ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitHzz4l/Documentation/LeptonSelection.tex
Revision: 1.6
Committed: Fri Nov 25 20:20:15 2011 UTC (13 years, 5 months ago) by dkralph
Content type: application/x-tex
Branch: MAIN
CVS Tags: compiled, synced_FSR_2, synced_FSR, synched2, synched, AN490, HEAD
Changes since 1.5: +15 -2 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 \section{Lepton Selection}\label{sec:Leptons}
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4
5 %++++++++++++++++++++++++++++++++++++++++++++++++++
6 \subsection{Muons}
7 %++++++++++++++++++++++++++++++++++++++++++++++++++
8
9 %__________________________________________________
10 \subsubsection{Offline Muon Selection}\label{sec:muOffline}
11 %__________________________________________________
12 We select offline muon candidates that satisfy the requirements given in Tables~\ref{tab:muonID} and~\ref{tab:muonIso}. The main difference between these criteria and those of~\cite{baseline} is our inclusion of Tracker muons, which provide a high-efficiency reconstruction path at low-$p_{T}$. We also introduce quality requirements to reduce non-prompt backgrounds and we impose $\eta/p_{T}$ dependent, per-muon PF relative isolation.
13
14 %-------------------------------------------------
15 \begin{table}[tbh]
16 \begin{center}
17 \begin{tabular}{c|c}
18 \hline
19 \multicolumn{2}{c}{General Muon Requirements} \\
20 \hline
21 $p_{T}$ & $< 5~\rm{GeV}$ \\
22 $|\eta|$ & $< 2.4$ \\
23 Tracker hits & $\ge 11$ \\
24 Pixel hits & $> 0$ \\
25 $\sigma(p_{T})/p_{T}$ & $\le 0.1$ \\
26 dz & $< 0.1~\rm{cm}$ \\
27 $\rm |d_{0}|$ & $< 0.02~\rm{cm}$ \\
28 Muon type & Tracker or Global \\
29 \hline
30
31
32 \multicolumn{2}{}{~} \\
33 \hline
34 \multicolumn{2}{c}{Tracker Muons} \\
35 \hline
36 Quality Bits & LastStationTight \\
37 \hline
38 \multicolumn{2}{}{~} \\
39 \hline
40 \multicolumn{2}{c}{Global Muons} \\
41 \hline
42 $\chi^{2}_{fit}$ & $< 10$ \\
43 Valid Hits & $\ge 1$ \\
44 \hline
45 \end{tabular}
46 \caption{Muon Identification Criteria.}\label{tab:muonID}
47 \end{center}
48 \end{table}
49 %-------------------------------------------------
50
51 %-------------------------------------------------
52 \begin{table}[htb]
53 \begin{center}
54 \begin{tabular}{c|c|c}
55 \hline
56 $\rm p_{T}$ & $|\eta|$ & $\rm pfIso03/p_{T}$ \\
57 \hline
58 $> 20$ & $< 1.48$ & $ < 0.13 $ \\
59 $> 20$ & $> 1.48$ & $ < 0.09 $ \\
60 $< 20$ & $< 1.48$ & $ < 0.06 $ \\
61 $< 20$ & $> 1.48$ & $ < 0.05 $ \\
62 \hline
63 \end{tabular}
64 \caption{Muon pfIsolation Criteria.}\label{tab:muonIso}
65 \end{center}
66 \end{table}
67 %-------------------------------------------------
68
69 We measure the efficiency of this selection using samples of $Z \rightarrow \mu\mu$ events and the ``Tag \& Probe'' technique~\cite{TP}. The $\mathcal{L} = 4.7\rm~fb^{-1}$ dataset contains a sufficient number of $Z$ events for us to obtain selection efficiencies for $p_{T} < 10\rm~GeV$ muons, thus we do not utilize separate samples of low-mass resonances for this $p_{T}$ region. We require events that contain at least one muon candidate (the tag) that satisfies the full set of muon identification criteria and passes a singleMuon trigger. We then require one additional reconstructed Global or Tracker muon candidate to serve as the probe. We determine efficiency in MC by simply counting the number of probes that pass or fail selection in bins of $p_{T}$ and $\eta$. Binned efficiencies are etermined in data from simultaneous shape fits to the $m(\mu_{tag}\mu_{probe})$ distributions of events in the pass and fail categories. We use MC signal shape templates and an empirical function that describes background when fitting data. Figures~\ref{fig:muTPhighpt} and~\ref{fig:muTPlowpt} show fit results for the high and low $p_{T}$ bins for muons in the central region.
70
71 %-------------------------------------------------
72 \begin{figure}[htb]
73 \begin{center}
74 \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/passetapt_6.png}
75 \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/failetapt_6.png}
76 \caption{Tag \& Probe fit results for high-$p_{T}$ offline muon selection in the barrel.\label{fig:muTPhighpt} }
77 \end{center}
78 \end{figure}
79 %-------------------------------------------------
80 %-------------------------------------------------
81 \begin{figure}[htb]
82 \begin{center}
83 \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/passetapt_0.png}
84 \includegraphics[width=0.5\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/plots/failetapt_0.png}
85 \caption{Tag \& Probe fit results for low-$p_{T}$ offline muon selection in the barrel.\label{fig:muTPlowpt} }
86 \end{center}
87 \end{figure}
88 %-------------------------------------------------
89
90 We divide the $p_{T}/\eta$-binned efficiencies from data with corresponding values from MC to determine data/MC efficiency scale factors, $f_{ID,Iso}$. We use these factors to weight selected muons in our MC samples, as discussed in Sections~\ref{sec:Signal}. Figure~\ref{fig:muEff} shows $f_{ID,Iso}$ for the central and forward regions as a function of $p_{T}$. Values for $f_{ID,Iso}$ in each of our $p_{T}/\eta$ bins are given in Table~\ref{tab:musf}.
91
92 %-------------------------------------------------
93 \begin{figure}[htb]
94 \begin{center}
95 \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
96 \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
97 \caption{Offline Muon Efficiency Scale Factors.}\label{fig:muEff}
98 \end{center}
99 \end{figure}
100 %-------------------------------------------------
101
102 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
103 \begin{table}[!ht]
104 \begin{center}
105 \begin{tabular}{c|c|c}
106 \hline & $0 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.4$ \\
107 \hline
108 $ 5 < p_T < 10$ & $0.9571 \pm 0.0378$ & $0.9860 \pm 0.0044$ \\
109 $ 10 < p_T < 15$ & $0.9644 \pm 0.0116$ & $0.9888 \pm 0.0058$ \\
110 $ 15 < p_T < 20$ & $0.9870 \pm 0.0057$ & $0.9899 \pm 0.0047$ \\
111 $ 20 < p_T < 30$ & $0.9950 \pm 0.0013$ & $0.9984 \pm 0.0009$ \\
112 $ 30 < p_T < 40$ & $0.9993 \pm 0.0004$ & $0.9988 \pm 0.0003$ \\
113 $ 40 < p_T < 50$ & $0.9989 \pm 0.0002$ & $0.9976 \pm 0.0004$ \\
114 $ 50 < p_T < 100$ & $0.9986 \pm 0.0005$ & $0.9965 \pm 0.0025$ \\
115 $100 < p_T < 7000$ & $0.9978 \pm 0.0027$ & $1.0049 \pm 0.0083$ \\
116 \hline
117 \end{tabular}
118 \caption{Write some stuff}\label{tab:musf}
119 \end{center}
120 \end{table}
121 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
122
123 Identification and isolation efficiencies for non-prompt and instrumental muon backgrounds are also evaluated with data. We defer discussion of this to Section~\ref{sec:BG}
124
125 %csidetermine a background efficiency ({\it i.e} a ``fakerate'' in the terminology of Section~\ref{sec:}) with respect to objects passing the loose subset of muon indentification criteria listed in Table~\ref{tab:muFO}. We calculate the fakerate using data collected with a single muon trigger. We require a jet of at least $30~\rm{Gev}$ with $\Delta R(\eta,\phi) > 1.5$ from the muon candidate in order to enrich this sample in background. Contributions from W, Z and low-mass resonances are reduced by additionally requiring events that contain only one muon denominator object above $10\rm~GeV$, $MET < 20 ~\rm{GeV}$ and $m_{T} < 30~\rm{GeV}$.
126
127 %__________________________________________________
128 \subsubsection{Online Muon Selection}\label{sec:muOnline}
129 %__________________________________________________
130 Tag \& Probe is also used to measure $p_{T}/\eta$-binned per-leg efficiencies for the \verb|HLT_DoubleMu_7| and \verb|HLT_Mu_13_8| triggers. We calculated trigger efficiencies with respect to muon candidates that pass the offline requirements described in Section~\ref{sec:muOnline}. We do not use the emulation of these triggers in MC and instead correct the simulation with the absolute efficiencies measured in data. Backgrounds after offline selection are small, so trigger efficiency is determined by simply counting events. Tables~\ref{tab:trigEffMu7}-\ref{tab:trigEffMu13_8_trailing} provide the per-leg efficiencies for our various $p_{T}/eta$ bins.
131
132 % figs/mueff/Run2011A_HLT_DoubleMu7/default/extra/dat_eff_table.tex
133 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
134 \begin{table}[!ht]
135 \begin{center}
136 \begin{tabular}{c|c|c|c|c}
137 \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
138 \hline
139 $ 5 < p_T < 10$ & $0.7778 \pm 0.1411$ & $0.7812 \pm 0.0978$ & $0.6391 \pm 0.0407$ & $0.5696 \pm 0.0626$ \\
140 $ 10 < p_T < 15$ & $0.9581 \pm 0.0218$ & $0.9172 \pm 0.0282$ & $0.9281 \pm 0.0147$ & $0.8750 \pm 0.0364$ \\
141 $ 15 < p_T < 20$ & $0.9732 \pm 0.0084$ & $0.9613 \pm 0.0130$ & $0.9583 \pm 0.0081$ & $0.9061 \pm 0.0209$ \\
142 $ 20 < p_T < 30$ & $0.9685 \pm 0.0028$ & $0.9381 \pm 0.0057$ & $0.9599 \pm 0.0033$ & $0.9274 \pm 0.0080$ \\
143 $ 30 < p_T < 40$ & $0.9625 \pm 0.0019$ & $0.9321 \pm 0.0039$ & $0.9589 \pm 0.0023$ & $0.9195 \pm 0.0064$ \\
144 $ 40 < p_T < 50$ & $0.9713 \pm 0.0016$ & $0.9401 \pm 0.0033$ & $0.9594 \pm 0.0021$ & $0.9007 \pm 0.0075$ \\
145 $ 50 < p_T < 100$ & $0.9703 \pm 0.0028$ & $0.9411 \pm 0.0060$ & $0.9576 \pm 0.0038$ & $0.9057 \pm 0.0122$ \\
146 $100 < p_T < 7000$ & $0.9801 \pm 0.0189$ & $0.9405 \pm 0.0383$ & $0.9490 \pm 0.0330$ & $1.0000 \pm 0.2313$ \\
147 \hline
148 \end{tabular}
149 \caption{Write some stuff}\label{tab:trigEffMu7}
150 \end{center}
151 \end{table}
152
153 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
154
155 %figs/mueff/Run2011A_HLT_Mu13_Mu8_leading/default/extra/dat_eff_table.tex
156 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
157 \begin{table}[!ht]
158 \begin{center}
159 \begin{tabular}{c|c|c|c|c}
160 \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
161 \hline
162 $ 5 < p_T < 10$ & $0.0000 \pm 0.0081$ & $0.0000 \pm 0.0062$ & $0.0000 \pm 0.0013$ & $0.0070 \pm 0.0055$ \\
163 $ 10 < p_T < 15$ & $0.5566 \pm 0.0135$ & $0.5157 \pm 0.0137$ & $0.4765 \pm 0.0083$ & $0.4481 \pm 0.0144$ \\
164 $ 15 < p_T < 20$ & $0.9691 \pm 0.0025$ & $0.9553 \pm 0.0037$ & $0.9443 \pm 0.0027$ & $0.8810 \pm 0.0067$ \\
165 $ 20 < p_T < 30$ & $0.9664 \pm 0.0009$ & $0.9552 \pm 0.0015$ & $0.9508 \pm 0.0011$ & $0.8853 \pm 0.0030$ \\
166 $ 30 < p_T < 40$ & $0.9684 \pm 0.0005$ & $0.9541 \pm 0.0010$ & $0.9518 \pm 0.0008$ & $0.8859 \pm 0.0023$ \\
167 $ 40 < p_T < 50$ & $0.9685 \pm 0.0005$ & $0.9558 \pm 0.0009$ & $0.9524 \pm 0.0007$ & $0.8905 \pm 0.0024$ \\
168 $ 50 < p_T < 100$ & $0.9688 \pm 0.0009$ & $0.9545 \pm 0.0016$ & $0.9503 \pm 0.0012$ & $0.8824 \pm 0.0043$ \\
169 $100 < p_T < 7000$ & $0.9655 \pm 0.0055$ & $0.9500 \pm 0.0098$ & $0.9433 \pm 0.0083$ & $0.9155 \pm 0.0471$ \\
170 \hline
171 \end{tabular}
172 \caption{Write some stuff}
173 \label{tab:trigEffMu13_8_leading}
174 \end{center}
175 \end{table}
176
177 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
178
179 %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
180 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
181 \begin{table}[!ht]
182 \begin{center}
183 \begin{tabular}{c|c|c|c|c}
184 \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
185 \hline
186 $ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
187 $ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
188 $ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
189 $ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
190 $ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
191 $ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
192 $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
193 $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
194 \hline
195 \end{tabular}
196 \caption{Write some stuff}
197 \label{tab:trigEffMu13_8_trailing}
198 \end{center}
199 \end{table}
200
201 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
202
203
204 %++++++++++++++++++++++++++++++++++++++++++++++++++
205 \subsection{Electrons}
206 %++++++++++++++++++++++++++++++++++++++++++++++++++
207 %__________________________________________________
208 \subsection{Offline Selection}
209 %__________________________________________________
210 We select electron candidates for the analysis using a multivariate (MV) technique. Our method was developed together with an MV-based electron ID scheme for the WW analysis~\cite{si}. The two methods are equivalent, modulo small differences in implementation that address the relative severity of ``fake'' electron backgrounds in the respective analyses.
211
212 We utilize a TMVA Boosted Decision Tree (BDT) for MV identification. The BDT is trained on separate samples of candidate objects that are enriched in either fake or real electrons. Candidates are defined as reconstructed electrons that pass the minimal set of selection criteria listed in Table~\ref{tab:eleFO}. We construct a signal training sample from pairs of candidates in the DoubleElectron dataset with $|m_{\ell\ell} - M_{Z}| < 15~\rm GeV$. Candidates in the background training sample are selected from events that pass a single-electron trigger. We require a $\Delta R(\eta,\phi) >1~\rm$ jet and reject events with $\rm MET > 20~GeV$, or containing more than one electron candidate. Conversion candidates are vetoed to further suppress real electron contamination.
213
214 %-------------------------------------------------
215 \begin{table}[tbh]
216 \begin{center}
217 \begin{tabular}{c|c}
218 \hline
219 {\bf Quantity} & {\bf Requirement}\\
220 \hline
221 $|dz|$ & $< 0.1\rm~cm$ \\
222 $H/E$ & $< 0.12(0.1) EB(EE)$ \\
223 $iso_{trk}$ & $<0.3$ \\
224 $iso_{em}$ & $<0.3$ \\
225 $iso_{had}$ & $<0.3$ \\
226 \hline
227 \end{tabular}
228 \caption{Electron Candidate Definition.\label{tab:eleFO}}
229 \end{center}
230 \end{table}
231 %-------------------------------------------------
232
233 MV discrimination is performed using the following variables : $\sigma_{i\eta i\eta}$, $\sigma_{i\phi i\phi}$, $\Delta\eta_{in}$, $\Delta\phi_{in}$, $f_{Brem}$, $n_{Brem}$, $E/P$, $d_{0}$, $E_{seed}/P_{out}$, $E_{seed}/P_{in}$, $1/E - 1/P$. As can be seen in Figure~\ref{fig:bdtInput}, these variables exhibit substantial correlations, of which the BDT is able to make full use. The same figure also displays the input distributions for signal and background for several representative variables.
234
235 %-------------------------------------------------
236 \begin{figure}[tbp]
237 \begin{center}
238 \includegraphics[width=0.4\linewidth]{figs/bdt-correl-sig.png}
239 \includegraphics[width=0.4\linewidth]{figs/bdt-correl-bkg.png}
240 \includegraphics[width=0.4\linewidth]{figs/bdt-input-OneOverEMinusOneOverP.png}
241 \includegraphics[width=0.4\linewidth]{figs/bdt-input-DEtaIn.png}
242 \caption{ \label{fig:bdtInput} }
243 \end{center}
244 \end{figure}
245
246 {\bf Cuts on these guys? Show correlation plot to motivate BDT?}
247
248 We train and validate the BDT using statistically independent subsets of events from the samples described above. Training and testing is performed separately for six $\eta/p_{T}$ bins. A cut on the resulting BDT discriminant translates to a specific combination of signal and background efficiency. The locus of signal/background efficiencies yields the performance ({\it i.e:} ROC) curves shown in Figure~\ref{fig:ROC}.
249
250 %-------------------------------------------------
251 \begin{figure}[tbp]
252 \begin{center}
253 \includegraphics[width=0.4\linewidth]{figs/roc-s0_pt1.png}
254 \includegraphics[width=0.4\linewidth]{figs/roc-s2_pt0.png}
255 \caption{MVA Electron ID Performance. \label{fig:ROC} }
256 \end{center}
257 \end{figure}
258 %-------------------------------------------------
259
260 The plots in Figure~\ref{fig:ROC} include efficiency points that correspond to the ``Cuts in Categories'' (CIC) loose, medium and tight working points defined in~\cite{CIC}. BDT and CIC performances are comparable in the high $p_{T}$ bins, however the BDT outperforms CIC at low $p_{T}$. We define a set of loose, medium and tight BDT working points for this analysis by stipulating background efficiencies that are equivalent to those of the corresponding CIC working points.
261
262 %% BDT and CIC signal efficiencies for the various working points are compared in Table~\ref{tab:WPs}.
263
264 %% %-------------------------------------------------
265 %% \begin{table}[tbh]
266 %% \begin{center}
267 %% \begin{tabular}{c|c|c}
268 %% $\epsilon_{B}$ & $\epsilon_{S}(CIC)$ & $\epsilon_{S}(BDT)$ \\
269 %% \hline
270 %% $X$ & $Y$ & $Z$ \\
271 %% $X$ & $Y$ & $Z$ \\
272 %% $X$ & $Y$ & $Z$ \\
273 %% $X$ & $Y$ & $Z$ \\
274 %% \hline
275 %% \end{tabular}
276 %% \caption{Working Points and Efficiencies.\label{tab:WPs}}
277 %% \end{center}
278 %% \end{table}
279 %% %-------------------------------------------------
280
281 The efficiencies shown in Figure~\ref{fig:ROC} are determined with respect to the candidate definition in Table~\ref{tab:eleFO}. Selection performance can be easily compared with this efficiency definition, however efficiencies for the analysis must be taken with respect to reconstructed GSF electrons. As with muons, we calculate electron identification/isolation efficiencies for the analysis using Tag \& Probe. Figures~\ref{fig:eleTPmediumhighpt} and ~\ref{fig:eleTPmediumlowpt} (~\ref{fig:eleTPloosehighpt} and ~\ref{fig:eleTPlooselowpt}) show fit results for our medium (loose) MV selection in the central region. %The complete set of offline selection fits from Tag \& Probe are included in Appendix~\ref{app:}.
282
283 %-------------------------------------------------
284 \begin{figure}[htb]
285 \begin{center}
286 \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_6.png}
287 \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_6.png}
288 \caption{Tag \& Probe fit results for medium offline selection for high-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
289 \label{fig:eleTPmediumhighpt}
290 \end{center}
291 \end{figure}
292 %-------------------------------------------------
293 %-------------------------------------------------
294 \begin{figure}[htb]
295 \begin{center}
296 \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_0.png}
297 \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_0.png}
298 \caption{Tag \& Probe fit results for medium offline selection for low-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
299 \label{fig:eleTPmediumlowpt}
300 \end{center}
301 \end{figure}
302 %-------------------------------------------------
303
304 %-------------------------------------------------
305 \begin{figure}[htb]
306 \begin{center}
307 \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_6.png}
308 \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_6.png}
309 \caption{Tag \& Probe fit results for loose offline selection for high-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
310 \label{fig:eleTPloosehighpt}
311 \end{center}
312 \end{figure}
313 %-------------------------------------------------
314 %-------------------------------------------------
315 \begin{figure}[htb]
316 \begin{center}
317 \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/passetapt_0.png}
318 \includegraphics[width=0.5\linewidth]{figs/eleeff/Run2011A_EleWPEffTP-tight/default/plots/failetapt_0.png}
319 \caption{Tag \& Probe fit results for loose offline selection for low-$p_{T}$ electrons in the barrel. {\bf FIX! Currently pictures are for tight} }
320 \label{fig:eleTPlooselowpt}
321 \end{center}
322 \end{figure}
323 %-------------------------------------------------
324
325 We divide the binned efficiencies from data with corresponding values from MC to obtain offline efficiency scale factors, $f_{ID,Iso}$. Tables~\ref{tab:eleSFmedium}-~\ref{tab:eleSFloose} list these factors for the medium and loose offline selections. Figures~\ref{fig:eleSFmedium} and ~\ref{fig:eleSFloose} plot the $f_{ID,Iso}$ as functions of $p_{T}$ for the central and forward regions.
326
327 %eleeff/Run2011A_EleWPEffTP-medium/default/extra/sf_table.tex
328 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
329 \begin{table}[!ht]
330 \begin{center}
331 \begin{tabular}{c|c|c}
332 \hline & $0 < |\eta| < 1.5$ & $1.5 < |\eta| < 2.5$ \\
333 \hline
334 $ 7 < p_T < 10$ & $1.3015 \pm 0.1110$ & $1.0341 \pm 0.0437$ \\
335 $ 10 < p_T < 15$ & $1.3508 \pm 0.0100$ & $0.7119 \pm 0.0103$ \\
336 $ 15 < p_T < 20$ & $1.0252 \pm 0.0146$ & $0.9065 \pm 0.0061$ \\
337 $ 20 < p_T < 30$ & $0.9808 \pm 0.0003$ & $1.0214 \pm 0.0030$ \\
338 $ 30 < p_T < 40$ & $0.9994 \pm 0.0005$ & $1.0092 \pm 0.0003$ \\
339 $ 40 < p_T < 50$ & $0.9988 \pm 0.0002$ & $1.0016 \pm 0.0006$ \\
340 $ 50 < p_T < 100$ & $0.9868 \pm 0.0009$ & $0.9967 \pm 0.0011$ \\
341 $100 < p_T < 7000$ & $0.9828 \pm 0.0028$ & $1.0144 \pm 0.0024$ \\
342 \hline
343 \end{tabular}
344 \caption{MVA Medium ID scale factors.}
345 \label{tab:eleSFmedium}
346 \end{center}
347 \end{table}
348
349 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
350
351 %-------------------------------------------------
352 \begin{figure}[htb]
353 \begin{center}
354 \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
355 \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
356 \caption{SF for ele medium. {\bf FIX! Currently muon plots ...}}
357 \label{fig:eleSFmedium}
358 \end{center}
359 \end{figure}
360 %-------------------------------------------------
361
362 %figs/eleeff/Run2011A_EleWPEffTP-loose/default/extra/sf_table.tex
363 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
364 \begin{table}[!ht]
365 \begin{center}
366 \begin{tabular}{c|c|c}
367 \hline & $0 < |\eta| < 1.5$ & $1.5 < |\eta| < 2.5$ \\
368 \hline
369 $ 7 < p_T < 10$ & $1.2642 \pm 0.1061$ & $1.0442 \pm 0.0398$ \\
370 $ 10 < p_T < 15$ & $1.1143 \pm 0.0254$ & $1.1013 \pm 0.0170$ \\
371 $ 15 < p_T < 20$ & $1.0309 \pm 0.0094$ & $1.0877 \pm 0.0065$ \\
372 $ 20 < p_T < 30$ & $0.9841 \pm 0.0011$ & $1.0134 \pm 0.0164$ \\
373 $ 30 < p_T < 40$ & $0.9982 \pm 0.0004$ & $1.0088 \pm 0.0004$ \\
374 $ 40 < p_T < 50$ & $0.9991 \pm 0.0002$ & $1.0014 \pm 0.0006$ \\
375 $ 50 < p_T < 100$ & $0.9996 \pm 0.0006$ & $1.0006 \pm 0.0004$ \\
376 $100 < p_T < 7000$ & $0.9946 \pm 0.0045$ & $1.0134 \pm 0.0067$ \\
377 \hline
378 \end{tabular}
379 \caption{MVA Loose ID Efficiency Scale Factors.}
380 \label{tab:eleSFloose}
381 \end{center}
382 \end{table}
383
384 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
385
386 %-------------------------------------------------
387 \begin{figure}[htb]
388 \begin{center}
389 \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta0.png}
390 \includegraphics[width=0.4\linewidth]{figs/mueff/Run2011A_MuonWPEffTP/default/extra/scalept_eta1.png}
391 \caption{SF for ele loose. {\bf FIX! Currently muon plots ...}}
392 \label{fig:eleSFloose}
393 \end{center}
394 \end{figure}
395 %-------------------------------------------------
396
397 Identification and isolation efficiencies for non-prompt and instrumental electron backgrounds are also evaluated with data. We defer discussion of this to Section~\ref{sec:BG}.
398
399 %__________________________________________________
400 \subsubsection{Online Selection}\label{sec:eleOnline}
401 %__________________________________________________
402 Per-leg efficiencies for the various electron triggers are calculated in the same manner as was described in Section~\ref{sec:muOnline}. Table~\ref{tab:eleTPtrigLeading} lists the luminosity-averaged efficiencies for leading and trailing trigger legs defined with respect to selected offline electrons.
403
404 %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
405 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
406 \begin{table}[!ht]
407 \begin{center}
408 \begin{tabular}{c|c|c|c|c}
409 \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
410 \hline
411 $ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
412 $ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
413 $ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
414 $ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
415 $ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
416 $ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
417 $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
418 $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
419 \hline
420 \end{tabular}
421 \caption{Trigger Efficiency for the Leading Leg of the (luminosity-average) Double Electron trigger. {\bf FIX! Get the correct numbers in here.} }
422 \label{tab:eleTPtrigLeading}
423 \end{center}
424 \end{table}
425
426 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
427
428 %figs/mueff/Run2011A_HLT_Mu13_Mu8_trailing/default/extra/dat_eff_table.tex
429 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
430 \begin{table}[!ht]
431 \begin{center}
432 \begin{tabular}{c|c|c|c|c}
433 \hline & $0 < |\eta| < 0.8$ & $0.8 < |\eta| < 1.2$ & $1.2 < |\eta| < 2.1$ & $2.1 < |\eta| < 2.4$ \\
434 \hline
435 $ 5 < p_T < 10$ & $0.6916 \pm 0.0337$ & $0.5872 \pm 0.0305$ & $0.5293 \pm 0.0135$ & $0.4288 \pm 0.0217$ \\
436 $ 10 < p_T < 15$ & $0.9685 \pm 0.0053$ & $0.9514 \pm 0.0064$ & $0.9507 \pm 0.0038$ & $0.9048 \pm 0.0090$ \\
437 $ 15 < p_T < 20$ & $0.9700 \pm 0.0025$ & $0.9584 \pm 0.0036$ & $0.9589 \pm 0.0023$ & $0.9169 \pm 0.0058$ \\
438 $ 20 < p_T < 30$ & $0.9671 \pm 0.0009$ & $0.9573 \pm 0.0015$ & $0.9586 \pm 0.0010$ & $0.9154 \pm 0.0026$ \\
439 $ 30 < p_T < 40$ & $0.9691 \pm 0.0005$ & $0.9562 \pm 0.0010$ & $0.9576 \pm 0.0007$ & $0.9129 \pm 0.0020$ \\
440 $ 40 < p_T < 50$ & $0.9691 \pm 0.0005$ & $0.9582 \pm 0.0009$ & $0.9574 \pm 0.0007$ & $0.9129 \pm 0.0021$ \\
441 $ 50 < p_T < 100$ & $0.9694 \pm 0.0009$ & $0.9561 \pm 0.0016$ & $0.9543 \pm 0.0012$ & $0.9058 \pm 0.0039$ \\
442 $100 < p_T < 7000$ & $0.9662 \pm 0.0054$ & $0.9529 \pm 0.0096$ & $0.9443 \pm 0.0083$ & $0.9577 \pm 0.0394$ \\
443 \hline
444 \end{tabular}
445 \caption{Trigger Efficiency for the Trailing Leg of the (luminosity-average) Double Electron trigger.{\bf FIX! Get the correct numbers in here.}}
446 \label{tab:eleTPtrigTrailing}
447 \end{center}
448 \end{table}
449
450 %KSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS
451
452 \clearpage