ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitHzz4l/LeptonSelection/src/IsolationSelection.cc
(Generate patch)

Comparing UserCode/MitHzz4l/LeptonSelection/src/IsolationSelection.cc (file contents):
Revision 1.11 by khahn, Sat May 5 21:43:54 2012 UTC vs.
Revision 1.30 by khahn, Tue Jun 5 19:35:47 2012 UTC

# Line 16 | Line 16 | mithep::MuonTools       muT;
16   mithep::ElectronIDMVA * eleIsoMVA;
17   mithep::ElectronTools   eleT;
18  
19 + // global hack to sync
20 + double gChargedIso;
21 + double gGammaIso;
22 + double gNeutralIso;
23 +
24 + extern vector<bool> PFnoPUflag;
25 +
26   //--------------------------------------------------------------------------------------------------
27   Float_t computePFMuonIso(const mithep::Muon *muon,
28 <                         const mithep::Vertex & vtx,
28 >                         const mithep::Vertex * vtx,
29                           const mithep::Array<mithep::PFCandidate> * fPFCandidates,
30                           const Double_t dRMax)
31   //--------------------------------------------------------------------------------------------------
# Line 27 | Line 34 | Float_t computePFMuonIso(const mithep::M
34    const Double_t neuPtMin = 1.0;
35    const Double_t dzMax    = 0.1;
36      
37 <  Double_t zLepton = (muon->BestTrk()) ? muon->BestTrk()->DzCorrected(vtx) : 0.0;
37 >  Double_t zLepton = (muon->BestTrk()) ? muon->BestTrk()->DzCorrected(*vtx) : 0.0;
38    
39    Float_t iso=0;
40    for(UInt_t ipf=0; ipf<fPFCandidates->GetEntries(); ipf++) {
# Line 39 | Line 46 | Float_t computePFMuonIso(const mithep::M
46      if(pfcand->TrackerTrk() && muon->TrackerTrk() && (pfcand->TrackerTrk()==muon->TrackerTrk())) continue;
47      
48      // dz cut
49 <    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(vtx) - zLepton) : 0;
49 >    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(*vtx) - zLepton) : 0;
50      if(dz >= dzMax) continue;
51      
52      // check iso cone
# Line 53 | Line 60 | Float_t computePFMuonIso(const mithep::M
60  
61   //--------------------------------------------------------------------------------------------------
62   Float_t computePFEleIso(const mithep::Electron *electron,
63 <                        const mithep::Vertex & fVertex,
63 >                        const mithep::Vertex * fVertex,
64                          const mithep::Array<mithep::PFCandidate> * fPFCandidates,
65                          const Double_t dRMax)
66   //--------------------------------------------------------------------------------------------------
# Line 62 | Line 69 | Float_t computePFEleIso(const mithep::El
69    const Double_t neuPtMin = 1.0;
70    const Double_t dzMax    = 0.1;
71      
72 <  Double_t zLepton = (electron->BestTrk()) ? electron->BestTrk()->DzCorrected(fVertex) : 0.0;
72 >  Double_t zLepton = (electron->BestTrk()) ? electron->BestTrk()->DzCorrected(*fVertex) : 0.0;
73    
74    Float_t iso=0;
75    for(UInt_t ipf=0; ipf<fPFCandidates->GetEntries(); ipf++) {
# Line 71 | Line 78 | Float_t computePFEleIso(const mithep::El
78      if(!pfcand->HasTrk() && (pfcand->Pt()<=neuPtMin)) continue;  // pT cut on neutral particles
79      
80      // dz cut
81 <    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(fVertex) - zLepton) : 0;
81 >    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(*fVertex) - zLepton) : 0;
82      if(dz >= dzMax) continue;
83      
84      // remove THE electron
# Line 157 | Line 164 | bool pairwiseIsoSelection( ControlFlags
164  
165            float isoEcal_corr_j = lepvec[j].isoEcal - (effArea_ecal_j*rho);
166            float isoHcal_corr_j = lepvec[j].isoHcal - (effArea_hcal_j*rho);
167 <          float RIso_i = (lepvec[i].isoTrk+isoEcal_corr_i+isoHcal_corr_i)/lepvec[i].vec->Pt();
168 <          float RIso_j = (lepvec[j].isoTrk+isoEcal_corr_j+isoHcal_corr_j)/lepvec[j].vec->Pt();      
167 >          float RIso_i = (lepvec[i].isoTrk+isoEcal_corr_i+isoHcal_corr_i)/lepvec[i].vec.Pt();
168 >          float RIso_j = (lepvec[j].isoTrk+isoEcal_corr_j+isoHcal_corr_j)/lepvec[j].vec.Pt();      
169            float comboIso = RIso_i + RIso_j;
170            
171            if( comboIso > 0.35 ) {
# Line 175 | Line 182 | bool pairwiseIsoSelection( ControlFlags
182   //--------------------------------------------------------------------------------------------------
183   SelectionStatus muonIsoSelection(ControlFlags &ctrl,
184                                   const mithep::Muon * mu,
185 <                                 const mithep::Vertex & vtx,
185 >                                 const mithep::Vertex * vtx,
186                                   const mithep::Array<mithep::PFCandidate> * fPFCandidateCol   )
187   //--------------------------------------------------------------------------------------------------
188   {
# Line 205 | Line 212 | SelectionStatus muonIsoSelection(Control
212   //--------------------------------------------------------------------------------------------------
213   SelectionStatus electronIsoSelection(ControlFlags &ctrl,
214                                       const mithep::Electron * ele,
215 <                                     const mithep::Vertex &fVertex,
215 >                                     const mithep::Vertex *fVertex,
216                                       const mithep::Array<mithep::PFCandidate> * fPFCandidates)
217   //--------------------------------------------------------------------------------------------------
218   {
# Line 220 | Line 227 | SelectionStatus electronIsoSelection(Con
227    if( ele->IsEB() && ele->Pt() < 20 && reliso > PFISO_ELE_LOOSE_EB_LOWPT ) {
228      failiso = true;
229    }
223  if(ctrl.debug) cout << "before iso check ..." << endl;
230    if( !(ele->IsEB()) && ele->Pt() > 20 && reliso > PFISO_ELE_LOOSE_EE_HIGHPT ) {
225    if(ctrl.debug) cout << "\tit fails ..." << endl;
231      failiso = true;
232    }
233    if( !(ele->IsEB()) && ele->Pt() < 20 && reliso > PFISO_ELE_LOOSE_EE_LOWPT ) {
# Line 245 | Line 250 | bool noIso(ControlFlags &, vector<Simple
250          return true;
251   }
252  
253 +
254   //--------------------------------------------------------------------------------------------------
255   SelectionStatus muonIsoMVASelection(ControlFlags &ctrl,
256                                      const mithep::Muon * mu,
257 <                                    const mithep::Vertex & vtx,
257 >                                    const mithep::Vertex * vtx,
258                                      const mithep::Array<mithep::PFCandidate> * fPFCandidates,
259                                      const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
260                                      mithep::MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
# Line 332 | Line 338 | SelectionStatus muonIsoMVASelection(Cont
338    //Loop over PF Candidates
339    //
340    for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
341 +
342 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
343 +
344      const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
345  
346      Double_t deta = (mu->Eta() - pf->Eta());
# Line 362 | Line 371 | SelectionStatus muonIsoMVASelection(Cont
371              IsLeptonFootprint = kTRUE;
372          }
373          // PF charged
374 <        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) > 1.479
374 >        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479
375              && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015)
376            IsLeptonFootprint = kTRUE;
377          // PF gamma
378 <        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) > 1.479
378 >        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
379              && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.08)
380            IsLeptonFootprint = kTRUE;
381        } // loop over electrons
382        
383 +      /* KH - commented for sync
384        //
385        // Check for muons
386        //
# Line 385 | Line 395 | SelectionStatus muonIsoMVASelection(Cont
395          if (pf->Charge() != 0 && mithep::MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01)
396            IsLeptonFootprint = kTRUE;
397        } // loop over muons
398 <
398 >      */
399  
400      if (IsLeptonFootprint)
401        continue;
# Line 398 | Line 408 | SelectionStatus muonIsoMVASelection(Cont
408        if( dr < 0.01 ) continue; // only for muon iso mva?
409        if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
410  
411 <      if( pf->HasTrackerTrk() ) {
412 <        if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
413 <        if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
414 <                              << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
415 <                              << dr << endl;
416 <      }
417 <      if( pf->HasGsfTrk() ) {
418 <        if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
419 <        if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
420 <                              << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
421 <                              << dr << endl;
422 <      }
411 > //       if( pf->HasTrackerTrk() ) {
412 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
413 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
414 > //                            << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
415 > //                            << dr << endl;
416 > //       }
417 > //       if( pf->HasGsfTrk() ) {
418 > //      if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
419 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
420 > //                            << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
421 > //                            << dr << endl;
422 > //       }
423  
424        // Footprint Veto
425        if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
# Line 448 | Line 458 | SelectionStatus muonIsoMVASelection(Cont
458  
459    }
460  
461 <  fChargedIso_DR0p0To0p1   = min((tmpChargedIso_DR0p0To0p1)/mu->Pt(), 2.5);
462 <  fChargedIso_DR0p1To0p2   = min((tmpChargedIso_DR0p1To0p2)/mu->Pt(), 2.5);
463 <  fChargedIso_DR0p2To0p3   = min((tmpChargedIso_DR0p2To0p3)/mu->Pt(), 2.5);
464 <  fChargedIso_DR0p3To0p4   = min((tmpChargedIso_DR0p3To0p4)/mu->Pt(), 2.5);
465 <  fChargedIso_DR0p4To0p5   = min((tmpChargedIso_DR0p4To0p5)/mu->Pt(), 2.5);
461 >  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/mu->Pt(), 2.5);
462 >  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/mu->Pt(), 2.5);
463 >  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/mu->Pt(), 2.5);
464 >  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/mu->Pt(), 2.5);
465 >  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/mu->Pt(), 2.5);
466  
467  
468    double rho = 0;
469    if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
470      rho = fPUEnergyDensity->At(0)->Rho();
471 +
472 + //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
473 + //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
474    
475 +  // WARNING!!!!  
476 +  // hardcode for sync ...
477 +  EffectiveAreaVersion = muT.kMuEAData2011;
478 +  // WARNING!!!!  
479 +
480  
481 <  fGammaIso_DR0p0To0p1 = max(min((tmpGammaIso_DR0p0To0p1
481 >  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
482                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p0To0p1,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
483                                   ,2.5)
484                               ,0.0);
485 <  fGammaIso_DR0p1To0p2 = max(min((tmpGammaIso_DR0p1To0p2
485 >  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
486                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p1To0p2,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
487                                   ,2.5)
488                               ,0.0);
489 <  fGammaIso_DR0p2To0p3 = max(min((tmpGammaIso_DR0p2To0p3
489 >  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
490                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p2To0p3,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
491                                   ,2.5)
492                               ,0.0);
493 <  fGammaIso_DR0p3To0p4 = max(min((tmpGammaIso_DR0p3To0p4
493 >  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
494                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p3To0p4,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
495                                   ,2.5)
496                               ,0.0);
497 <  fGammaIso_DR0p4To0p5 = max(min((tmpGammaIso_DR0p4To0p5
497 >  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
498                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p4To0p5,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
499                                   ,2.5)
500                               ,0.0);
501  
502  
503  
504 <  fNeutralHadronIso_DR0p0To0p1 = max(min((tmpNeutralHadronIso_DR0p0To0p1
504 >  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
505                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p0To0p1,
506                                                                   mu->Eta(),EffectiveAreaVersion))/mu->Pt()
507                                           , 2.5)
508                                       , 0.0);
509 <  fNeutralHadronIso_DR0p1To0p2 = max(min((tmpNeutralHadronIso_DR0p1To0p2
509 >  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
510                                              -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p1To0p2,
511                                                                     mu->Eta(),EffectiveAreaVersion))/mu->Pt()
512                                             , 2.5)
513                                         , 0.0);
514 <  fNeutralHadronIso_DR0p2To0p3 = max(min((tmpNeutralHadronIso_DR0p2To0p3
514 >  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
515                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p2To0p3,
516                                                                   mu->Eta(),EffectiveAreaVersion))/mu->Pt()
517                                           , 2.5)
518                                       , 0.0);
519 <  fNeutralHadronIso_DR0p3To0p4 = max(min((tmpNeutralHadronIso_DR0p3To0p4
519 >  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
520                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p3To0p4,
521                                                                   mu->Eta(), EffectiveAreaVersion))/mu->Pt()
522                                           , 2.5)
523                                       , 0.0);
524 <  fNeutralHadronIso_DR0p4To0p5 = max(min((tmpNeutralHadronIso_DR0p4To0p5
524 >  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
525                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p4To0p5,
526                                                                   mu->Eta(), EffectiveAreaVersion))/mu->Pt()
527                                           , 2.5)
# Line 511 | Line 529 | SelectionStatus muonIsoMVASelection(Cont
529  
530  
531    double mvaval = muIsoMVA->MVAValue_IsoRings( mu->Pt(),
532 <                                             mu->Eta(),
533 <                                             fChargedIso_DR0p0To0p1,
534 <                                             fChargedIso_DR0p1To0p2,
535 <                                             fChargedIso_DR0p2To0p3,
536 <                                             fChargedIso_DR0p3To0p4,
537 <                                             fChargedIso_DR0p4To0p5,
538 <                                             fGammaIso_DR0p0To0p1,
539 <                                             fGammaIso_DR0p1To0p2,
540 <                                             fGammaIso_DR0p2To0p3,
541 <                                             fGammaIso_DR0p3To0p4,
542 <                                             fGammaIso_DR0p4To0p5,
543 <                                             fNeutralHadronIso_DR0p0To0p1,
544 <                                             fNeutralHadronIso_DR0p1To0p2,
545 <                                             fNeutralHadronIso_DR0p2To0p3,
546 <                                             fNeutralHadronIso_DR0p3To0p4,
547 <                                             fNeutralHadronIso_DR0p4To0p5,
548 <                                             ctrl.debug);
532 >                                               mu->Eta(),
533 >                                               mu->IsGlobalMuon(),
534 >                                               mu->IsTrackerMuon(),
535 >                                               fChargedIso_DR0p0To0p1,
536 >                                               fChargedIso_DR0p1To0p2,
537 >                                               fChargedIso_DR0p2To0p3,
538 >                                               fChargedIso_DR0p3To0p4,
539 >                                               fChargedIso_DR0p4To0p5,
540 >                                               fGammaIso_DR0p0To0p1,
541 >                                               fGammaIso_DR0p1To0p2,
542 >                                               fGammaIso_DR0p2To0p3,
543 >                                               fGammaIso_DR0p3To0p4,
544 >                                               fGammaIso_DR0p4To0p5,
545 >                                               fNeutralHadronIso_DR0p0To0p1,
546 >                                               fNeutralHadronIso_DR0p1To0p2,
547 >                                               fNeutralHadronIso_DR0p2To0p3,
548 >                                               fNeutralHadronIso_DR0p3To0p4,
549 >                                               fNeutralHadronIso_DR0p4To0p5,
550 >                                               ctrl.debug);
551 >
552 >  SelectionStatus status;
553 >  bool pass;
554 >
555 >  pass = false;
556 >  if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
557 >      && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN0)   pass = true;
558 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
559 >           && fabs(mu->Eta()) <= 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN1)  pass = true;
560 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
561 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN2)  pass = true;
562 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
563 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN3)  pass = true;
564 >  else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN4)  pass = true;
565 >  else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN5)  pass = true;
566 >  if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
567 >
568 >  /*
569 >  pass = false;
570 >  if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
571 >      && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN0)   pass = true;
572 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
573 >           && fabs(mu->Eta()) <= 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN1)  pass = true;
574 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
575 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN2)  pass = true;
576 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
577 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN3)  pass = true;
578 >  else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN4)  pass = true;
579 >  else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN5)  pass = true;
580 >  if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
581 >  */
582 >
583 >  //  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
584 >
585 >  status.isoMVA = mvaval;
586 >
587 >  if(ctrl.debug)  {
588 >    cout << "returning status : " << hex << status.getStatus() << dec << endl;
589 >    cout << "MVAVAL : " << status.isoMVA << endl;
590 >  }
591 >  return status;
592 >
593 > }
594 >
595 >
596 > //--------------------------------------------------------------------------------------------------
597 > SelectionStatus muonIsoMVASelection(ControlFlags &ctrl,
598 >                                    const mithep::Muon * mu,
599 >                                    const mithep::Vertex * vtx,
600 >                                    const mithep::Array<mithep::PFCandidate> * fPFCandidates,
601 >                                    float rho,
602 >                                    //const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
603 >                                    mithep::MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
604 >                                    vector<const mithep::Muon*> muonsToVeto,
605 >                                    vector<const mithep::Electron*> electronsToVeto)
606 > //--------------------------------------------------------------------------------------------------
607 > // hacked version
608 > {
609 >
610 >  if( ctrl.debug ) {
611 >    cout << "muonIsoMVASelection :: muons to veto " << endl;
612 >    for( int i=0; i<muonsToVeto.size(); i++ ) {
613 >      const mithep::Muon * vmu = muonsToVeto[i];
614 >      cout << "\tpt: " << vmu->Pt()
615 >           << "\teta: " << vmu->Eta()
616 >           << "\tphi: " << vmu->Phi()
617 >           << endl;
618 >    }
619 >    cout << "muonIsoMVASelection :: electrson to veto " << endl;
620 >    for( int i=0; i<electronsToVeto.size(); i++ ) {
621 >      const mithep::Electron * vel = electronsToVeto[i];
622 >      cout << "\tpt: " << vel->Pt()
623 >           << "\teta: " << vel->Eta()
624 >           << "\tphi: " << vel->Phi()
625 >           << endl;
626 >    }
627 >  }
628 >  bool failiso=false;
629 >
630 >  //
631 >  // tmp iso rings
632 >  //
633 >  Double_t tmpChargedIso_DR0p0To0p1  = 0;
634 >  Double_t tmpChargedIso_DR0p1To0p2  = 0;
635 >  Double_t tmpChargedIso_DR0p2To0p3  = 0;
636 >  Double_t tmpChargedIso_DR0p3To0p4  = 0;
637 >  Double_t tmpChargedIso_DR0p4To0p5  = 0;
638 >  Double_t tmpChargedIso_DR0p5To0p7  = 0;
639 >
640 >  Double_t tmpGammaIso_DR0p0To0p1  = 0;
641 >  Double_t tmpGammaIso_DR0p1To0p2  = 0;
642 >  Double_t tmpGammaIso_DR0p2To0p3  = 0;
643 >  Double_t tmpGammaIso_DR0p3To0p4  = 0;
644 >  Double_t tmpGammaIso_DR0p4To0p5  = 0;
645 >  Double_t tmpGammaIso_DR0p5To0p7  = 0;
646 >
647 >  Double_t tmpNeutralHadronIso_DR0p0To0p1  = 0;
648 >  Double_t tmpNeutralHadronIso_DR0p1To0p2  = 0;
649 >  Double_t tmpNeutralHadronIso_DR0p2To0p3  = 0;
650 >  Double_t tmpNeutralHadronIso_DR0p3To0p4  = 0;
651 >  Double_t tmpNeutralHadronIso_DR0p4To0p5  = 0;
652 >  Double_t tmpNeutralHadronIso_DR0p5To0p7  = 0;
653 >
654 >        
655 >
656 >  //
657 >  // final rings for the MVA
658 >  //
659 >  Double_t fChargedIso_DR0p0To0p1;
660 >  Double_t fChargedIso_DR0p1To0p2;
661 >  Double_t fChargedIso_DR0p2To0p3;
662 >  Double_t fChargedIso_DR0p3To0p4;
663 >  Double_t fChargedIso_DR0p4To0p5;
664 >  Double_t fChargedIso_DR0p5To0p7;
665 >
666 >  Double_t fGammaIso_DR0p0To0p1;
667 >  Double_t fGammaIso_DR0p1To0p2;
668 >  Double_t fGammaIso_DR0p2To0p3;
669 >  Double_t fGammaIso_DR0p3To0p4;
670 >  Double_t fGammaIso_DR0p4To0p5;
671 >  Double_t fGammaIso_DR0p5To0p7;
672 >
673 >  Double_t fNeutralHadronIso_DR0p0To0p1;
674 >  Double_t fNeutralHadronIso_DR0p1To0p2;
675 >  Double_t fNeutralHadronIso_DR0p2To0p3;
676 >  Double_t fNeutralHadronIso_DR0p3To0p4;
677 >  Double_t fNeutralHadronIso_DR0p4To0p5;
678 >  Double_t fNeutralHadronIso_DR0p5To0p7;
679 >
680 >
681 >  //
682 >  //Loop over PF Candidates
683 >  //
684 >  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
685 >
686 >    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
687 >
688 >    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
689 >
690 >    Double_t deta = (mu->Eta() - pf->Eta());
691 >    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(mu->Phi()),Double_t(pf->Phi()));
692 >    Double_t dr = mithep::MathUtils::DeltaR(mu->Phi(),mu->Eta(), pf->Phi(), pf->Eta());
693 >    if (dr > 1.0) continue;
694 >
695 >    if (pf->HasTrackerTrk() && (pf->TrackerTrk() == mu->TrackerTrk()) ) continue;
696 >
697 >    //
698 >    // Lepton Footprint Removal
699 >    //
700 >    Bool_t IsLeptonFootprint = kFALSE;
701 >    if (dr < 1.0) {
702 >
703 >      //
704 >      // Check for electrons
705 >      //
706 >      for (Int_t q=0; q < electronsToVeto.size(); ++q) {
707 >        const mithep::Electron *tmpele = electronsToVeto[q];
708 >        // 4l electron
709 >        if( pf->HasTrackerTrk() ) {
710 >          if( pf->TrackerTrk() == tmpele->TrackerTrk() )
711 >            IsLeptonFootprint = kTRUE;
712 >        }
713 >        if( pf->HasGsfTrk() ) {
714 >          if( pf->GsfTrk() == tmpele->GsfTrk() )
715 >            IsLeptonFootprint = kTRUE;
716 >        }
717 >        // PF charged
718 >        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479
719 >            && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015)
720 >          IsLeptonFootprint = kTRUE;
721 >        // PF gamma
722 >        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
723 >            && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.08)
724 >          IsLeptonFootprint = kTRUE;
725 >      } // loop over electrons
726 >      
727 >      /* KH - commented for sync
728 >      //
729 >      // Check for muons
730 >      //
731 >      for (Int_t q=0; q < muonsToVeto.size(); ++q) {
732 >        const mithep::Muon *tmpmu = muonsToVeto[q];
733 >        // 4l muon
734 >        if( pf->HasTrackerTrk() ) {
735 >          if( pf->TrackerTrk() == tmpmu->TrackerTrk() )
736 >            IsLeptonFootprint = kTRUE;
737 >        }
738 >        // PF charged
739 >        if (pf->Charge() != 0 && mithep::MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01)
740 >          IsLeptonFootprint = kTRUE;
741 >      } // loop over muons
742 >      */
743 >
744 >    if (IsLeptonFootprint)
745 >      continue;
746 >
747 >    //
748 >    // Charged Iso Rings
749 >    //
750 >    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
751 >
752 >      if( dr < 0.01 ) continue; // only for muon iso mva?
753 >      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
754 >
755 > //       if( pf->HasTrackerTrk() ) {
756 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
757 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
758 > //                            << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
759 > //                            << dr << endl;
760 > //       }
761 > //       if( pf->HasGsfTrk() ) {
762 > //      if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
763 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
764 > //                            << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
765 > //                            << dr << endl;
766 > //       }
767 >
768 >      // Footprint Veto
769 >      if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
770 >      if (dr >= 0.1 && dr < 0.2) tmpChargedIso_DR0p1To0p2 += pf->Pt();
771 >      if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
772 >      if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
773 >      if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
774 >      if (dr >= 0.5 && dr < 0.7) tmpChargedIso_DR0p5To0p7 += pf->Pt();
775 >    }
776 >
777 >    //
778 >    // Gamma Iso Rings
779 >    //
780 >    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
781 >      if (dr < 0.1) tmpGammaIso_DR0p0To0p1 += pf->Pt();
782 >      if (dr >= 0.1 && dr < 0.2) tmpGammaIso_DR0p1To0p2 += pf->Pt();
783 >      if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
784 >      if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
785 >      if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
786 >      if (dr >= 0.5 && dr < 0.7) tmpGammaIso_DR0p5To0p7 += pf->Pt();
787 >    }
788 >
789 >    //
790 >    // Other Neutral Iso Rings
791 >    //
792 >    else {
793 >      if (dr < 0.1) tmpNeutralHadronIso_DR0p0To0p1 += pf->Pt();
794 >      if (dr >= 0.1 && dr < 0.2) tmpNeutralHadronIso_DR0p1To0p2 += pf->Pt();
795 >      if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
796 >      if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
797 >      if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
798 >      if (dr >= 0.5 && dr < 0.7) tmpNeutralHadronIso_DR0p5To0p7 += pf->Pt();
799 >    }
800 >
801 >    }
802 >
803 >  }
804 >
805 >  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/mu->Pt(), 2.5);
806 >  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/mu->Pt(), 2.5);
807 >  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/mu->Pt(), 2.5);
808 >  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/mu->Pt(), 2.5);
809 >  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/mu->Pt(), 2.5);
810 >
811 >
812 > //   double rho = 0;
813 > //   if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
814 > //     rho = fPUEnergyDensity->At(0)->Rho();
815 > //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
816 > //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
817 >  
818 >  // WARNING!!!!  
819 >  // hardcode for sync ...
820 >  EffectiveAreaVersion = muT.kMuEAData2011;
821 >  // WARNING!!!!  
822 >
823 >
824 >  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
825 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p0To0p1,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
826 >                                 ,2.5)
827 >                             ,0.0);
828 >  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
829 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p1To0p2,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
830 >                                 ,2.5)
831 >                             ,0.0);
832 >  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
833 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p2To0p3,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
834 >                                 ,2.5)
835 >                             ,0.0);
836 >  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
837 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p3To0p4,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
838 >                                 ,2.5)
839 >                             ,0.0);
840 >  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
841 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p4To0p5,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
842 >                                 ,2.5)
843 >                             ,0.0);
844 >
845 >
846 >
847 >  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
848 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p0To0p1,
849 >                                                                 mu->Eta(),EffectiveAreaVersion))/mu->Pt()
850 >                                         , 2.5)
851 >                                     , 0.0);
852 >  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
853 >                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p1To0p2,
854 >                                                                   mu->Eta(),EffectiveAreaVersion))/mu->Pt()
855 >                                           , 2.5)
856 >                                       , 0.0);
857 >  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
858 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p2To0p3,
859 >                                                                 mu->Eta(),EffectiveAreaVersion))/mu->Pt()
860 >                                         , 2.5)
861 >                                     , 0.0);
862 >  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
863 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p3To0p4,
864 >                                                                 mu->Eta(), EffectiveAreaVersion))/mu->Pt()
865 >                                         , 2.5)
866 >                                     , 0.0);
867 >  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
868 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p4To0p5,
869 >                                                                 mu->Eta(), EffectiveAreaVersion))/mu->Pt()
870 >                                         , 2.5)
871 >                                     , 0.0);
872 >
873 >
874 >  double mvaval = muIsoMVA->MVAValue_IsoRings( mu->Pt(),
875 >                                               mu->Eta(),
876 >                                               mu->IsGlobalMuon(),
877 >                                               mu->IsTrackerMuon(),
878 >                                               fChargedIso_DR0p0To0p1,
879 >                                               fChargedIso_DR0p1To0p2,
880 >                                               fChargedIso_DR0p2To0p3,
881 >                                               fChargedIso_DR0p3To0p4,
882 >                                               fChargedIso_DR0p4To0p5,
883 >                                               fGammaIso_DR0p0To0p1,
884 >                                               fGammaIso_DR0p1To0p2,
885 >                                               fGammaIso_DR0p2To0p3,
886 >                                               fGammaIso_DR0p3To0p4,
887 >                                               fGammaIso_DR0p4To0p5,
888 >                                               fNeutralHadronIso_DR0p0To0p1,
889 >                                               fNeutralHadronIso_DR0p1To0p2,
890 >                                               fNeutralHadronIso_DR0p2To0p3,
891 >                                               fNeutralHadronIso_DR0p3To0p4,
892 >                                               fNeutralHadronIso_DR0p4To0p5,
893 >                                               ctrl.debug);
894  
895    SelectionStatus status;
896    bool pass;
# Line 545 | Line 908 | SelectionStatus muonIsoMVASelection(Cont
908    else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN5)  pass = true;
909    if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
910  
911 +  /*
912    pass = false;
913    if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
914        && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN0)   pass = true;
# Line 557 | Line 921 | SelectionStatus muonIsoMVASelection(Cont
921    else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN4)  pass = true;
922    else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN5)  pass = true;
923    if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
924 +  */
925  
926    //  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
927  
928 <  if(ctrl.debug) cout << "returning status : " << hex << status.getStatus() << dec << endl;
928 >  status.isoMVA = mvaval;
929 >
930 >  if(ctrl.debug)  {
931 >    cout << "returning status : " << hex << status.getStatus() << dec << endl;
932 >    cout << "MVAVAL : " << status.isoMVA << endl;
933 >  }
934    return status;
935  
936   }
937  
938 +
939   //--------------------------------------------------------------------------------------------------
940   void initMuonIsoMVA() {
941   //--------------------------------------------------------------------------------------------------
# Line 582 | Line 953 | void initMuonIsoMVA() {
953   }
954  
955  
956 +
957 +
958   //--------------------------------------------------------------------------------------------------
959   double  muonPFIso04(ControlFlags &ctrl,
960                      const mithep::Muon * mu,
961 <                    const mithep::Vertex & vtx,
961 >                    const mithep::Vertex * vtx,
962                      const mithep::Array<mithep::PFCandidate> * fPFCandidates,
963                      const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
964                      mithep::MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
965 +                    vector<const mithep::PFCandidate*> photonsToVeto)
966 + //--------------------------------------------------------------------------------------------------
967 + {
968 +
969 +  extern double gChargedIso;  
970 +  extern double  gGammaIso;      
971 +  extern double  gNeutralIso;
972 +
973 +  //
974 +  // final iso
975 +  //
976 +  Double_t fChargedIso  = 0.0;
977 +  Double_t fGammaIso  = 0.0;
978 +  Double_t fNeutralHadronIso  = 0.0;
979 +
980 +  //
981 +  //Loop over PF Candidates
982 +  //
983 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
984 +
985 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
986 +    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
987 +
988 +    //
989 +    // veto FSR recovered photons
990 +    //
991 +    bool vetoPhoton = false;
992 +    for( int p=0; p<photonsToVeto.size(); p++ ) {
993 +      if( pf == photonsToVeto[p] ) {
994 +        vetoPhoton = true;
995 +        break;
996 +      }
997 +    } if( vetoPhoton ) continue;
998 +    //
999 +    //
1000 +    //
1001 +
1002 +    Double_t deta = (mu->Eta() - pf->Eta());
1003 +    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(mu->Phi()),Double_t(pf->Phi()));
1004 +    Double_t dr = mithep::MathUtils::DeltaR(mu->Phi(),mu->Eta(), pf->Phi(), pf->Eta());
1005 +    if (dr > 0.4) continue;
1006 +
1007 +    if (pf->HasTrackerTrk() && (pf->TrackerTrk() == mu->TrackerTrk()) ) continue;
1008 +
1009 +    //
1010 +    // Charged Iso
1011 +    //
1012 +    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1013 +
1014 +      //if( dr < 0.01 ) continue; // only for muon iso mva?
1015 +      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
1016 +      fChargedIso += pf->Pt();
1017 +    }
1018 +    
1019 +    //
1020 +    // Gamma Iso
1021 +    //
1022 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1023 +      // KH, add to sync
1024 +      if( pf->Pt() > 0.5 )
1025 +      fGammaIso += pf->Pt();
1026 +    }
1027 +    
1028 +    //
1029 +    // Other Neutrals
1030 +    //
1031 +    else {
1032 +      if( pf->Pt() > 0.5 )
1033 +        fNeutralHadronIso += pf->Pt();
1034 +    }
1035 +  }
1036 +
1037 +  double rho=0;
1038 +  if( (EffectiveAreaVersion == mithep::MuonTools::kMuEAFall11MC) ||
1039 +      (EffectiveAreaVersion == mithep::MuonTools::kMuEAData2011) ) {
1040 +    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25()) ||
1041 +          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25())))
1042 +      rho = fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25();
1043 +    //rho = fPUEnergyDensity->At(0)->Rho();
1044 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
1045 +    EffectiveAreaVersion  = mithep::MuonTools::kMuEAData2011;
1046 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
1047 +  } else {
1048 +    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJetsCentralNeutral()) ||
1049 +          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJetsCentralNeutral())))
1050 +      rho = fPUEnergyDensity->At(0)->RhoKt6PFJetsCentralNeutral();
1051 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
1052 +    EffectiveAreaVersion  = mithep::MuonTools::kMuEAData2012;
1053 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
1054 +  }
1055 +  if(ctrl.debug) cout << "rho: " << rho << endl;
1056 +
1057 +  TLorentzVector  tmpvec;
1058 +  tmpvec.SetPtEtaPhiM(mu->Pt(),mu->Eta(),mu->Phi(),mu->Mass());
1059 +  for( int p=0; p<photonsToVeto.size(); p++ ) {
1060 +    const mithep::PFCandidate * pf  = photonsToVeto[p];
1061 +    TLorentzVector pfvec;
1062 +    pfvec.SetPtEtaPhiM(pf->Pt(),pf->Eta(),pf->Phi(),0.);
1063 +    tmpvec += pfvec;
1064 +  }
1065 +
1066 +  double pfIso = fChargedIso + fmax(0.0,(fGammaIso + fNeutralHadronIso
1067 +                                        -rho*muT.MuonEffectiveArea(muT.kMuGammaAndNeutralHadronIso04,
1068 +                                                                   tmpvec.Eta(),EffectiveAreaVersion)));
1069 +                                                                   //mu->Eta(),EffectiveAreaVersion)));
1070 +  gChargedIso = fChargedIso;
1071 +  gGammaIso   = fGammaIso;
1072 +  gNeutralIso = fNeutralHadronIso;
1073 +  
1074 +  if( ctrl.debug ) {
1075 +    cout << "PFiso: " << pfIso
1076 +         << "\tfChargedIso: " << fChargedIso
1077 +         << "\tfGammaIso: " << fGammaIso
1078 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
1079 +         << endl;
1080 +  }
1081 +
1082 +  return pfIso;
1083 + }
1084 +
1085 +
1086 +
1087 +
1088 + //--------------------------------------------------------------------------------------------------
1089 + // hacked version
1090 + double  muonPFIso04(ControlFlags &ctrl,
1091 +                    const mithep::Muon * mu,
1092 +                    const mithep::Vertex * vtx,
1093 +                    const mithep::Array<mithep::PFCandidate> * fPFCandidates,
1094 +                    float rho,
1095 +                    mithep::MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
1096                      vector<const mithep::Muon*> muonsToVeto,
1097                      vector<const mithep::Electron*> electronsToVeto)
1098   //--------------------------------------------------------------------------------------------------
1099   {
1100 +
1101 +  extern double gChargedIso;  
1102 +  extern double  gGammaIso;      
1103 +  extern double  gNeutralIso;
1104    
1105    if( ctrl.debug ) {
1106      cout << "muonIsoMVASelection :: muons to veto " << endl;
# Line 616 | Line 1124 | double  muonPFIso04(ControlFlags &ctrl,
1124    //
1125    // final iso
1126    //
1127 <  Double_t fChargedIso;
1128 <  Double_t fGammaIso;
1129 <  Double_t fNeutralHadronIso;
1127 >  Double_t fChargedIso  = 0.0;
1128 >  Double_t fGammaIso  = 0.0;
1129 >  Double_t fNeutralHadronIso  = 0.0;
1130  
1131    //
1132    //Loop over PF Candidates
1133    //
1134    for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
1135 +
1136 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
1137      const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
1138  
1139      Double_t deta = (mu->Eta() - pf->Eta());
# Line 662 | Line 1172 | double  muonPFIso04(ControlFlags &ctrl,
1172              && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.08)
1173            IsLeptonFootprint = kTRUE;
1174        } // loop over electrons
1175 <      
1175 >
1176 >      /* KH - comment for sync      
1177        //
1178        // Check for muons
1179        //
# Line 677 | Line 1188 | double  muonPFIso04(ControlFlags &ctrl,
1188          if (pf->Charge() != 0 && mithep::MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01)
1189            IsLeptonFootprint = kTRUE;
1190        } // loop over muons
1191 <
1191 >      */
1192  
1193      if (IsLeptonFootprint)
1194        continue;
1195  
1196      //
1197 <    // Charged Iso Rings
1197 >    // Charged Iso
1198      //
1199      if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1200  
1201 <      if( dr < 0.01 ) continue; // only for muon iso mva?
1201 >      //if( dr < 0.01 ) continue; // only for muon iso mva?
1202        if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
1203  
1204 <      if( pf->HasTrackerTrk() ) {
1205 <        if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1206 <        if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
1207 <                              << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
1208 <                              << dr << endl;
1209 <      }
1210 <      if( pf->HasGsfTrk() ) {
1211 <        if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1212 <        if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
1213 <                              << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
1214 <                              << dr << endl;
1215 <      }
1204 >
1205 > //       if( pf->HasTrackerTrk() ) {
1206 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1207 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
1208 > //                            << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
1209 > //                            << dr << endl;
1210 > //       }
1211 > //       if( pf->HasGsfTrk() ) {
1212 > //      if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1213 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
1214 > //                            << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
1215 > //                            << dr << endl;
1216 > //       }
1217  
1218  
1219        fChargedIso += pf->Pt();
# Line 711 | Line 1223 | double  muonPFIso04(ControlFlags &ctrl,
1223      // Gamma Iso
1224      //
1225      else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1226 +      // KH, add to sync
1227 +      if( pf->Pt() > 0.5 )
1228        fGammaIso += pf->Pt();
1229      }
1230  
1231      //
1232 <    // Other Neutral Iso Rings
1232 >    // Other Neutrals
1233      //
1234      else {
1235 <      fNeutralHadronIso += pf->Pt();
1235 >      // KH, add to sync
1236 >      if( pf->Pt() > 0.5 )
1237 >        fNeutralHadronIso += pf->Pt();
1238      }
1239      
1240      }
1241      
1242    }
1243    
1244 <  double rho = 0;
1245 <  if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
1246 <    rho = fPUEnergyDensity->At(0)->Rho();
1244 > //   double rho = 0;
1245 > //   if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
1246 > //     rho = fPUEnergyDensity->At(0)->Rho();
1247  
1248    // WARNING!!!!  
1249    // hardcode for sync ...
# Line 735 | Line 1251 | double  muonPFIso04(ControlFlags &ctrl,
1251    // WARNING!!!!  
1252  
1253  
1254 <  double pfIso = fChargedIso + max(0.0,(fGammaIso + fNeutralHadronIso
1254 >  double pfIso = fChargedIso + fmax(0.0,(fGammaIso + fNeutralHadronIso
1255                                          -rho*muT.MuonEffectiveArea(muT.kMuGammaAndNeutralHadronIso04,
1256                                                                     mu->Eta(),EffectiveAreaVersion)));
1257 +  gChargedIso = fChargedIso;
1258 +  gGammaIso   = fGammaIso;
1259 +  gNeutralIso = fNeutralHadronIso;
1260    
1261    return pfIso;
1262   }
1263  
1264 +
1265   //--------------------------------------------------------------------------------------------------
1266   SelectionStatus muonReferenceIsoSelection(ControlFlags &ctrl,
1267                                            const mithep::Muon * mu,
1268 <                                          const mithep::Vertex & vtx,
1268 >                                          const mithep::Vertex * vtx,
1269                                            const mithep::Array<mithep::PFCandidate> * fPFCandidates,
1270                                            const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
1271                                            mithep::MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
1272 +                                          vector<const mithep::PFCandidate*> photonsToVeto)
1273 + //--------------------------------------------------------------------------------------------------
1274 + {
1275 +  
1276 +  SelectionStatus status;
1277 +
1278 +  double pfIso = muonPFIso04( ctrl, mu, vtx, fPFCandidates, fPUEnergyDensity,
1279 +                              EffectiveAreaVersion, photonsToVeto);
1280 +  //  cout << "--------------> setting muon isoPF04 to" << pfIso << endl;
1281 +  status.isoPF04 = pfIso;
1282 +  status.chisoPF04 = gChargedIso;
1283 +  status.gaisoPF04 = gGammaIso;
1284 +  status.neisoPF04 = gNeutralIso;
1285 +
1286 +  bool pass = false;
1287 +  if( (pfIso/mu->Pt()) < MUON_REFERENCE_PFISO_CUT ) pass = true;
1288 +  
1289 +  if( pass ) {
1290 +    status.orStatus(SelectionStatus::LOOSEISO);
1291 +    status.orStatus(SelectionStatus::TIGHTISO);
1292 +  }
1293 +  if(ctrl.debug) {
1294 +    cout << "mu relpfIso: " << pfIso/mu->Pt() << endl;
1295 +    cout << "returning status : " << hex << status.getStatus() << dec << endl;
1296 +  }
1297 +  return status;
1298 +  
1299 + }
1300 +
1301 +
1302 + //--------------------------------------------------------------------------------------------------
1303 + // hacked version
1304 + SelectionStatus muonReferenceIsoSelection(ControlFlags &ctrl,
1305 +                                          const mithep::Muon * mu,
1306 +                                          const mithep::Vertex * vtx,
1307 +                                          const mithep::Array<mithep::PFCandidate> * fPFCandidates,
1308 +                                          float rho,
1309 +                                          mithep::MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
1310                                            vector<const mithep::Muon*> muonsToVeto,
1311                                            vector<const mithep::Electron*> electronsToVeto)
1312   //--------------------------------------------------------------------------------------------------
# Line 756 | Line 1314 | SelectionStatus muonReferenceIsoSelectio
1314    
1315    SelectionStatus status;
1316    
1317 <  double pfIso = muonPFIso04( ctrl, mu, vtx, fPFCandidates, fPUEnergyDensity,
1317 >  double pfIso = muonPFIso04( ctrl, mu, vtx, fPFCandidates, rho,
1318                                EffectiveAreaVersion, muonsToVeto ,electronsToVeto );
1319 +
1320 +  status.isoPF04 = pfIso;
1321 +  status.chisoPF04 = gChargedIso;
1322 +  status.gaisoPF04 = gGammaIso;
1323 +  status.neisoPF04 = gNeutralIso;
1324 +
1325    bool pass = false;
1326    if( (pfIso/mu->Pt()) < MUON_REFERENCE_PFISO_CUT ) pass = true;
1327    
# Line 772 | Line 1336 | SelectionStatus muonReferenceIsoSelectio
1336  
1337  
1338  
1339 +
1340   //--------------------------------------------------------------------------------------------------
1341   SelectionStatus electronIsoMVASelection(ControlFlags &ctrl,
1342                                          const mithep::Electron * ele,
1343 <                                        const mithep::Vertex & vtx,
1343 >                                        const mithep::Vertex * vtx,
1344                                          const mithep::Array<mithep::PFCandidate> * fPFCandidates,
1345                                          const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
1346                                          mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
# Line 814 | Line 1379 | SelectionStatus electronIsoMVASelection(
1379    Double_t tmpChargedIso_DR0p2To0p3  = 0;
1380    Double_t tmpChargedIso_DR0p3To0p4  = 0;
1381    Double_t tmpChargedIso_DR0p4To0p5  = 0;
817  Double_t tmpChargedIso_DR0p5To0p7  = 0;
1382  
1383    Double_t tmpGammaIso_DR0p0To0p1  = 0;
1384    Double_t tmpGammaIso_DR0p1To0p2  = 0;
1385    Double_t tmpGammaIso_DR0p2To0p3  = 0;
1386    Double_t tmpGammaIso_DR0p3To0p4  = 0;
1387    Double_t tmpGammaIso_DR0p4To0p5  = 0;
1388 <  Double_t tmpGammaIso_DR0p5To0p7  = 0;
1388 >
1389  
1390    Double_t tmpNeutralHadronIso_DR0p0To0p1  = 0;
1391    Double_t tmpNeutralHadronIso_DR0p1To0p2  = 0;
1392    Double_t tmpNeutralHadronIso_DR0p2To0p3  = 0;
1393    Double_t tmpNeutralHadronIso_DR0p3To0p4  = 0;
1394    Double_t tmpNeutralHadronIso_DR0p4To0p5  = 0;
831  Double_t tmpNeutralHadronIso_DR0p5To0p7  = 0;
1395  
1396          
1397  
# Line 858 | Line 1421 | SelectionStatus electronIsoMVASelection(
1421    //Loop over PF Candidates
1422    //
1423    for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
1424 +
1425 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
1426 +
1427      const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
1428      Double_t deta = (ele->Eta() - pf->Eta());
1429      Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
1430      Double_t dr = mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
1431 <    if (dr >= 0.5) continue;
1431 >    if (dr > 1.0) continue;
1432 >
1433      if(ctrl.debug) {
1434        cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt();
1435 <      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(vtx);
1435 >      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx);
1436        cout << endl;
1437      }
1438  
# Line 880 | Line 1447 | SelectionStatus electronIsoMVASelection(
1447      Bool_t IsLeptonFootprint = kFALSE;
1448      if (dr < 1.0) {
1449  
1450 +
1451        //
1452        // Check for electrons
1453        //
1454 +
1455        for (Int_t q=0; q < electronsToVeto.size(); ++q) {
1456          const mithep::Electron *tmpele = electronsToVeto[q];
1457 +        double tmpdr = mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta());
1458 +
1459          // 4l electron
1460          if( pf->HasTrackerTrk()  ) {
1461            if( pf->TrackerTrk() == tmpele->TrackerTrk() ) {
# Line 899 | Line 1470 | SelectionStatus electronIsoMVASelection(
1470            }
1471          }
1472          // PF charged
1473 <        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) > 1.479
903 <            && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015) {
1473 >        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479 && tmpdr < 0.015) {
1474            if( ctrl.debug) cout << "\tcharged trk, dR matches 4L ele ..." << endl;
1475            IsLeptonFootprint = kTRUE;
1476          }
1477          // PF gamma
1478 <        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) > 1.479
1479 <            && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.08) {
1478 >        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
1479 >            && tmpdr < 0.08) {
1480            if( ctrl.debug) cout << "\tPF gamma, matches 4L ele ..." << endl;
1481            IsLeptonFootprint = kTRUE;
1482          }
1483        } // loop over electrons
1484 <      
1484 >
1485 >
1486 >      /* KH - comment for sync            
1487        //
1488        // Check for muons
1489        //
# Line 930 | Line 1502 | SelectionStatus electronIsoMVASelection(
1502            IsLeptonFootprint = kTRUE;
1503          }
1504        } // loop over muons
1505 <
1505 >      */
1506  
1507      if (IsLeptonFootprint)
1508        continue;
# Line 940 | Line 1512 | SelectionStatus electronIsoMVASelection(
1512      //
1513      if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1514  
1515 <      if( pf->HasTrackerTrk() )
1516 <        if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1517 <      if( pf->HasGsfTrk() )
1518 <        if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1515 > //       if( pf->HasGsfTrk() ) {
1516 > //       if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1517 > //       } else if( pf->HasTrackerTrk() ){
1518 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1519 > //       }
1520  
1521        // Veto any PFmuon, or PFEle
1522        if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
# Line 960 | Line 1533 | SelectionStatus electronIsoMVASelection(
1533        if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
1534        if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
1535        if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
963      if (dr >= 0.5 && dr < 0.7) tmpChargedIso_DR0p5To0p7 += pf->Pt();
1536  
1537      }
1538  
# Line 969 | Line 1541 | SelectionStatus electronIsoMVASelection(
1541      //
1542      else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1543  
1544 <      if (fabs(ele->SCluster()->Eta()) > 1.479) {
973 <        if (mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta()) < 0.08) continue;
974 <      }
1544 >      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.08) continue;
1545  
1546        if( ctrl.debug) cout << "gamma:: " << pf->Pt() << " "
1547                             << dr << endl;
# Line 981 | Line 1551 | SelectionStatus electronIsoMVASelection(
1551        if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
1552        if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
1553        if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
984      if (dr >= 0.5 && dr < 0.7) tmpGammaIso_DR0p5To0p7 += pf->Pt();
985
1554      }
1555  
1556      //
# Line 996 | Line 1564 | SelectionStatus electronIsoMVASelection(
1564        if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
1565        if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
1566        if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
999      if (dr >= 0.5 && dr < 0.7) tmpNeutralHadronIso_DR0p5To0p7 += pf->Pt();
1567      }
1568  
1569      }
1570  
1571    }
1572  
1573 <  fChargedIso_DR0p0To0p1   = min((tmpChargedIso_DR0p0To0p1)/ele->Pt(), 2.5);
1574 <  fChargedIso_DR0p1To0p2   = min((tmpChargedIso_DR0p1To0p2)/ele->Pt(), 2.5);
1575 <  fChargedIso_DR0p2To0p3   = min((tmpChargedIso_DR0p2To0p3)/ele->Pt(), 2.5);
1576 <  fChargedIso_DR0p3To0p4   = min((tmpChargedIso_DR0p3To0p4)/ele->Pt(), 2.5);
1577 <  fChargedIso_DR0p4To0p5   = min((tmpChargedIso_DR0p4To0p5)/ele->Pt(), 2.5);
1573 >  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/ele->Pt(), 2.5);
1574 >  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/ele->Pt(), 2.5);
1575 >  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/ele->Pt(), 2.5);
1576 >  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/ele->Pt(), 2.5);
1577 >  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/ele->Pt(), 2.5);
1578 >
1579 >  if(ctrl.debug) {
1580 >    cout << "fChargedIso_DR0p0To0p1 : " << fChargedIso_DR0p0To0p1  << endl;
1581 >    cout << "fChargedIso_DR0p1To0p2 : " << fChargedIso_DR0p1To0p2  << endl;
1582 >    cout << "fChargedIso_DR0p2To0p3 : " << fChargedIso_DR0p2To0p3  << endl;
1583 >    cout << "fChargedIso_DR0p3To0p4 : " << fChargedIso_DR0p3To0p4  << endl;
1584 >    cout << "fChargedIso_DR0p4To0p5 : " << fChargedIso_DR0p4To0p5  << endl;
1585 >  }
1586 >
1587  
1588    double rho = 0;
1589    if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
1590      rho = fPUEnergyDensity->At(0)->Rho();
1591 +  //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
1592 +  //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
1593 +  
1594 +  // WARNING!!!!  
1595 +  // hardcode for sync ...
1596 +  EffectiveAreaVersion = eleT.kEleEAData2011;
1597 +  // WARNING!!!!  
1598 +
1599 +  if( ctrl.debug) {
1600 +    cout << "RHO: " << rho << endl;
1601 +    cout << "eta: " << ele->SCluster()->Eta() << endl;
1602 +    cout << "target: " << EffectiveAreaVersion << endl;
1603 +    cout << "effA 0-1: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p0To0p1,
1604 +                                                       ele->SCluster()->Eta(),
1605 +                                                       EffectiveAreaVersion)
1606 +         << endl;
1607 +    cout << "effA 1-2: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p1To0p2,
1608 +                                                       ele->SCluster()->Eta(),
1609 +                                                       EffectiveAreaVersion)
1610 +         << endl;
1611 +    cout << "effA 2-3: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p2To0p3,
1612 +                                                       ele->SCluster()->Eta(),
1613 +                                                       EffectiveAreaVersion)
1614 +         << endl;
1615 +    cout << "effA 3-4: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p3To0p4,
1616 +                                                       ele->SCluster()->Eta(),
1617 +                                                       EffectiveAreaVersion)
1618 +         << endl;
1619 +  }
1620 +
1621 +  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
1622 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p0To0p1,
1623 +                                                              ele->SCluster()->Eta(),
1624 +                                                              EffectiveAreaVersion))/ele->Pt()
1625 +                                 ,2.5)
1626 +                             ,0.0);
1627 +  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
1628 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p1To0p2,
1629 +                                                              ele->SCluster()->Eta(),
1630 +                                                              EffectiveAreaVersion))/ele->Pt()
1631 +                                 ,2.5)
1632 +                             ,0.0);
1633 +  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
1634 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p2To0p3,
1635 +                                                              ele->SCluster()->Eta()
1636 +                                                              ,EffectiveAreaVersion))/ele->Pt()
1637 +                                 ,2.5)
1638 +                             ,0.0);
1639 +  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
1640 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p3To0p4,
1641 +                                                              ele->SCluster()->Eta(),
1642 +                                                              EffectiveAreaVersion))/ele->Pt()
1643 +                                 ,2.5)
1644 +                             ,0.0);
1645 +  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
1646 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p4To0p5,
1647 +                                                              ele->SCluster()->Eta(),
1648 +                                                              EffectiveAreaVersion))/ele->Pt()
1649 +                                 ,2.5)
1650 +                             ,0.0);
1651 +
1652 +
1653 +  if( ctrl.debug) {
1654 +    cout << "fGammaIso_DR0p0To0p1: " << fGammaIso_DR0p0To0p1 << endl;
1655 +    cout << "fGammaIso_DR0p1To0p2: " << fGammaIso_DR0p1To0p2 << endl;
1656 +    cout << "fGammaIso_DR0p2To0p3: " << fGammaIso_DR0p2To0p3 << endl;
1657 +    cout << "fGammaIso_DR0p3To0p4: " << fGammaIso_DR0p3To0p4 << endl;
1658 +    cout << "fGammaIso_DR0p4To0p5: " << fGammaIso_DR0p4To0p5 << endl;
1659 +  }
1660 +
1661 +  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
1662 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p0To0p1,
1663 +                                                                 ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1664 +                                         , 2.5)
1665 +                                     , 0.0);
1666 +  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
1667 +                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p1To0p2,
1668 +                                                                   ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1669 +                                           , 2.5)
1670 +                                       , 0.0);
1671 +  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
1672 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p2To0p3,
1673 +                                                                 ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1674 +                                         , 2.5)
1675 +                                     , 0.0);
1676 +  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
1677 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p3To0p4,
1678 +                                                                 ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
1679 +                                         , 2.5)
1680 +                                     , 0.0);
1681 +  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
1682 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p4To0p5,
1683 +                                                                 ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
1684 +                                         , 2.5)
1685 +                                     , 0.0);
1686 +
1687 +  if( ctrl.debug) {
1688 +    cout << "fNeutralHadronIso_DR0p0To0p1: " << fNeutralHadronIso_DR0p0To0p1 << endl;
1689 +    cout << "fNeutralHadronIso_DR0p1To0p2: " << fNeutralHadronIso_DR0p1To0p2 << endl;
1690 +    cout << "fNeutralHadronIso_DR0p2To0p3: " << fNeutralHadronIso_DR0p2To0p3 << endl;
1691 +    cout << "fNeutralHadronIso_DR0p3To0p4: " << fNeutralHadronIso_DR0p3To0p4 << endl;
1692 +    cout << "fNeutralHadronIso_DR0p4To0p5: " << fNeutralHadronIso_DR0p4To0p5 << endl;
1693 +  }
1694 +
1695 +  double mvaval = eleIsoMVA->MVAValue_IsoRings( ele->Pt(),
1696 +                                                ele->SCluster()->Eta(),
1697 +                                                fChargedIso_DR0p0To0p1,
1698 +                                                fChargedIso_DR0p1To0p2,
1699 +                                                fChargedIso_DR0p2To0p3,
1700 +                                                fChargedIso_DR0p3To0p4,
1701 +                                                fChargedIso_DR0p4To0p5,
1702 +                                                fGammaIso_DR0p0To0p1,
1703 +                                                fGammaIso_DR0p1To0p2,
1704 +                                                fGammaIso_DR0p2To0p3,
1705 +                                                fGammaIso_DR0p3To0p4,
1706 +                                                fGammaIso_DR0p4To0p5,
1707 +                                                fNeutralHadronIso_DR0p0To0p1,
1708 +                                                fNeutralHadronIso_DR0p1To0p2,
1709 +                                                fNeutralHadronIso_DR0p2To0p3,
1710 +                                                fNeutralHadronIso_DR0p3To0p4,
1711 +                                                fNeutralHadronIso_DR0p4To0p5,
1712 +                                                ctrl.debug);
1713 +
1714 +  SelectionStatus status;
1715 +  status.isoMVA = mvaval;
1716 +  bool pass = false;
1717 +
1718 +  Int_t subdet = 0;
1719 +  if (fabs(ele->SCluster()->Eta()) < 0.8) subdet = 0;
1720 +  else if (fabs(ele->SCluster()->Eta()) < 1.479) subdet = 1;
1721 +  else subdet = 2;
1722 +
1723 +  Int_t ptBin = 0;
1724 +  if (ele->Pt() >= 10.0) ptBin = 1;
1725 +  
1726 +  Int_t MVABin = -1;
1727 +  if (subdet == 0 && ptBin == 0) MVABin = 0;
1728 +  if (subdet == 1 && ptBin == 0) MVABin = 1;
1729 +  if (subdet == 2 && ptBin == 0) MVABin = 2;
1730 +  if (subdet == 0 && ptBin == 1) MVABin = 3;
1731 +  if (subdet == 1 && ptBin == 1) MVABin = 4;
1732 +  if (subdet == 2 && ptBin == 1) MVABin = 5;
1733 +
1734 +  pass = false;
1735 +  if( MVABin == 0 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN0 ) pass = true;
1736 +  if( MVABin == 1 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN1 ) pass = true;
1737 +  if( MVABin == 2 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN2 ) pass = true;
1738 +  if( MVABin == 3 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN3 ) pass = true;
1739 +  if( MVABin == 4 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN4 ) pass = true;
1740 +  if( MVABin == 5 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN5 ) pass = true;
1741 +  //  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
1742 +  if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
1743 +
1744 + //   pass = false;
1745 + //   if( MVABin == 0 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN0 ) pass = true;
1746 + //   if( MVABin == 1 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN1 ) pass = true;
1747 + //   if( MVABin == 2 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN2 ) pass = true;
1748 + //   if( MVABin == 3 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN3 ) pass = true;
1749 + //   if( MVABin == 4 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN4 ) pass = true;
1750 + //   if( MVABin == 5 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN5 ) pass = true;
1751 + //   if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
1752 +
1753 +  if(ctrl.debug) cout << "returning status : " << hex << status.getStatus() << dec << endl;
1754 +  return status;
1755 +  
1756 + }
1757 +
1758 +
1759 + //--------------------------------------------------------------------------------------------------
1760 + SelectionStatus electronIsoMVASelection(ControlFlags &ctrl,
1761 +                                        const mithep::Electron * ele,
1762 +                                        const mithep::Vertex * vtx,
1763 +                                        const mithep::Array<mithep::PFCandidate> * fPFCandidates,
1764 +                                        float rho,
1765 +                                        //const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
1766 +                                        mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
1767 +                                        vector<const mithep::Muon*> muonsToVeto,
1768 +                                        vector<const mithep::Electron*> electronsToVeto)
1769 + //--------------------------------------------------------------------------------------------------
1770 + // hacked version
1771 + {
1772 +  if( ctrl.debug ) {
1773 +    cout << "================> hacked ele Iso MVA <======================" << endl;
1774 +  }
1775 +
1776 +  if( ctrl.debug ) {
1777 +    cout << "electronIsoMVASelection :: muons to veto " << endl;
1778 +    for( int i=0; i<muonsToVeto.size(); i++ ) {
1779 +      const mithep::Muon * vmu = muonsToVeto[i];
1780 +      cout << "\tpt: " << vmu->Pt()
1781 +           << "\teta: " << vmu->Eta()
1782 +           << "\tphi: " << vmu->Phi()
1783 +           << endl;
1784 +    }
1785 +    cout << "electronIsoMVASelection :: electrson to veto " << endl;
1786 +    for( int i=0; i<electronsToVeto.size(); i++ ) {
1787 +      const mithep::Electron * vel = electronsToVeto[i];
1788 +      cout << "\tpt: " << vel->Pt()
1789 +           << "\teta: " << vel->Eta()
1790 +           << "\tphi: " << vel->Phi()
1791 +           << "\ttrk: " << vel->TrackerTrk()
1792 +           << endl;
1793 +    }
1794 +  }
1795 +
1796 +  bool failiso=false;
1797 +
1798 +  //
1799 +  // tmp iso rings
1800 +  //
1801 +  Double_t tmpChargedIso_DR0p0To0p1  = 0;
1802 +  Double_t tmpChargedIso_DR0p1To0p2  = 0;
1803 +  Double_t tmpChargedIso_DR0p2To0p3  = 0;
1804 +  Double_t tmpChargedIso_DR0p3To0p4  = 0;
1805 +  Double_t tmpChargedIso_DR0p4To0p5  = 0;
1806 +
1807 +  Double_t tmpGammaIso_DR0p0To0p1  = 0;
1808 +  Double_t tmpGammaIso_DR0p1To0p2  = 0;
1809 +  Double_t tmpGammaIso_DR0p2To0p3  = 0;
1810 +  Double_t tmpGammaIso_DR0p3To0p4  = 0;
1811 +  Double_t tmpGammaIso_DR0p4To0p5  = 0;
1812 +
1813 +
1814 +  Double_t tmpNeutralHadronIso_DR0p0To0p1  = 0;
1815 +  Double_t tmpNeutralHadronIso_DR0p1To0p2  = 0;
1816 +  Double_t tmpNeutralHadronIso_DR0p2To0p3  = 0;
1817 +  Double_t tmpNeutralHadronIso_DR0p3To0p4  = 0;
1818 +  Double_t tmpNeutralHadronIso_DR0p4To0p5  = 0;
1819 +
1820 +        
1821 +
1822 +  //
1823 +  // final rings for the MVA
1824 +  //
1825 +  Double_t fChargedIso_DR0p0To0p1;
1826 +  Double_t fChargedIso_DR0p1To0p2;
1827 +  Double_t fChargedIso_DR0p2To0p3;
1828 +  Double_t fChargedIso_DR0p3To0p4;
1829 +  Double_t fChargedIso_DR0p4To0p5;
1830 +
1831 +  Double_t fGammaIso_DR0p0To0p1;
1832 +  Double_t fGammaIso_DR0p1To0p2;
1833 +  Double_t fGammaIso_DR0p2To0p3;
1834 +  Double_t fGammaIso_DR0p3To0p4;
1835 +  Double_t fGammaIso_DR0p4To0p5;
1836 +
1837 +  Double_t fNeutralHadronIso_DR0p0To0p1;
1838 +  Double_t fNeutralHadronIso_DR0p1To0p2;
1839 +  Double_t fNeutralHadronIso_DR0p2To0p3;
1840 +  Double_t fNeutralHadronIso_DR0p3To0p4;
1841 +  Double_t fNeutralHadronIso_DR0p4To0p5;
1842 +
1843 +
1844 +  //
1845 +  //Loop over PF Candidates
1846 +  //
1847 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
1848 +
1849 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
1850 +
1851 +    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
1852 +    Double_t deta = (ele->Eta() - pf->Eta());
1853 +    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
1854 +    Double_t dr = mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
1855 +    if (dr > 1.0) continue;
1856 +
1857 +    if(ctrl.debug) {
1858 +      cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt();
1859 +      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx);
1860 +      cout << endl;
1861 +    }
1862 +
1863 +
1864 +    if ( (pf->HasTrackerTrk() && (pf->TrackerTrk() == ele->TrackerTrk())) ||
1865 +         (pf->HasGsfTrk() && (pf->GsfTrk() == ele->GsfTrk()))) continue;
1866 +    
1867 +
1868 +    //
1869 +    // Lepton Footprint Removal
1870 +    //
1871 +    Bool_t IsLeptonFootprint = kFALSE;
1872 +    if (dr < 1.0) {
1873 +
1874 +
1875 +      //
1876 +      // Check for electrons
1877 +      //
1878 +
1879 +      for (Int_t q=0; q < electronsToVeto.size(); ++q) {
1880 +        const mithep::Electron *tmpele = electronsToVeto[q];
1881 +        double tmpdr = mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta());
1882 +
1883 +        // 4l electron
1884 +        if( pf->HasTrackerTrk()  ) {
1885 +          if( pf->TrackerTrk() == tmpele->TrackerTrk() ) {
1886 +            if( ctrl.debug) cout << "\tcharged tktrk, matches 4L ele ..." << endl;
1887 +            IsLeptonFootprint = kTRUE;
1888 +          }
1889 +        }
1890 +        if( pf->HasGsfTrk()  ) {
1891 +          if( pf->GsfTrk() == tmpele->GsfTrk() ) {
1892 +            if( ctrl.debug) cout << "\tcharged gsftrk, matches 4L ele ..." << endl;
1893 +            IsLeptonFootprint = kTRUE;
1894 +          }
1895 +        }
1896 +        // PF charged
1897 +        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479 && tmpdr < 0.015) {
1898 +          if( ctrl.debug) cout << "\tcharged trk, dR matches 4L ele ..." << endl;
1899 +          IsLeptonFootprint = kTRUE;
1900 +        }
1901 +        // PF gamma
1902 +        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
1903 +            && tmpdr < 0.08) {
1904 +          if( ctrl.debug) cout << "\tPF gamma, matches 4L ele ..." << endl;
1905 +          IsLeptonFootprint = kTRUE;
1906 +        }
1907 +      } // loop over electrons
1908 +
1909 +
1910 +      /* KH - comment for sync            
1911 +      //
1912 +      // Check for muons
1913 +      //
1914 +      for (Int_t q=0; q < muonsToVeto.size(); ++q) {
1915 +        const mithep::Muon *tmpmu = muonsToVeto[q];
1916 +        // 4l muon
1917 +        if( pf->HasTrackerTrk() ) {
1918 +          if (pf->TrackerTrk() == tmpmu->TrackerTrk() ){
1919 +            if( ctrl.debug) cout << "\tmatches 4L mu ..." << endl;
1920 +            IsLeptonFootprint = kTRUE;
1921 +          }
1922 +        }
1923 +        // PF charged
1924 +        if (pf->Charge() != 0 && mithep::MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01) {
1925 +          if( ctrl.debug) cout << "\tcharged trk, dR matches 4L mu ..." << endl;
1926 +          IsLeptonFootprint = kTRUE;
1927 +        }
1928 +      } // loop over muons
1929 +      */
1930 +
1931 +    if (IsLeptonFootprint)
1932 +      continue;
1933 +
1934 +    //
1935 +    // Charged Iso Rings
1936 +    //
1937 +    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1938 +
1939 + //       if( pf->HasGsfTrk() ) {
1940 + //       if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1941 + //       } else if( pf->HasTrackerTrk() ){
1942 + //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1943 + //       }
1944 +
1945 +      // Veto any PFmuon, or PFEle
1946 +      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
1947 +
1948 +      // Footprint Veto
1949 +      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.015) continue;
1950 +
1951 +      if( ctrl.debug) cout << "charged:: pt: " << pf->Pt()
1952 +                           << "\ttype: " << pf->PFType()
1953 +                           << "\ttrk: " << pf->TrackerTrk() << endl;
1954 +
1955 +      if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
1956 +      if (dr >= 0.1 && dr < 0.2) tmpChargedIso_DR0p1To0p2 += pf->Pt();
1957 +      if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
1958 +      if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
1959 +      if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
1960 +
1961 +    }
1962 +
1963 +    //
1964 +    // Gamma Iso Rings
1965 +    //
1966 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1967 +
1968 +      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.08) continue;
1969 +
1970 +      if( ctrl.debug) cout << "gamma:: " << pf->Pt() << " "
1971 +                           << dr << endl;
1972 +
1973 +      if (dr < 0.1) tmpGammaIso_DR0p0To0p1 += pf->Pt();
1974 +      if (dr >= 0.1 && dr < 0.2) tmpGammaIso_DR0p1To0p2 += pf->Pt();
1975 +      if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
1976 +      if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
1977 +      if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
1978 +    }
1979 +
1980 +    //
1981 +    // Other Neutral Iso Rings
1982 +    //
1983 +    else {
1984 +      if( ctrl.debug) cout << "neutral:: " << pf->Pt() << " "
1985 +                           << dr << endl;
1986 +      if (dr < 0.1) tmpNeutralHadronIso_DR0p0To0p1 += pf->Pt();
1987 +      if (dr >= 0.1 && dr < 0.2) tmpNeutralHadronIso_DR0p1To0p2 += pf->Pt();
1988 +      if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
1989 +      if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
1990 +      if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
1991 +    }
1992 +
1993 +    }
1994 +
1995 +  }
1996 +
1997 +  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/ele->Pt(), 2.5);
1998 +  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/ele->Pt(), 2.5);
1999 +  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/ele->Pt(), 2.5);
2000 +  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/ele->Pt(), 2.5);
2001 +  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/ele->Pt(), 2.5);
2002 +
2003 +  if(ctrl.debug) {
2004 +    cout << "fChargedIso_DR0p0To0p1 : " << fChargedIso_DR0p0To0p1  << endl;
2005 +    cout << "fChargedIso_DR0p1To0p2 : " << fChargedIso_DR0p1To0p2  << endl;
2006 +    cout << "fChargedIso_DR0p2To0p3 : " << fChargedIso_DR0p2To0p3  << endl;
2007 +    cout << "fChargedIso_DR0p3To0p4 : " << fChargedIso_DR0p3To0p4  << endl;
2008 +    cout << "fChargedIso_DR0p4To0p5 : " << fChargedIso_DR0p4To0p5  << endl;
2009 +  }
2010 +
2011 +
2012 +  //  rho=0;
2013 +  //  double rho = 0;
2014 +  //   if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
2015 +  //     rho = fPUEnergyDensity->At(0)->Rho();
2016 +  //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
2017 +  //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
2018 +  
2019 +  // WARNING!!!!  
2020 +  // hardcode for sync ...
2021 +  EffectiveAreaVersion = eleT.kEleEAData2011;
2022 +  // WARNING!!!!  
2023  
2024    if( ctrl.debug) {
2025      cout << "RHO: " << rho << endl;
# Line 1035 | Line 2043 | SelectionStatus electronIsoMVASelection(
2043           << endl;
2044    }
2045  
2046 <  fGammaIso_DR0p0To0p1 = max(min((tmpGammaIso_DR0p0To0p1
2046 >  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
2047                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p0To0p1,
2048                                                                ele->SCluster()->Eta(),
2049                                                                EffectiveAreaVersion))/ele->Pt()
2050                                   ,2.5)
2051                               ,0.0);
2052 <  fGammaIso_DR0p1To0p2 = max(min((tmpGammaIso_DR0p1To0p2
2052 >  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
2053                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p1To0p2,
2054                                                                ele->SCluster()->Eta(),
2055                                                                EffectiveAreaVersion))/ele->Pt()
2056                                   ,2.5)
2057                               ,0.0);
2058 <  fGammaIso_DR0p2To0p3 = max(min((tmpGammaIso_DR0p2To0p3
2058 >  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
2059                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p2To0p3,
2060                                                                ele->SCluster()->Eta()
2061                                                                ,EffectiveAreaVersion))/ele->Pt()
2062                                   ,2.5)
2063                               ,0.0);
2064 <  fGammaIso_DR0p3To0p4 = max(min((tmpGammaIso_DR0p3To0p4
2064 >  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
2065                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p3To0p4,
2066                                                                ele->SCluster()->Eta(),
2067                                                                EffectiveAreaVersion))/ele->Pt()
2068                                   ,2.5)
2069                               ,0.0);
2070 <  fGammaIso_DR0p4To0p5 = max(min((tmpGammaIso_DR0p4To0p5
2070 >  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
2071                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p4To0p5,
2072                                                                ele->SCluster()->Eta(),
2073                                                                EffectiveAreaVersion))/ele->Pt()
# Line 1067 | Line 2075 | SelectionStatus electronIsoMVASelection(
2075                               ,0.0);
2076  
2077  
2078 <  fNeutralHadronIso_DR0p0To0p1 = max(min((tmpNeutralHadronIso_DR0p0To0p1
2078 >  if( ctrl.debug) {
2079 >    cout << "fGammaIso_DR0p0To0p1: " << fGammaIso_DR0p0To0p1 << endl;
2080 >    cout << "fGammaIso_DR0p1To0p2: " << fGammaIso_DR0p1To0p2 << endl;
2081 >    cout << "fGammaIso_DR0p2To0p3: " << fGammaIso_DR0p2To0p3 << endl;
2082 >    cout << "fGammaIso_DR0p3To0p4: " << fGammaIso_DR0p3To0p4 << endl;
2083 >    cout << "fGammaIso_DR0p4To0p5: " << fGammaIso_DR0p4To0p5 << endl;
2084 >  }
2085 >
2086 >  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
2087                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p0To0p1,
2088                                                                   ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
2089                                           , 2.5)
2090                                       , 0.0);
2091 <  fNeutralHadronIso_DR0p1To0p2 = max(min((tmpNeutralHadronIso_DR0p1To0p2
2091 >  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
2092                                              -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p1To0p2,
2093                                                                     ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
2094                                             , 2.5)
2095                                         , 0.0);
2096 <  fNeutralHadronIso_DR0p2To0p3 = max(min((tmpNeutralHadronIso_DR0p2To0p3
2096 >  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
2097                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p2To0p3,
2098                                                                   ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
2099                                           , 2.5)
2100                                       , 0.0);
2101 <  fNeutralHadronIso_DR0p3To0p4 = max(min((tmpNeutralHadronIso_DR0p3To0p4
2101 >  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
2102                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p3To0p4,
2103                                                                   ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
2104                                           , 2.5)
2105                                       , 0.0);
2106 <  fNeutralHadronIso_DR0p4To0p5 = max(min((tmpNeutralHadronIso_DR0p4To0p5
2106 >  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
2107                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p4To0p5,
2108                                                                   ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
2109                                           , 2.5)
2110                                       , 0.0);
2111  
2112 +  if( ctrl.debug) {
2113 +    cout << "fNeutralHadronIso_DR0p0To0p1: " << fNeutralHadronIso_DR0p0To0p1 << endl;
2114 +    cout << "fNeutralHadronIso_DR0p1To0p2: " << fNeutralHadronIso_DR0p1To0p2 << endl;
2115 +    cout << "fNeutralHadronIso_DR0p2To0p3: " << fNeutralHadronIso_DR0p2To0p3 << endl;
2116 +    cout << "fNeutralHadronIso_DR0p3To0p4: " << fNeutralHadronIso_DR0p3To0p4 << endl;
2117 +    cout << "fNeutralHadronIso_DR0p4To0p5: " << fNeutralHadronIso_DR0p4To0p5 << endl;
2118 +  }
2119 +
2120    double mvaval = eleIsoMVA->MVAValue_IsoRings( ele->Pt(),
2121                                                  ele->SCluster()->Eta(),
2122                                                  fChargedIso_DR0p0To0p1,
# Line 1113 | Line 2137 | SelectionStatus electronIsoMVASelection(
2137                                                  ctrl.debug);
2138  
2139    SelectionStatus status;
2140 +  status.isoMVA = mvaval;
2141    bool pass = false;
2142  
2143    Int_t subdet = 0;
2144    if (fabs(ele->SCluster()->Eta()) < 0.8) subdet = 0;
2145    else if (fabs(ele->SCluster()->Eta()) < 1.479) subdet = 1;
2146    else subdet = 2;
2147 +
2148    Int_t ptBin = 0;
2149 <  if (ele->Pt() > 10.0) ptBin = 1;
2149 >  if (ele->Pt() >= 10.0) ptBin = 1;
2150    
2151    Int_t MVABin = -1;
2152    if (subdet == 0 && ptBin == 0) MVABin = 0;
# Line 1139 | Line 2165 | SelectionStatus electronIsoMVASelection(
2165    if( MVABin == 5 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN5 ) pass = true;
2166    if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
2167  
2168 <  pass = false;
2169 <  if( MVABin == 0 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN0 ) pass = true;
2170 <  if( MVABin == 1 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN1 ) pass = true;
2171 <  if( MVABin == 2 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN2 ) pass = true;
2172 <  if( MVABin == 3 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN3 ) pass = true;
2173 <  if( MVABin == 4 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN4 ) pass = true;
2174 <  if( MVABin == 5 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN5 ) pass = true;
2175 <  if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
2168 > //   pass = false;
2169 > //   if( MVABin == 0 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN0 ) pass = true;
2170 > //   if( MVABin == 1 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN1 ) pass = true;
2171 > //   if( MVABin == 2 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN2 ) pass = true;
2172 > //   if( MVABin == 3 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN3 ) pass = true;
2173 > //   if( MVABin == 4 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN4 ) pass = true;
2174 > //   if( MVABin == 5 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN5 ) pass = true;
2175 > //   if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
2176  
2177    if(ctrl.debug) cout << "returning status : " << hex << status.getStatus() << dec << endl;
2178    return status;
# Line 1170 | Line 2196 | void initElectronIsoMVA() {
2196  
2197  
2198  
2199 +
2200   //--------------------------------------------------------------------------------------------------
2201   float electronPFIso04(ControlFlags &ctrl,
2202 <                                const mithep::Electron * ele,
2203 <                                const mithep::Vertex & vtx,
2204 <                                const mithep::Array<mithep::PFCandidate> * fPFCandidates,
2205 <                                const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
2206 <                                mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
2207 <                                vector<const mithep::Muon*> muonsToVeto,
2208 <                                vector<const mithep::Electron*> electronsToVeto)
2202 >                      const mithep::Electron * ele,
2203 >                      const mithep::Vertex * vtx,
2204 >                      const mithep::Array<mithep::PFCandidate> * fPFCandidates,
2205 >                      const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
2206 >                      mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
2207 >                      vector<const mithep::PFCandidate*> photonsToVeto)        
2208 > //--------------------------------------------------------------------------------------------------
2209 > {
2210 >
2211 >  //
2212 >  // final iso
2213 >  //
2214 >  Double_t fChargedIso = 0.0;
2215 >  Double_t fGammaIso = 0.0;
2216 >  Double_t fNeutralHadronIso = 0.0;
2217 >
2218 >
2219 >  //
2220 >  //Loop over PF Candidates
2221 >  //
2222 >  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2223 >
2224 >    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
2225 >
2226 >    //
2227 >    // veto FSR recovered photons
2228 >    //
2229 >    bool vetoPhoton = false;
2230 >    for( int p=0; p<photonsToVeto.size(); p++ ) {
2231 >      if( pf == photonsToVeto[p] ) {
2232 >        vetoPhoton = true;
2233 >        break;
2234 >      }
2235 >    } if( vetoPhoton ) continue;
2236 >
2237 >    Double_t deta = (ele->Eta() - pf->Eta());
2238 >    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
2239 >    Double_t dr = mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
2240 >
2241 >    if (dr > 0.4) continue;
2242 >    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
2243 >
2244 >    if(ctrl.debug) {
2245 >      cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt() << "\tdR: " << dr;
2246 >      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx)
2247 >                                     << "\ttrk: " << pf->HasTrackerTrk()
2248 >                                     << "\tgsf: " << pf->HasGsfTrk();
2249 >      
2250 >      cout << endl;
2251 >    }
2252 >
2253 >
2254 >    //
2255 >    // sync : I don't think theyre doing this ...
2256 >    //
2257 >    //     if ( (pf->HasTrackerTrk() && (pf->TrackerTrk() == ele->TrackerTrk())) ||
2258 >    //   (pf->HasGsfTrk() && (pf->GsfTrk() == ele->GsfTrk()))) {
2259 >    //       if( ctrl.debug ) cout << "\tskipping, matches to the electron ..."  << endl;
2260 >    //       continue;
2261 >    //     }
2262 >
2263 >
2264 >    //
2265 >    // Lepton Footprint Removal
2266 >    //
2267 >    Bool_t IsLeptonFootprint = kFALSE;
2268 >    if (dr < 1.0) {
2269 >
2270 >
2271 >    //
2272 >    // Charged Iso
2273 >    //
2274 >    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
2275 >
2276 >      // Veto any PFmuon, or PFEle
2277 >      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) {
2278 >        if( ctrl.debug ) cout << "\t skipping, pf is and ele or mu .." <<endl;
2279 >        continue;
2280 >      }
2281 >
2282 >      // Footprint Veto
2283 >      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.015) continue;
2284 >
2285 >      if( ctrl.debug) cout << "charged:: pt: " << pf->Pt()
2286 >                           << "\ttype: " << pf->PFType()
2287 >                           << "\ttrk: " << pf->TrackerTrk() << endl;
2288 >
2289 >      fChargedIso += pf->Pt();
2290 >    }
2291 >
2292 >    //
2293 >    // Gamma Iso
2294 >    //
2295 >    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
2296 >
2297 >      if (fabs(ele->SCluster()->Eta()) > 1.479) {
2298 >        if (mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta()) < 0.08) continue;
2299 >      }
2300 >      if( ctrl.debug) cout << "gamma:: " << pf->Pt() << " "
2301 >                           << dr << endl;
2302 >      // KH, add to sync
2303 >      //      if( pf->Pt() > 0.5 )
2304 >        fGammaIso += pf->Pt();
2305 >    }
2306 >
2307 >    //
2308 >    // Neutral Iso
2309 >    //
2310 >    else {
2311 >      if( ctrl.debug) cout << "neutral:: " << pf->Pt() << " "
2312 >                           << dr << endl;
2313 >      // KH, add to sync
2314 >      //      if( pf->Pt() > 0.5 )
2315 >        fNeutralHadronIso += pf->Pt();
2316 >    }
2317 >
2318 >    }
2319 >
2320 >  }
2321 >
2322 >
2323 >  double rho=0;
2324 >  if( (EffectiveAreaVersion == mithep::ElectronTools::kEleEAFall11MC) ||
2325 >      (EffectiveAreaVersion == mithep::ElectronTools::kEleEAData2011) ) {
2326 >    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25()) ||
2327 >          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25())))
2328 >      rho = fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25();
2329 >    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2330 >    EffectiveAreaVersion  = mithep::ElectronTools::kEleEAData2011;
2331 >    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2332 >  } else {
2333 >    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJets()) ||
2334 >          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJets())))
2335 >      rho = fPUEnergyDensity->At(0)->RhoKt6PFJets();
2336 >    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2337 >    EffectiveAreaVersion  = mithep::ElectronTools::kEleEAData2012;
2338 >    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2339 >  }
2340 >  if(ctrl.debug) cout << "rho: " << rho << endl;
2341 >
2342 >  double pfIso = fChargedIso + fmax(0.0,(fGammaIso + fNeutralHadronIso
2343 >                                        -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaAndNeutralHadronIso04,
2344 >                                                                   ele->Eta(),EffectiveAreaVersion)));
2345 >
2346 >
2347 >  gChargedIso = fChargedIso;
2348 >  gGammaIso = fGammaIso;
2349 >  gNeutralIso = fNeutralHadronIso;  
2350 >
2351 >  if( ctrl.debug ) {
2352 >    cout << "PFiso: " << pfIso
2353 >         << "\tfChargedIso: " << fChargedIso
2354 >         << "\tfGammaIso: " << fGammaIso
2355 >         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2356 >         << endl;
2357 >  }
2358 >
2359 >  return pfIso;
2360 > }
2361 >
2362 >
2363 >
2364 > //--------------------------------------------------------------------------------------------------
2365 > // hacked version
2366 > float electronPFIso04(ControlFlags &ctrl,
2367 >                      const mithep::Electron * ele,
2368 >                      const mithep::Vertex * vtx,
2369 >                      const mithep::Array<mithep::PFCandidate> * fPFCandidates,
2370 >                      float rho,
2371 >                      mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
2372 >                      vector<const mithep::Muon*> muonsToVeto,
2373 >                      vector<const mithep::Electron*> electronsToVeto)
2374   //--------------------------------------------------------------------------------------------------
2375   {
2376  
# Line 1191 | Line 2383 | float electronPFIso04(ControlFlags &ctrl
2383             << "\tphi: " << vmu->Phi()
2384             << endl;
2385      }
2386 <    cout << "electronIsoMVASelection :: electrson to veto " << endl;
2386 >    cout << "electronIsoMVASelection :: electrons to veto " << endl;
2387      for( int i=0; i<electronsToVeto.size(); i++ ) {
2388        const mithep::Electron * vel = electronsToVeto[i];
2389        cout << "\tpt: " << vel->Pt()
# Line 1206 | Line 2398 | float electronPFIso04(ControlFlags &ctrl
2398    //
2399    // final iso
2400    //
2401 <  Double_t fChargedIso;
2402 <  Double_t fGammaIso;
2403 <  Double_t fNeutralHadronIso;
2401 >  Double_t fChargedIso = 0.0;
2402 >  Double_t fGammaIso = 0.0;
2403 >  Double_t fNeutralHadronIso = 0.0;
2404  
2405  
2406    //
2407    //Loop over PF Candidates
2408    //
2409    for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2410 +
2411 +
2412      const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
2413      Double_t deta = (ele->Eta() - pf->Eta());
2414      Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
2415      Double_t dr = mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
2416 <    if (dr >= 0.4) continue;
2416 >
2417 >    if (dr > 0.4) continue;
2418 >    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
2419 >
2420      if(ctrl.debug) {
2421 <      cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt();
2422 <      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(vtx);
2421 >      cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt() << "\tdR: " << dr;
2422 >      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx)
2423 >                                     << "\ttrk: " << pf->HasTrackerTrk()
2424 >                                     << "\tgsf: " << pf->HasGsfTrk();
2425 >      
2426        cout << endl;
2427      }
2428  
2429  
2430 <    if ( (pf->HasTrackerTrk() && (pf->TrackerTrk() == ele->TrackerTrk())) ||
2431 <         (pf->HasGsfTrk() && (pf->GsfTrk() == ele->GsfTrk()))) continue;
2432 <    
2430 >    //
2431 >    // sync : I don't think theyre doing this ...
2432 >    //
2433 >    //     if ( (pf->HasTrackerTrk() && (pf->TrackerTrk() == ele->TrackerTrk())) ||
2434 >    //   (pf->HasGsfTrk() && (pf->GsfTrk() == ele->GsfTrk()))) {
2435 >    //       if( ctrl.debug ) cout << "\tskipping, matches to the electron ..."  << endl;
2436 >    //       continue;
2437 >    //     }
2438 >
2439  
2440      //
2441      // Lepton Footprint Removal
# Line 1242 | Line 2448 | float electronPFIso04(ControlFlags &ctrl
2448        //
2449        for (Int_t q=0; q < electronsToVeto.size(); ++q) {
2450          const mithep::Electron *tmpele = electronsToVeto[q];
2451 +        /*
2452          // 4l electron
2453          if( pf->HasTrackerTrk()  ) {
2454            if( pf->TrackerTrk() == tmpele->TrackerTrk() ) {
# Line 1255 | Line 2462 | float electronPFIso04(ControlFlags &ctrl
2462              IsLeptonFootprint = kTRUE;
2463            }
2464          }
2465 +        */
2466          // PF charged
2467          if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) > 1.479
2468              && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015) {
# Line 1268 | Line 2476 | float electronPFIso04(ControlFlags &ctrl
2476            IsLeptonFootprint = kTRUE;
2477          }
2478        } // loop over electrons
2479 <      
2479 >
2480 >      /* KH - comment for sync            
2481        //
2482        // Check for muons
2483        //
# Line 1287 | Line 2496 | float electronPFIso04(ControlFlags &ctrl
2496            IsLeptonFootprint = kTRUE;
2497          }
2498        } // loop over muons
2499 <
2499 >      */
2500  
2501      if (IsLeptonFootprint)
2502        continue;
2503  
2504      //
2505 <    // Charged Iso Rings
2505 >    // Charged Iso
2506      //
2507      if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
2508  
2509 <      if( pf->HasTrackerTrk() )
2510 <        if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
2511 <      if( pf->HasGsfTrk() )
2512 <        if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
2509 > //       if( pf->HasTrackerTrk() )
2510 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
2511 > //       if( pf->HasGsfTrk() )
2512 > //      if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
2513  
2514        // Veto any PFmuon, or PFEle
2515 <      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
2515 >      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) {
2516 >        if( ctrl.debug ) cout << "\t skipping, pf is and ele or mu .." <<endl;
2517 >        continue;
2518 >      }
2519  
2520        // Footprint Veto
2521        if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.015) continue;
# Line 1325 | Line 2537 | float electronPFIso04(ControlFlags &ctrl
2537        }
2538        if( ctrl.debug) cout << "gamma:: " << pf->Pt() << " "
2539                             << dr << endl;
2540 <      fGammaIso += pf->Pt();
2540 >      // KH, add to sync
2541 >      //      if( pf->Pt() > 0.5 )
2542 >        fGammaIso += pf->Pt();
2543      }
2544  
2545      //
# Line 1334 | Line 2548 | float electronPFIso04(ControlFlags &ctrl
2548      else {
2549        if( ctrl.debug) cout << "neutral:: " << pf->Pt() << " "
2550                             << dr << endl;
2551 <      fNeutralHadronIso += pf->Pt();
2551 >      // KH, add to sync
2552 >      //      if( pf->Pt() > 0.5 )
2553 >        fNeutralHadronIso += pf->Pt();
2554      }
2555  
2556      }
2557  
2558    }
2559  
2560 <  double rho = 0;
2561 <  if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
2562 <    rho = fPUEnergyDensity->At(0)->Rho();
2560 > //   double rho = 0;
2561 > //   if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
2562 > //     rho = fPUEnergyDensity->At(0)->Rho();
2563  
2564    // WARNING!!!!  
2565    // hardcode for sync ...
# Line 1351 | Line 2567 | float electronPFIso04(ControlFlags &ctrl
2567    // WARNING!!!!  
2568  
2569  
2570 <  double pfIso = fChargedIso +
2571 <    max(0.0,fGammaIso -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIso04,
2572 <                                                ele->Eta(),EffectiveAreaVersion)) +
2573 <    max(0.0,fNeutralHadronIso -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIso04,
2574 <                                                        ele->Eta(),EffectiveAreaVersion)) ;
2570 >  double pfIso = fChargedIso + fmax(0.0,(fGammaIso + fNeutralHadronIso
2571 >                                        -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaAndNeutralHadronIso04,
2572 >                                                                   ele->Eta(),EffectiveAreaVersion)));
2573 >
2574 >
2575 >  gChargedIso = fChargedIso;
2576 >  gGammaIso = fGammaIso;
2577 >  gNeutralIso = fNeutralHadronIso;  
2578    return pfIso;
2579   }
2580  
2581 +
2582   //--------------------------------------------------------------------------------------------------
2583   SelectionStatus electronReferenceIsoSelection(ControlFlags &ctrl,
2584                                                const mithep::Electron * ele,
2585 <                                              const mithep::Vertex & vtx,
2585 >                                              const mithep::Vertex * vtx,
2586                                                const mithep::Array<mithep::PFCandidate> * fPFCandidates,
2587                                                const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
2588                                                mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
2589 +                                              vector<const mithep::PFCandidate*> photonsToVeto)
2590 + //--------------------------------------------------------------------------------------------------
2591 + {
2592 +
2593 +  SelectionStatus status;
2594 +
2595 +  double pfIso = electronPFIso04( ctrl, ele, vtx, fPFCandidates, fPUEnergyDensity,
2596 +                                  EffectiveAreaVersion, photonsToVeto);
2597 +  //  cout << "--------------> setting electron isoPF04 to " << pfIso << endl;
2598 +  status.isoPF04 = pfIso;
2599 +  status.chisoPF04 = gChargedIso;
2600 +  status.gaisoPF04 = gGammaIso;
2601 +  status.neisoPF04 = gNeutralIso;
2602 +
2603 +  bool pass = false;
2604 +  if( (pfIso/ele->Pt()) < ELECTRON_REFERENCE_PFISO_CUT ) pass = true;
2605 +
2606 +  if( pass ) {
2607 +    status.orStatus(SelectionStatus::LOOSEISO);
2608 +    status.orStatus(SelectionStatus::TIGHTISO);
2609 +  }
2610 +  if(ctrl.debug) {
2611 +    cout << "el relpfIso: " << pfIso/ele->Pt() << endl;
2612 +    cout << "returning status : " << hex << status.getStatus() << dec << endl;
2613 +  }
2614 +  return status;
2615 +
2616 + }
2617 +
2618 +
2619 + //--------------------------------------------------------------------------------------------------
2620 + // hacked version
2621 + SelectionStatus electronReferenceIsoSelection(ControlFlags &ctrl,
2622 +                                              const mithep::Electron * ele,
2623 +                                              const mithep::Vertex * vtx,
2624 +                                              const mithep::Array<mithep::PFCandidate> * fPFCandidates,
2625 +                                              float rho,
2626 +                                              mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
2627                                                vector<const mithep::Muon*> muonsToVeto,
2628                                                vector<const mithep::Electron*> electronsToVeto)
2629   //--------------------------------------------------------------------------------------------------
# Line 1373 | Line 2631 | SelectionStatus electronReferenceIsoSele
2631  
2632    SelectionStatus status;
2633  
2634 <  double pfIso = electronPFIso04( ctrl, ele, vtx, fPFCandidates, fPUEnergyDensity,
2634 >  double pfIso = electronPFIso04( ctrl, ele, vtx, fPFCandidates, rho,
2635                                    EffectiveAreaVersion, muonsToVeto ,electronsToVeto );
2636 +  status.isoPF04 = pfIso;
2637 +  status.chisoPF04 = gChargedIso;
2638 +  status.gaisoPF04 = gGammaIso;
2639 +  status.neisoPF04 = gNeutralIso;
2640    bool pass = false;
2641    if( (pfIso/ele->Pt()) < ELECTRON_REFERENCE_PFISO_CUT ) pass = true;
2642  
# Line 1386 | Line 2648 | SelectionStatus electronReferenceIsoSele
2648    return status;
2649  
2650   }
2651 +
2652 +
2653 +
2654 + //--------------------------------------------------------------------------------------------------
2655 + double  dbetaCorrectedIsoDr03(ControlFlags & ctrl,
2656 +                              const mithep::PFCandidate * photon,
2657 +                              const mithep::Muon * lepton,
2658 +                              const mithep::Array<mithep::PFCandidate> * fPFCandidates)
2659 + //--------------------------------------------------------------------------------------------------
2660 + {
2661 +
2662 +  //
2663 +  // final iso
2664 +  //
2665 +  Double_t fChargedIso  = 0.0;
2666 +  Double_t fGammaIso  = 0.0;
2667 +  Double_t fNeutralHadronIso  = 0.0;
2668 +  Double_t fpfPU  = 0.0;
2669 +
2670 +  //
2671 +  // Loop over PF Candidates
2672 +  //
2673 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2674 +
2675 +    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
2676 +    
2677 +    Double_t deta = (photon->Eta() - pf->Eta());
2678 +    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2679 +    Double_t dr = mithep::MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2680 +    if (dr > 0.3) continue;
2681 +
2682 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2683 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2684 +        fpfPU += pf->Pt();
2685 +      continue;
2686 +    }
2687 +    
2688 +    //
2689 +    // skip this photon
2690 +    //
2691 +    if( abs(pf->PFType()) == mithep::PFCandidate::eGamma &&
2692 +        pf->Et() == photon->Et() ) continue;
2693 +    
2694 +      
2695 +    //
2696 +    // Charged Iso
2697 +    //
2698 +    if (pf->Charge() != 0 ) {
2699 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2700 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2701 +        fChargedIso += pf->Pt();
2702 +    }
2703 +    
2704 +    //
2705 +    // Gamma Iso
2706 +    //
2707 +    else if (abs(pf->PFType()) == mithep::PFCandidate::eGamma) {
2708 +      if( pf->Pt() > 0.5 && dr > 0.01)
2709 +        fGammaIso += pf->Pt();
2710 +    }
2711 +    
2712 +    //
2713 +    // Other Neutrals
2714 +    //
2715 +    else {
2716 +      if( pf->Pt() > 0.5 && dr > 0.01)
2717 +        fNeutralHadronIso += pf->Pt();
2718 +    }
2719 +    
2720 +  }
2721 +  
2722 +  if( ctrl.debug ) {
2723 +    cout << "photon dbetaIso :: " << endl;
2724 +    cout << "\tfChargedIso: " << fChargedIso
2725 +         << "\tfGammaIso: " << fGammaIso
2726 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2727 +         << "\tfpfPU: " << fpfPU
2728 +         << endl;
2729 +  }
2730 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso - 0.5*fpfPU;
2731 +  return pfIso/photon->Pt();
2732 + }
2733 +
2734 +
2735 + //--------------------------------------------------------------------------------------------------
2736 + double  dbetaCorrectedIsoDr03(ControlFlags & ctrl,
2737 +                              const mithep::PFCandidate * photon,
2738 +                              const mithep::Electron * lepton,
2739 +                              const mithep::Array<mithep::PFCandidate> * fPFCandidates)
2740 + //--------------------------------------------------------------------------------------------------
2741 + {
2742 +
2743 +  //
2744 +  // final iso
2745 +  //
2746 +  Double_t fChargedIso  = 0.0;
2747 +  Double_t fGammaIso  = 0.0;
2748 +  Double_t fNeutralHadronIso  = 0.0;
2749 +  Double_t fpfPU  = 0.0;
2750 +
2751 +  //
2752 +  // Loop over PF Candidates
2753 +  //
2754 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2755 +
2756 +    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
2757 +    
2758 +    Double_t deta = (photon->Eta() - pf->Eta());
2759 +    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2760 +    Double_t dr = mithep::MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2761 +    if (dr > 0.3) continue;
2762 +
2763 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2764 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2765 +        fpfPU += pf->Pt();
2766 +      continue;
2767 +    }
2768 +    
2769 +    //
2770 +    // skip this photon
2771 +    //
2772 +    if( abs(pf->PFType()) == mithep::PFCandidate::eGamma &&
2773 +        pf->Et() == photon->Et() ) continue;
2774 +    
2775 +      
2776 +    //
2777 +    // Charged Iso
2778 +    //
2779 +    if (pf->Charge() != 0 ) {
2780 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2781 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2782 +        fChargedIso += pf->Pt();
2783 +    }
2784 +    
2785 +    //
2786 +    // Gamma Iso
2787 +    //
2788 +    else if (abs(pf->PFType()) == mithep::PFCandidate::eGamma) {
2789 +      if( pf->Pt() > 0.5 && dr > 0.01)
2790 +        fGammaIso += pf->Pt();
2791 +    }
2792 +    
2793 +    //
2794 +    // Other Neutrals
2795 +    //
2796 +    else {
2797 +      if( pf->Pt() > 0.5 && dr > 0.01)
2798 +        fNeutralHadronIso += pf->Pt();
2799 +    }
2800 +    
2801 +  }
2802 +  
2803 +  if( ctrl.debug ) {
2804 +    cout << "photon dbetaIso :: " << endl;
2805 +    cout << "\tfChargedIso: " << fChargedIso
2806 +         << "\tfGammaIso: " << fGammaIso
2807 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2808 +         << "\tfpfPU: " << fpfPU
2809 +         << endl;
2810 +  }
2811 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso - 0.5*fpfPU;
2812 +  return pfIso/photon->Pt();
2813 + }
2814 +
2815 +
2816 +
2817 +
2818 +
2819 + //--------------------------------------------------------------------------------------------------
2820 + double  nonCorrectedIsoDr03(ControlFlags & ctrl,
2821 +                            const mithep::PFCandidate * photon,
2822 +                            const mithep::Muon * lepton,
2823 +                            const mithep::Array<mithep::PFCandidate> * fPFCandidates)
2824 + //--------------------------------------------------------------------------------------------------
2825 + {
2826 +
2827 +  //
2828 +  // final iso
2829 +  //
2830 +  Double_t fChargedIso  = 0.0;
2831 +  Double_t fGammaIso  = 0.0;
2832 +  Double_t fNeutralHadronIso  = 0.0;
2833 +  Double_t fpfPU  = 0.0;
2834 +
2835 +  //
2836 +  // Loop over PF Candidates
2837 +  //
2838 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2839 +
2840 +    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
2841 +
2842 +    Double_t deta = (photon->Eta() - pf->Eta());
2843 +    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2844 +    Double_t dr = mithep::MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2845 +    if (dr > 0.3) continue;
2846 +
2847 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2848 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2849 +        fpfPU += pf->Pt();
2850 +      continue;
2851 +    }
2852 +    
2853 +    //
2854 +    // skip this photon
2855 +    //
2856 +    if( abs(pf->PFType()) == mithep::PFCandidate::eGamma &&
2857 +        pf->Et() == photon->Et() ) continue;
2858 +    
2859 +      
2860 +    //
2861 +    // Charged Iso
2862 +    //
2863 +    if (pf->Charge() != 0 ) {
2864 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2865 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2866 +        fChargedIso += pf->Pt();
2867 +    }
2868 +    
2869 +    //
2870 +    // Gamma Iso
2871 +    //
2872 +    else if (abs(pf->PFType()) == mithep::PFCandidate::eGamma) {
2873 +      if( pf->Pt() > 0.5 && dr > 0.01)
2874 +        fGammaIso += pf->Pt();
2875 +    }
2876 +    
2877 +    //
2878 +    // Other Neutrals
2879 +    //
2880 +    else {
2881 +      if( pf->Pt() > 0.5 && dr > 0.01)
2882 +        fNeutralHadronIso += pf->Pt();
2883 +    }
2884 +    
2885 +  }
2886 +  
2887 +  if( ctrl.debug ) {
2888 +    cout << "photon dbetaIso :: " << endl;
2889 +    cout << "\tfChargedIso: " << fChargedIso
2890 +         << "\tfGammaIso: " << fGammaIso
2891 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2892 +         << "\tfpfPU: " << fpfPU
2893 +         << endl;
2894 +  }
2895 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso + fpfPU;
2896 +  return pfIso/photon->Pt();
2897 + }
2898 +
2899 +
2900 +
2901 + //--------------------------------------------------------------------------------------------------
2902 + double  nonCorrectedIsoDr03(ControlFlags & ctrl,
2903 +                            const mithep::PFCandidate * photon,
2904 +                            const mithep::Electron * lepton,
2905 +                            const mithep::Array<mithep::PFCandidate> * fPFCandidates)
2906 + //--------------------------------------------------------------------------------------------------
2907 + {
2908 +
2909 +  //
2910 +  // final iso
2911 +  //
2912 +  Double_t fChargedIso  = 0.0;
2913 +  Double_t fGammaIso  = 0.0;
2914 +  Double_t fNeutralHadronIso  = 0.0;
2915 +  Double_t fpfPU  = 0.0;
2916 +
2917 +  //
2918 +  // Loop over PF Candidates
2919 +  //
2920 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2921 +
2922 +    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
2923 +
2924 +    Double_t deta = (photon->Eta() - pf->Eta());
2925 +    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2926 +    Double_t dr = mithep::MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2927 +    if (dr > 0.3) continue;
2928 +
2929 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2930 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2931 +        fpfPU += pf->Pt();
2932 +      continue;
2933 +    }
2934 +    
2935 +    //
2936 +    // skip this photon
2937 +    //
2938 +    if( abs(pf->PFType()) == mithep::PFCandidate::eGamma &&
2939 +        pf->Et() == photon->Et() ) continue;
2940 +    
2941 +      
2942 +    //
2943 +    // Charged Iso
2944 +    //
2945 +    if (pf->Charge() != 0 ) {
2946 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2947 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2948 +        fChargedIso += pf->Pt();
2949 +    }
2950 +    
2951 +    //
2952 +    // Gamma Iso
2953 +    //
2954 +    else if (abs(pf->PFType()) == mithep::PFCandidate::eGamma) {
2955 +      if( pf->Pt() > 0.5 && dr > 0.01)
2956 +        fGammaIso += pf->Pt();
2957 +    }
2958 +    
2959 +    //
2960 +    // Other Neutrals
2961 +    //
2962 +    else {
2963 +      if( pf->Pt() > 0.5 && dr > 0.01)
2964 +        fNeutralHadronIso += pf->Pt();
2965 +    }
2966 +    
2967 +  }
2968 +  
2969 +  if( ctrl.debug ) {
2970 +    cout << "photon dbetaIso :: " << endl;
2971 +    cout << "\tfChargedIso: " << fChargedIso
2972 +         << "\tfGammaIso: " << fGammaIso
2973 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2974 +         << "\tfpfPU: " << fpfPU
2975 +         << endl;
2976 +  }
2977 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso + fpfPU;
2978 +  return pfIso/photon->Pt();
2979 + }
2980 +
2981 +
2982 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines