\ref{fig:muEff} shows $f_{ID,Iso}$ for the central and forward regions as a function of $p_{T}$.  Table~\ref{tab:musf} lists values for $f_{ID,Iso}$ in our $p_{T}/\eta$ bins.
93  
94   %-------------------------------------------------
95   \begin{figure}[htb]
96   \begin{center}
97   \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
98   \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
99 < \caption{$\gamma_d$ Branching Ratios.}\label{fig:muEff}
99 > \caption{Offline Muon Efficiency Scale Factors.}\label{fig:muEff}
100   \end{center}
101   \end{figure}
102   %-------------------------------------------------
# Line 118 | Line 117 | $ 50 < p_T < 100$ & $0.9986 \pm 0.0005$
117   $100 < p_T < 7000$ & $0.9978 \pm 0.0027$ & $1.0049 \pm 0.0083$  \\
118   \hline
119   \end{tabular}
120 < \caption{Write some stuff}
122 < \label{tab:mytable}
120 > \caption{Write some stuff}\label{tab:musf}
121   \end{center}
122   \end{table}
123   %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
124  
125 < Identification and isolation efficiencies for non-prompt and instrumental muon backgrounds are also evaluated with data.  We defer further discussion of this to Section~{sec:}
125 > Identification and isolation efficiencies for non-prompt and instrumental muon backgrounds are also evaluated with data.  We defer discussion of this to Section~\ref{sec:BG}
126  
127   %csidetermine a background efficiency ({\it i.e} a ``fakerate'' in the terminology of Section~\ref{sec:}) with respect to objects passing the loose subset of muon indentification criteria listed in Table~\ref{tab:muFO}.  We calculate the fakerate using data collected with a single muon trigger.  We require a jet of at least $30~\rm{Gev}$ with $\Delta R(\eta,\phi) > 1.5$ from the muon candidate in order to enrich this sample in background.  Contributions from W, Z and low-mass resonances are reduced by additionally requiring events that contain only one muon denominator object above $10\rm~GeV$, $MET < 20 ~\rm{GeV}$ and $m_{T} < 30~\rm{GeV}$.
128  
129   %__________________________________________________
130 < \subsubsection{Online Selection}\label{muOnline}
130 > \subsubsection{Online Muon Selection}\label{sec:muOnline}
131   %__________________________________________________
132 < We measure $p_{T}/\eta$ binned per-leg efficiencies for the \verb|HLT_DoubleMu_7| and \verb|HLT_Mu_13_8| triggers also using Tag \& Probe.  The efficiencies are calculated with respect to the muon candidates that pass the offline requirements described above.  We do not use the emulation of these triggers in MC and instead correct the simulation with the absolute efficiency measured in data.  Backgrounds after offline selection are so small that we can determine trigger efficiency by simply counting.  Tables~\ref{tab:trigEffMu7}-\ref{tab:trigEffMu13_8_trailing} provides the per-leg efficiencies we determine in our various $p_{T}/eta$ bins.
132 > We use Tag \& Probe to also measure $p_{T}/\eta$-binned per-leg efficiencies for the \verb|HLT_DoubleMu_7| and \verb|HLT_Mu_13_8| triggers.  The trigger efficiencies are calculated with respect to muon candidates that pass the offline requirements described in Section~\ref{sec:muOnline}.  We do not use the emulation of these triggers in MC and instead correct the simulation with the absolute efficiencies measured in data.  Backgrounds after offline selection are small, so trigger efficiency is determined by simply counting events.  Tables~\ref{tab:trigEffMu7}-\ref{tab:trigEffMu13_8_trailing} provide the per-leg efficiencies for our various $p_{T}/eta$ bins.
133  
134   % figs/mueff/Run2011A_HLT_DoubleMu7/default/extra/dat_eff_table.tex
135   %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
# Line 150 | Line 148 | $ 50 < p_T < 100$ & $0.9703 \pm 0.0028$
148   $100 < p_T < 7000$ & $0.9801 \pm 0.0189$ & $0.9405 \pm 0.0383$ & $0.9490 \pm 0.0330$ & $1.0000 \pm 0.2313$  \\
149   \hline
150   \end{tabular}
151 < \caption{Write some stuff}
154 < \label{tab:mytable}
151 > \caption{Write some stuff}\label{tab:trigEffMu7}
152   \end{center}
153   \end{table}
154  
# Line 175 | Line 172 | $100 < p_T < 7000$ & $0.9655 \pm 0.0055$
172   \hline
173   \end{tabular}
174   \caption{Write some stuff}
175 < \label{tab:mytable}
175 > \label{tab:trigEffMu13_8_leading}
176   \end{center}
177   \end{table}
178  
# Line 199 | Line 196 | $100 < p_T < 7000$ & $0.9662 \pm 0.0054$
196   \hline
197   \end{tabular}
198   \caption{Write some stuff}
199 < \label{tab:mytable}
199 > \label{tab:trigEffMu13_8_trailing}
200   \end{center}
201   \end{table}
202  
# Line 212 | Line 209 | $100 < p_T < 7000$ & $0.9662 \pm 0.0054$
209   %__________________________________________________
210   \subsection{Offline Selection}
211   %__________________________________________________
212 < We select electron candidates for the analysis using a multivariate (MV) technique.  Our method was developed in parallel with an MV-based electron ID scheme for the WW analysis~\cite{ref:si}.  The two methods are equivalent, modulo small differences in implementation that address the relative severity of ``fake'' electron backgrounds in the respectve analyses.
212 > We select electron candidates for the analysis using a multivariate (MV) technique.  Our method was developed in concert with an MV-based electron ID scheme for the WW analysis~\cite{si}.  The two methods are equivalent, modulo small differences in implementation that address the relative severity of ``fake'' electron backgrounds in the respective analyses.
213  
214 < We utilize a TMVA Boosted Decision Tree (BDT) for MV identification.  The BDT is trained with separate samples of candidate objects that are enriched in either fake or real electrons.  Candidates are defined as reconstructed electrons that pass the minimal set of selection criteria given in Table~\ref{tab:eleFO}.  We construct a signal training sample from pairs of candidates in the DoubleElectron dataset with $|m_{\ell\ell}| < 15~\rm GeV$.  Canidates in the signal training sample are required to have $Iso_{comb} < 0.1$ to reduce combinatoric background.  Candidates for the background training sample are selected from events that pass a single-electron trigger.  As with muons, we require an $\Delta R(\eta,\phi)$ $p_{T}>35~\rm GeV$ jet and reject events with $\rm MET > 20~GeV$, $\rm m_{T} > 30~GeV$ or containing more than one canididate.  In addition, we veto conversions to suppress real electron contamination in the background training sample.
214 > We utilize a TMVA Boosted Decision Tree (BDT) for MV identification.  The BDT is trained with separate samples of candidate objects that are enriched in either fake or real electrons.  Candidates are defined as reconstructed electrons that pass the minimal set of selection criteria listed in Table~\ref{tab:eleFO}.  We construct a signal training sample from pairs of candidates in the DoubleElectron dataset with $|m_{\ell\ell} - M_{Z}| < 15~\rm GeV$.  Candidates in the background training sample are selected from events that pass a single-electron trigger.  We require a $\Delta R(\eta,\phi) >1~\rm$ jet and reject events with $\rm MET > 20~GeV$, or containing more than one candidate.  We also veto conversions to suppress real electron contamination.
215  
216   %-------------------------------------------------
217   \begin{table}[tbh]
218   \begin{center}
219 < \begin{tabular}{c|c|c}
219 > \begin{tabular}{c|c}
220 > {\bf Quantity} & {\bf Requirement}\\
221   \hline
222 < \multicolumn{3}{c}{Relative PF Isolation}        \\
223 < \hline
224 < $\rm p_{T}$   & $|\eta|$      &    $\rm pfIso03/p_{T}$ \\
225 < \hline
226 < $> 20$        & $< 1.48$      & $ < 0.13 $             \\
229 < $> 20$        & $> 1.48$      & $ < 0.09 $             \\
230 < $< 20$        & $< 1.48$      & $ < 0.06 $             \\
231 < $< 20$        & $> 1.48$      & $ < 0.05 $             \\
222 > $|dz|$      &   $< 0.1\rm~cm$          \\
223 > $H/E$       &    $< 0.12(0.1) EB(EE)$   \\
224 > $iso_{trk}$ & $<0.3$                    \\
225 > $iso_{em}$  & $<0.3$                    \\
226 > $iso_{had}$ & $<0.3$                    \\
227   \hline
228   \end{tabular}
229 < \caption{Electron Candidate Defintion.\label{tab:eleFO}}
229 > \caption{Electron Candidate Definition.\label{tab:eleFO}}
230   \end{center}
231   \end{table}
232   %-------------------------------------------------
# Line 239 | Line 234 | $< 20$        & $> 1.48$      & $ < 0.05
234   MV discrimination is performed using the following variables :
235  
236   \begin{itemize}
237 < \item a
238 < \item b
239 < \item c
237 > \item $\sigma_{i\eta i\eta}$
238 > \item $\sigma_{i\phi i\phi}$
239 > \item $\Delta\eta_{in}$
240 > \item $\Delta\phi_{in}$
241 > \item fBrem
242 > \item nBrem
243 > \item $E/P$
244 > \item D0
245 > \item $E_{seed}/P_{out}$
246 > \item $E_{seed}/P_{in}$
247 > \item $1/E - 1/P$
248   \end{itemize}
249  
250 < Cuts on these guys?  Show correlation plot to motivate BDT?
250 > {\bf Cuts on these guys?  Show correlation plot to motivate BDT?}
251  
252 < We train and validate the BDT using statistically independet subsets of events from the trainging samples described above.  Training and testing is performed separately for six $\eta/p_{T}$ bins.  A cut on the resulting BDT discrminant translates to a specific combination of signal and background efficiency.  The locus of signal/background efficiences defines the discrimination performance ({\it i.e:} ROC) curves shown in Figure~\ref{fig:ROC}.  
252 > We train and validate the BDT using statistically independent subsets of events from the samples described above.  Training and testing is performed separately for six $\eta/p_{T}$ bins.  A cut on the resulting BDT discriminant translates to a specific combination of signal and background efficiency.  The locus of signal/background efficiencies yields the performance ({\it i.e:} ROC) curves shown in Figure~\ref{fig:ROC}.  
253  
254   %-------------------------------------------------
255   \begin{figure}[tbp]
256   \begin{center}
257 < \includegraphics[width=0.4\linewidth]{figs/br.png}
258 < \includegraphics[width=0.4\linewidth]{figs/br.png}
259 < \caption{$\gamma_d$ Branching Ratios.\label{fig:BRs} }
257 > \includegraphics[width=0.4\linewidth]{figs/roc-s0_pt1.png}
258 > \includegraphics[width=0.4\linewidth]{figs/roc-s2_pt0.png}
259 > \caption{MVA Electron ID Performance.  \label{fig:ROC} }
260   \end{center}
261   \end{figure}
262   %-------------------------------------------------
263  
264 < The plots in Figure~\ref{fig:ROC} include efficiency points corresponding to the ``Cuts in Categories'' (CIC) loose, medium and tight working points defined in~\cite{ref:CIC}.  BDT and CIC performances are comparable in the high $p_{T}$ bins, while the BDT clearly outperforms CIC at low $p_{T}$.  We define a set of loose, medium and tight BDT working points for the analysis by stipulating a background effiency equivalent to that of the corresponding CIC point.  BDT and CIC signal efficiences for the various working points are compared in Table~\ref{tab:WPs}.
264 > The plots in Figure~\ref{fig:ROC} include efficiency points corresponding to the ``Cuts in Categories'' (CIC) loose, medium and tight working points defined in~\cite{CIC}.  BDT and CIC performances are comparable in the high $p_{T}$ bins, whereas the BDT outperforms CIC at low $p_{T}$.  We define a set of loose, medium and tight BDT working points for this analysis by stipulating background efficiencies equivalent to those of the corresponding CIC working points.  
265  
266 < %-------------------------------------------------
267 < \begin{table}[tbh]
268 < \begin{center}
269 < \begin{tabular}{|c|c|c|}
270 < \hline
271 < \multicolumn{3}{|c|}{Relative PF Isolation}        \\
272 < \hline
273 < $\rm p_{T}$   & $|\eta|$      &    $\rm pfIso03/p_{T}$ \\
274 < \hline
275 < $> 20$        & $< 1.48$      & $ < 0.13 $             \\
276 < $> 20$        & $> 1.48$      & $ < 0.09 $             \\
277 < $< 20$        & $< 1.48$      & $ < 0.06 $             \\
278 < $< 20$        & $> 1.48$      & $ < 0.05 $             \\
279 < \hline
280 < \end{tabular}
281 < \caption{Working Points and Efficiencies.\label{tab:WPs}}
282 < \end{center}
283 < \end{table}
281 < %-------------------------------------------------
266 > %% BDT and CIC signal efficiencies for the various working points are compared in Table~\ref{tab:WPs}.
267 >
268 > %% %-------------------------------------------------
269 > %% \begin{table}[tbh]
270 > %% \begin{center}
271 > %% \begin{tabular}{c|c|c}
272 > %% $\epsilon_{B}$   & $\epsilon_{S}(CIC)$      &    $\epsilon_{S}(BDT)$ \\
273 > %% \hline
274 > %% $X$        & $Y$      & $Z$             \\
275 > %% $X$        & $Y$      & $Z$             \\
276 > %% $X$        & $Y$      & $Z$             \\
277 > %% $X$        & $Y$      & $Z$             \\
278 > %% \hline
279 > %% \end{tabular}
280 > %% \caption{Working Points and Efficiencies.\label{tab:WPs}}
281 > %% \end{center}
282 > %% \end{table}
283 > %% %-------------------------------------------------
284  
285 < The efficiencies shown above are determined with respect to the candidate definition in Table~\ref{tab:}.  While these efficiencies are useful for performance comparisons, efficiencies for the analysis must be taken with respect to reconstructed GSF electron electrons.  As with muons, we calculate electron identification/isolation efficiencies for the anlaysis using Tag \& Probe.  Figures~\ref{fig:} and ~\ref{fig:} shows fit results for our tight MV selection in the central region.  The complete set of offline selection fits from Tag \& Probe are included in Appendix~\ref{app:}.  
285 > The efficiencies shown in Figure~\ref{fig:ROC} are determined with respect to the candidate definition in Table~\ref{tab:eleFO}.  While these values are useful for performance comparison, efficiencies for the analysis must be taken with respect to reconstructed GSF electrons.  As with muons, we calculate electron identification/isolation efficiencies for the analysis using Tag \& Probe.  Figures~\ref{fig:eleTPmediumhighpt} and ~\ref{fig:eleTPmediumlowpt} (~\ref{fig:eleTPloosehighpt} and ~\ref{fig:eleTPlooselowpt}) show fit results for our medium (loose) MV selection in the central region.  %The complete set of offline selection fits from Tag \& Probe are included in Appendix~\ref{app:}.  
286  
287   %-------------------------------------------------
288   \begin{figure}[htb]
289   \begin{center}
290   \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_6.png}
291   \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_6.png}
292 < \caption{Tag \& Probe fit results for tight offline selection for high-$p_{T}$ electrons in the barrel.\label{fig:ekeTPhighpt} }
292 > \caption{Tag \& Probe fit results for medium offline selection for high-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
293 > \label{fig:eleTPmediumhighpt}
294   \end{center}
295   \end{figure}
296   %-------------------------------------------------
# Line 296 | Line 299 | The efficiencies shown above are determi
299   \begin{center}
300   \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_0.png}
301   \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_0.png}
302 < \caption{Tag \& Probe fit results for tight offline selection for low-$p_{T}$ electrons in the barrel.\label{fig:eleTPlowpt} }
302 > \caption{Tag \& Probe fit results for medium offline selection for low-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
303 > \label{fig:eleTPmediumlowpt}
304   \end{center}
305   \end{figure}
306   %-------------------------------------------------
307  
308 < We divide the binned data efficiences with results from MC to obtain offline efficiency scale factors, $f_{ID,Iso}$ in Tables~\ref{tab:eleSFtight}-~\ref{tab:eleSFloose}.  Figures~\ref{fig:eleSFtight}-~\ref{fig:eleSFloose} shows plots of the $f_{ID,Iso}$ as a function of $p_{T}$ for the central and forward regions.
309 <
306 < %figs/eleeff/Run2011A_EleWPEffTP-tight/default/extra/sf_table.tex
307 < %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
308 < \begin{table}[!ht]
308 > %-------------------------------------------------
309 > \begin{figure}[htb]
310   \begin{center}
311 < \begin{tabular}{c|c|c}
312 < \hline & $0 < |\eta| < 1.5$ & $1.5 < |\eta| < 2.5$  \\
313 < \hline
314 < $  7 < p_T <  10$ & $1.3279 \pm 0.1095$ & $1.0983 \pm 0.0495$  \\
314 < $ 10 < p_T <  15$ & $0.5121 \pm 0.0067$ & $1.8054 \pm 0.0101$  \\
315 < $ 15 < p_T <  20$ & $1.0371 \pm 0.0090$ & $1.0791 \pm 0.0110$  \\
316 < $ 20 < p_T <  30$ & $0.9782 \pm 0.0013$ & $1.0107 \pm 0.0022$  \\
317 < $ 30 < p_T <  40$ & $0.9973 \pm 0.0002$ & $1.0106 \pm 0.0047$  \\
318 < $ 40 < p_T <  50$ & $0.9947 \pm 0.0002$ & $1.0020 \pm 0.0027$  \\
319 < $ 50 < p_T < 100$ & $0.9841 \pm 0.0005$ & $1.0003 \pm 0.0007$  \\
320 < $100 < p_T < 7000$ & $1.0040 \pm 0.0041$ & $1.0114 \pm 0.0297$  \\
321 < \hline
322 < \end{tabular}
323 < \caption{Write some stuff}
324 < \label{tab:eleSFtight}
311 > \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_6.png}
312 > \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_6.png}
313 > \caption{Tag \& Probe fit results for loose offline selection for high-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
314 > \label{fig:eleTPloosehighpt}
315   \end{center}
316 < \end{table}
317 <
328 < %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
329 <
316 > \end{figure}
317 > %-------------------------------------------------
318   %-------------------------------------------------
319   \begin{figure}[htb]
320   \begin{center}
321 < \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
322 < \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
323 < \caption{SF for ele tight.  Cureently muon plots ...}\label{fig:eleSFtight}
321 > \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_0.png}
322 > \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_0.png}
323 > \caption{Tag \& Probe fit results for loose offline selection for low-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
324 > \label{fig:eleTPlooselowpt}
325   \end{center}
326   \end{figure}
327   %-------------------------------------------------
328  
329 + We divide the binned data efficiencies with corresponding values from MC to obtain offline efficiency scale factors, $f_{ID,Iso}$.  Tables~\ref{tab:eleSFmedium}-~\ref{tab:eleSFloose} list these factors for the medium and loose offline selections.  Figures~\ref{fig:eleSFmedium} and ~\ref{fig:eleSFloose} plot the $f_{ID,Iso}$ as functions of $p_{T}$ for the central and forward regions.
330 +
331 +
332   %eleeff/Run2011A_EleWPEffTP-medium/default/extra/sf_table.tex
333   %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
334   \begin{table}[!ht]
# Line 354 | Line 346 | $ 50 < p_T < 100$ & $0.9868 \pm 0.0009$
346   $100 < p_T < 7000$ & $0.9828 \pm 0.0028$ & $1.0144 \pm 0.0024$  \\
347   \hline
348   \end{tabular}
349 < \caption{Write some stuff}
350 < \label{tab:mytable}
349 > \caption{MVA Medium ID scale factors.}
350 > \label{tab:eleSFmedium}
351   \end{center}
352   \end{table}
353  
# Line 366 | Line 358 | $100 < p_T < 7000$ & $0.9828 \pm 0.0028$
358   \begin{center}
359   \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
360   \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
361 < \caption{SF for ele medium.  Cureently muon plots ...}\label{fig:eleSFmedium}
361 > \caption{SF for ele medium.  {\bf FIX! Currently muon plots ...}}
362 > \label{fig:eleSFmedium}
363   \end{center}
364   \end{figure}
365   %-------------------------------------------------
# Line 388 | Line 381 | $ 50 < p_T < 100$ & $0.9996 \pm 0.0006$
381   $100 < p_T < 7000$ & $0.9946 \pm 0.0045$ & $1.0134 \pm 0.0067$  \\
382   \hline
383   \end{tabular}
384 < \caption{Write some stuff}
385 < \label{tab:mytable}
384 > \caption{MVA Loose ID Efficiency Scale Factors.}
385 > \label{tab:eleSFloose}
386   \end{center}
387   \end{table}
388  
# Line 400 | Line 393 | $100 < p_T < 7000$ & $0.9946 \pm 0.0045$
393   \begin{center}
394   \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
395   \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
396 < \caption{SF for ele loose.  Cureently muon plots ...}\label{fig:eleSFloose}
396 > \caption{SF for ele loose.  {\bf FIX! Currently muon plots ...}}
397 > \label{fig:eleSFloose}
398   \end{center}
399   \end{figure}
400   %-------------------------------------------------
401  
402 < Identification and isolation efficiencies for non-prompt and instrumental electron backgrounds are also evaluated with data.  We defer further discussion of this to Section~{sec:}
402 > Identification and isolation efficiencies for non-prompt and instrumental electron backgrounds are also evaluated with data.  We defer discussion of this to Section~\ref{sec:BG}.
403  
404   %__________________________________________________
405   \subsubsection{Online Selection}\label{sec:eleOnline}
406   %__________________________________________________
407 < Per-leg efficiencies for the various electron trigger efficiencies are calculated in the same manner as was described in Section~\ref{sec:muOnline}.  Table~\ref{tab:eleTPtrig} lists the luminosity-averaged efficiencies defined with respect to selected offline electrons in bins of $p_{T}$ and $\eta$.
407 > Per-leg efficiencies for the various electron triggers are calculated in the same manner as was described in Section~\ref{sec:muOnline}.  Table~\ref{tab:eleTPtrigLeading} lists the luminosity-averaged efficiencies for leading and trailing trigger legs defined with respect to selected offline electrons.
408  
409   %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
410   %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
# Line 429 | Line 423 | $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$
423   $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$  \\
424   \hline
425   \end{tabular}
426 < \caption{Write some stuff}
427 < \label{tab:mytable}
426 > \caption{Trigger Efficiency for the Leading Leg of the (luminosity-average) Double Electron trigger. {\bf FIX! Get the correct numbers in here.} }
427 > \label{tab:eleTPtrigLeading}
428   \end{center}
429   \end{table}
430  
# Line 453 | Line 447 | $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$
447   $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$  \\
448   \hline
449   \end{tabular}
450 < \caption{Write some stuff}
451 < \label{tab:mytable}
450 > \caption{Trigger Efficiency for the Trailing Leg of the (luminosity-average) Double Electron trigger.{\bf FIX! Get the correct numbers in here.}}
451 > \label{tab:eleTPtrigTrailing}
452   \end{center}
453   \end{table}
454  
455   %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
456  
463
464 %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
465 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
466 \begin{table}[!ht]
467 \begin{center}
468 \begin{tabular}{c|c|c|c|c}
469 \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$  \\
470 \hline
471 $  5 < p_T <  10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$  \\
472 $ 10 < p_T <  15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$  \\
473 $ 15 < p_T <  20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$  \\
474 $ 20 < p_T <  30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$  \\
475 $ 30 < p_T <  40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$  \\
476 $ 40 < p_T <  50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$  \\
477 $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$  \\
478 $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$  \\
479 \hline
480 \end{tabular}
481 \caption{Write some stuff}
482 \label{tab:mytable}
483 \end{center}
484 \end{table}
485
486 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines