ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitHzz4l/Documentation/LeptonSelection.tex
(Generate patch)

Comparing UserCode/MitHzz4l/Documentation/LeptonSelection.tex (file contents):
Revision 1.5 by khahn, Wed Nov 23 03:08:59 2011 UTC vs.
Revision 1.6 by dkralph, Fri Nov 25 20:20:15 2011 UTC

# Line 218 | Line 218 | We utilize a TMVA Boosted Decision Tree
218   \hline
219   {\bf Quantity} & {\bf Requirement}\\
220   \hline
221 < $|dz|$      &   $< 0.1\rm~cm$          \\
221 > $|dz|$      &   $< 0.1\rm~cm$           \\
222   $H/E$       &    $< 0.12(0.1) EB(EE)$   \\
223   $iso_{trk}$ & $<0.3$                    \\
224   $iso_{em}$  & $<0.3$                    \\
# Line 230 | Line 230 | $iso_{had}$ & $<0.3$
230   \end{table}
231   %-------------------------------------------------
232  
233 < MV discrimination is performed using the following variables : $\sigma_{i\eta i\eta}$, $\sigma_{i\phi i\phi}$, $\Delta\eta_{in}$,  $\Delta\phi_{in}$, $f_{Brem}$, $n_{Brem}$, $E/P$, $d_{0}$, $E_{seed}/P_{out}$, $E_{seed}/P_{in}$, $1/E - 1/P$.  {\bf Cuts on these guys?  Show correlation plot to motivate BDT?}
233 > MV discrimination is performed using the following variables : $\sigma_{i\eta i\eta}$, $\sigma_{i\phi i\phi}$, $\Delta\eta_{in}$,  $\Delta\phi_{in}$, $f_{Brem}$, $n_{Brem}$, $E/P$, $d_{0}$, $E_{seed}/P_{out}$, $E_{seed}/P_{in}$, $1/E - 1/P$.  As can be seen in Figure~\ref{fig:bdtInput}, these variables exhibit substantial correlations, of which the BDT is able to make full use. The same figure also displays the input distributions for signal and background for several representative variables.
234 >
235 > %-------------------------------------------------
236 > \begin{figure}[tbp]
237 > \begin{center}
238 > \includegraphics[width=0.4\linewidth]{figs/bdt-correl-sig.png}
239 > \includegraphics[width=0.4\linewidth]{figs/bdt-correl-bkg.png}
240 > \includegraphics[width=0.4\linewidth]{figs/bdt-input-OneOverEMinusOneOverP.png}
241 > \includegraphics[width=0.4\linewidth]{figs/bdt-input-DEtaIn.png}
242 > \caption{  \label{fig:bdtInput} }
243 > \end{center}
244 > \end{figure}
245 >
246 > {\bf Cuts on these guys?  Show correlation plot to motivate BDT?}
247  
248   We train and validate the BDT using statistically independent subsets of events from the samples described above.  Training and testing is performed separately for six $\eta/p_{T}$ bins.  A cut on the resulting BDT discriminant translates to a specific combination of signal and background efficiency.  The locus of signal/background efficiencies yields the performance ({\it i.e:} ROC) curves shown in Figure~\ref{fig:ROC}.  
249  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines