ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitHzz4l/LeptonSelection/src/IsolationSelection.cc
(Generate patch)

Comparing UserCode/MitHzz4l/LeptonSelection/src/IsolationSelection.cc (file contents):
Revision 1.2 by khahn, Fri Feb 17 14:49:00 2012 UTC vs.
Revision 1.34 by dkralph, Tue Oct 23 10:41:23 2012 UTC

# Line 3 | Line 3
3   #include "IsolationSelection.h"
4   #include "IsolationSelectionDefs.h"
5  
6 < bool pairwiseIsoSelection( ControlFlags &ctrl, vector<SimpleLepton> &lepvec, float rho ) {
6 > #include "MathUtils.h"
7 > #include "MuonTools.h"
8 > #include "MuonIDMVA.h"
9 > #include "ElectronTools.h"
10 > #include "ElectronIDMVA.h"
11  
12 <  bool passiso=true;
12 > MuonIDMVA     * muIsoMVA;
13 > MuonTools       muT;
14 > ElectronIDMVA * eleIsoMVA;
15 > ElectronTools   eleT;
16  
17 <  for( int i=0; i<lepvec.size(); i++ )
18 <    {
19 <      
20 <      if( !(lepvec[i].is4l) ) continue;
14 <      
15 <      float effArea_ecal_i, effArea_hcal_i;
16 <      if( lepvec[i].isEB ) {
17 <        if( lepvec[i].type == 11 ) {
18 <          effArea_ecal_i = 0.101;
19 <          effArea_hcal_i = 0.021;
20 <        } else {
21 <          effArea_ecal_i = 0.074;
22 <          effArea_hcal_i = 0.022;
23 <        }
24 <      } else {
25 <        if( lepvec[i].type == 11 ) {
26 <          effArea_ecal_i = 0.046;
27 <          effArea_hcal_i = 0.040;
28 <        } else {
29 <          effArea_ecal_i = 0.045;
30 <          effArea_hcal_i = 0.030;
31 <        }
32 <      }
33 <      
34 <      float isoEcal_corr_i = lepvec[i].isoEcal - (effArea_ecal_i*rho);
35 <      float isoHcal_corr_i = lepvec[i].isoHcal - (effArea_hcal_i*rho);
36 <
37 <      for( int j=i+1; j<lepvec.size(); j++ )
38 <        {
17 > // global hack to sync
18 > double gChargedIso;
19 > double gGammaIso;
20 > double gNeutralIso;
21  
22 <          if( !(lepvec[j].is4l) ) continue;
41 <
42 <          float effArea_ecal_j, effArea_hcal_j;
43 <          if( lepvec[j].isEB ) {
44 <            if( lepvec[j].type == 11 ) {
45 <              effArea_ecal_j = 0.101;
46 <              effArea_hcal_j = 0.021;
47 <            } else {
48 <              effArea_ecal_j = 0.074;
49 <              effArea_hcal_j = 0.022;
50 <            }
51 <          } else {
52 <            if( lepvec[j].type == 11 ) {
53 <              effArea_ecal_j = 0.046;
54 <              effArea_hcal_j = 0.040;
55 <            } else {
56 <              effArea_ecal_j = 0.045;
57 <              effArea_hcal_j = 0.030;
58 <            }
59 <          }
22 > extern vector<bool> PFnoPUflag;
23  
24 <          float isoEcal_corr_j = lepvec[j].isoEcal - (effArea_ecal_j*rho);
25 <          float isoHcal_corr_j = lepvec[j].isoHcal - (effArea_hcal_j*rho);
26 <          float RIso_i = (lepvec[i].isoTrk+isoEcal_corr_i+isoHcal_corr_i)/lepvec[i].vec->Pt();
27 <          float RIso_j = (lepvec[j].isoTrk+isoEcal_corr_j+isoHcal_corr_j)/lepvec[j].vec->Pt();      
28 <          float comboIso = RIso_i + RIso_j;
29 <          
30 <          if( comboIso > 0.35 ) {
31 <            if( ctrl.debug ) cout << "combo failing for indices: " << i << "," << j << endl;
32 <            passiso = false;
33 <            return passiso;
34 <          }
35 <        }
36 <    }
24 > //--------------------------------------------------------------------------------------------------
25 > Float_t computePFMuonIso(const Muon *muon,
26 >                         const Vertex * vtx,
27 >                         const Array<PFCandidate> * fPFCandidates,
28 >                         const Double_t dRMax)
29 > //--------------------------------------------------------------------------------------------------
30 > {
31 >  const Double_t dRMin    = 0;
32 >  const Double_t neuPtMin = 1.0;
33 >  const Double_t dzMax    = 0.1;
34 >    
35 >  Double_t zLepton = (muon->BestTrk()) ? muon->BestTrk()->DzCorrected(*vtx) : 0.0;
36 >  
37 >  Float_t iso=0;
38 >  for(UInt_t ipf=0; ipf<fPFCandidates->GetEntries(); ipf++) {
39 >    const PFCandidate *pfcand = fPFCandidates->At(ipf);
40 >    
41 >    if(!pfcand->HasTrk() && (pfcand->Pt()<=neuPtMin)) continue;  // pT cut on neutral particles
42 >    
43 >    // exclude THE muon
44 >    if(pfcand->TrackerTrk() && muon->TrackerTrk() && (pfcand->TrackerTrk()==muon->TrackerTrk())) continue;
45 >    
46 >    // dz cut
47 >    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(*vtx) - zLepton) : 0;
48 >    if(dz >= dzMax) continue;
49 >    
50 >    // check iso cone
51 >    Double_t dr = MathUtils::DeltaR(muon->Mom(), pfcand->Mom());
52 >    if(dr<dRMax && dr>=dRMin)
53 >      iso += pfcand->Pt();
54 >  }
55    
56 <  return passiso;
56 >  return iso;
57   }
58  
59 <
60 < SelectionStatus passMuonIsoSelection( ControlFlags &ctrl, const mithep::TMuon * mu ) {
61 <
62 <  float reliso = mu->pfIso03/mu->pt;
63 <  bool isEB = (fabs(mu->eta) < 1.479 ? 1 : 0 );  
59 > //--------------------------------------------------------------------------------------------------
60 > Float_t computePFEleIso(const Electron *electron,
61 >                        const Vertex * fVertex,
62 >                        const Array<PFCandidate> * fPFCandidates,
63 >                        const Double_t dRMax)
64 > //--------------------------------------------------------------------------------------------------
65 > {
66 >  const Double_t dRMin    = 0;
67 >  const Double_t neuPtMin = 1.0;
68 >  const Double_t dzMax    = 0.1;
69 >    
70 >  Double_t zLepton = (electron->BestTrk()) ? electron->BestTrk()->DzCorrected(*fVertex) : 0.0;
71 >  
72 >  Float_t iso=0;
73 >  for(UInt_t ipf=0; ipf<fPFCandidates->GetEntries(); ipf++) {
74 >    const PFCandidate *pfcand = (PFCandidate*)(fPFCandidates->At(ipf));
75 >    
76 >    if(!pfcand->HasTrk() && (pfcand->Pt()<=neuPtMin)) continue;  // pT cut on neutral particles
77 >    
78 >    // dz cut
79 >    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(*fVertex) - zLepton) : 0;
80 >    if(dz >= dzMax) continue;
81 >    
82 >    // remove THE electron
83 >    if(pfcand->TrackerTrk() && electron->TrackerTrk() && (pfcand->TrackerTrk()==electron->TrackerTrk())) continue;
84 >    if(pfcand->GsfTrk()     && electron->GsfTrk()     && (pfcand->GsfTrk()==electron->GsfTrk()))         continue;
85 >    
86 >    // check iso cone
87 >    Double_t dr = MathUtils::DeltaR(electron->Mom(), pfcand->Mom());
88 >    if(dr<dRMax && dr>=dRMin) {
89 >      // eta-strip veto for photons
90 >      if((pfcand->PFType() == PFCandidate::eGamma) && fabs(electron->Eta() - pfcand->Eta()) < 0.025) continue;
91 >      
92 >      // Inner cone (one tower = dR < 0.07) veto for non-photon neutrals
93 >      if(!pfcand->HasTrk() && (pfcand->PFType() == PFCandidate::eNeutralHadron) &&
94 >         (MathUtils::DeltaR(electron->Mom(), pfcand->Mom()) < 0.07)) continue;
95 >      
96 >      iso += pfcand->Pt();
97 >    }
98 >  }
99 >  
100 >  return iso;
101 > };
102 > //--------------------------------------------------------------------------------------------------
103 > SelectionStatus muonIsoSelection(ControlFlags &ctrl,
104 >                                 const Muon * mu,
105 >                                 const Vertex * vtx,
106 >                                 const Array<PFCandidate> * fPFCandidateCol   )
107 > //--------------------------------------------------------------------------------------------------
108 > {
109 >  float reliso = computePFMuonIso(mu,vtx,fPFCandidateCol,0.3)/mu->Pt();
110 >  bool isEB = (fabs(mu->Eta()) < 1.479 ? 1 : 0 );  
111    bool failiso = false;
112 <  if( isEB && mu->pt > 20 && reliso > PFISO_MU_LOOSE_EB_HIGHPT ) {  
112 >  if( isEB && mu->Pt() > 20 && reliso > PFISO_MU_LOOSE_EB_HIGHPT ) {  
113      failiso = true;
114    }
115 <  if( isEB && mu->pt < 20 && reliso > PFISO_MU_LOOSE_EB_LOWPT ) {
115 >  if( isEB && mu->Pt() < 20 && reliso > PFISO_MU_LOOSE_EB_LOWPT ) {
116      failiso = true;
117    }
118 <  if( !(isEB) && mu->pt > 20 && reliso > PFISO_MU_LOOSE_EE_HIGHPT ) {
118 >  if( !(isEB) && mu->Pt() > 20 && reliso > PFISO_MU_LOOSE_EE_HIGHPT ) {
119      failiso = true;
120    }
121 <  if( !(isEB) && mu->pt < 20 && reliso > PFISO_MU_LOOSE_EE_LOWPT ) {
121 >  if( !(isEB) && mu->Pt() < 20 && reliso > PFISO_MU_LOOSE_EE_LOWPT ) {
122      failiso = true;
123    }
124  
# Line 101 | Line 129 | SelectionStatus passMuonIsoSelection( Co
129  
130   };
131  
132 <
133 < SelectionStatus failEleIso(ControlFlags &ctrl, const mithep::TElectron * ele) {
132 > //--------------------------------------------------------------------------------------------------
133 > SelectionStatus electronIsoSelection(ControlFlags &ctrl,
134 >                                     const Electron * ele,
135 >                                     const Vertex *fVertex,
136 >                                     const Array<PFCandidate> * fPFCandidates)
137 > //--------------------------------------------------------------------------------------------------
138 > {
139  
140    bool failiso=false;
141  
142 <  float reliso = ele->pfIso04/ele->pt;
143 <  bool isEB = (fabs(ele->eta) < 1.479 ? 1 : 0 );  
144 <  if( isEB && ele->pt > 20 && reliso > PFISO_ELE_LOOSE_EB_HIGHPT ) {
142 >  float reliso = computePFEleIso(ele,fVertex,fPFCandidates,0.4)/ele->Pt();
143 >
144 >  if( ele->IsEB() && ele->Pt() > 20 && reliso > PFISO_ELE_LOOSE_EB_HIGHPT ) {
145      failiso = true;
146    }
147 <  if( isEB && ele->pt < 20 && reliso > PFISO_ELE_LOOSE_EB_LOWPT ) {
147 >  if( ele->IsEB() && ele->Pt() < 20 && reliso > PFISO_ELE_LOOSE_EB_LOWPT ) {
148      failiso = true;
149    }
150 <  if(ctrl.debug) cout << "before iso check ..." << endl;
118 <  if( !(isEB) && ele->pt > 20 && reliso > PFISO_ELE_LOOSE_EE_HIGHPT ) {
119 <    if(ctrl.debug) cout << "\tit fails ..." << endl;
150 >  if( !(ele->IsEB()) && ele->Pt() > 20 && reliso > PFISO_ELE_LOOSE_EE_HIGHPT ) {
151      failiso = true;
152    }
153 <  if( !(isEB) && ele->pt < 20 && reliso > PFISO_ELE_LOOSE_EE_LOWPT ) {
153 >  if( !(ele->IsEB()) && ele->Pt() < 20 && reliso > PFISO_ELE_LOOSE_EE_LOWPT ) {
154      failiso = true;
155    }
156  
157    SelectionStatus status;
158    if( !failiso ) {
159 <    status.setStatus(SelectionStatus::LOOSEISO);
160 <    status.setStatus(SelectionStatus::TIGHTISO);
159 >    status.orStatus(SelectionStatus::LOOSEISO);
160 >    status.orStatus(SelectionStatus::TIGHTISO);
161 >  }
162 >  if(ctrl.debug) cout << "returning status : " << hex << status.getStatus() << dec << endl;
163 >  return status;
164 >
165 > }
166 >
167 >
168 > bool noIso(ControlFlags &, vector<SimpleLepton> &, float rho) {
169 >
170 >        return true;
171 > }
172 >
173 > //--------------------------------------------------------------------------------------------------
174 > SelectionStatus muonIsoMVASelection(ControlFlags &ctrl,
175 >                                    const Muon * mu,
176 >                                    const Vertex * vtx,
177 >                                    const Array<PFCandidate> * fPFCandidates,
178 >                                    const Array<PileupEnergyDensity> * fPUEnergyDensity,
179 >                                    MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
180 >                                    vector<const Muon*> muonsToVeto,
181 >                                    vector<const Electron*> electronsToVeto)
182 > //--------------------------------------------------------------------------------------------------
183 > {
184 >
185 >  if( ctrl.debug ) {
186 >    cout << "muonIsoMVASelection :: muons to veto " << endl;
187 >    for( int i=0; i<muonsToVeto.size(); i++ ) {
188 >      const Muon * vmu = muonsToVeto[i];
189 >      cout << "\tpt: " << vmu->Pt()
190 >           << "\teta: " << vmu->Eta()
191 >           << "\tphi: " << vmu->Phi()
192 >           << endl;
193 >    }
194 >    cout << "muonIsoMVASelection :: electrson to veto " << endl;
195 >    for( int i=0; i<electronsToVeto.size(); i++ ) {
196 >      const Electron * vel = electronsToVeto[i];
197 >      cout << "\tpt: " << vel->Pt()
198 >           << "\teta: " << vel->Eta()
199 >           << "\tphi: " << vel->Phi()
200 >           << endl;
201 >    }
202 >  }
203 >  bool failiso=false;
204 >
205 >  //
206 >  // tmp iso rings
207 >  //
208 >  Double_t tmpChargedIso_DR0p0To0p1  = 0;
209 >  Double_t tmpChargedIso_DR0p1To0p2  = 0;
210 >  Double_t tmpChargedIso_DR0p2To0p3  = 0;
211 >  Double_t tmpChargedIso_DR0p3To0p4  = 0;
212 >  Double_t tmpChargedIso_DR0p4To0p5  = 0;
213 >  Double_t tmpChargedIso_DR0p5To0p7  = 0;
214 >
215 >  Double_t tmpGammaIso_DR0p0To0p1  = 0;
216 >  Double_t tmpGammaIso_DR0p1To0p2  = 0;
217 >  Double_t tmpGammaIso_DR0p2To0p3  = 0;
218 >  Double_t tmpGammaIso_DR0p3To0p4  = 0;
219 >  Double_t tmpGammaIso_DR0p4To0p5  = 0;
220 >  Double_t tmpGammaIso_DR0p5To0p7  = 0;
221 >
222 >  Double_t tmpNeutralHadronIso_DR0p0To0p1  = 0;
223 >  Double_t tmpNeutralHadronIso_DR0p1To0p2  = 0;
224 >  Double_t tmpNeutralHadronIso_DR0p2To0p3  = 0;
225 >  Double_t tmpNeutralHadronIso_DR0p3To0p4  = 0;
226 >  Double_t tmpNeutralHadronIso_DR0p4To0p5  = 0;
227 >  Double_t tmpNeutralHadronIso_DR0p5To0p7  = 0;
228 >
229 >        
230 >
231 >  //
232 >  // final rings for the MVA
233 >  //
234 >  Double_t fChargedIso_DR0p0To0p1;
235 >  Double_t fChargedIso_DR0p1To0p2;
236 >  Double_t fChargedIso_DR0p2To0p3;
237 >  Double_t fChargedIso_DR0p3To0p4;
238 >  Double_t fChargedIso_DR0p4To0p5;
239 >  Double_t fChargedIso_DR0p5To0p7;
240 >
241 >  Double_t fGammaIso_DR0p0To0p1;
242 >  Double_t fGammaIso_DR0p1To0p2;
243 >  Double_t fGammaIso_DR0p2To0p3;
244 >  Double_t fGammaIso_DR0p3To0p4;
245 >  Double_t fGammaIso_DR0p4To0p5;
246 >  Double_t fGammaIso_DR0p5To0p7;
247 >
248 >  Double_t fNeutralHadronIso_DR0p0To0p1;
249 >  Double_t fNeutralHadronIso_DR0p1To0p2;
250 >  Double_t fNeutralHadronIso_DR0p2To0p3;
251 >  Double_t fNeutralHadronIso_DR0p3To0p4;
252 >  Double_t fNeutralHadronIso_DR0p4To0p5;
253 >  Double_t fNeutralHadronIso_DR0p5To0p7;
254 >
255 >
256 >  //
257 >  //Loop over PF Candidates
258 >  //
259 >  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
260 >
261 >    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
262 >
263 >    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
264 >
265 >    Double_t deta = (mu->Eta() - pf->Eta());
266 >    Double_t dphi = MathUtils::DeltaPhi(Double_t(mu->Phi()),Double_t(pf->Phi()));
267 >    Double_t dr = MathUtils::DeltaR(mu->Phi(),mu->Eta(), pf->Phi(), pf->Eta());
268 >    if (dr > 1.0) continue;
269 >
270 >    if (pf->HasTrackerTrk() && (pf->TrackerTrk() == mu->TrackerTrk()) ) continue;
271 >
272 >    //
273 >    // Lepton Footprint Removal
274 >    //
275 >    Bool_t IsLeptonFootprint = kFALSE;
276 >    if (dr < 1.0) {
277 >
278 >      //
279 >      // Check for electrons
280 >      //
281 >      for (Int_t q=0; q < electronsToVeto.size(); ++q) {
282 >        const Electron *tmpele = electronsToVeto[q];
283 >        // 4l electron
284 >        if( pf->HasTrackerTrk() ) {
285 >          if( pf->TrackerTrk() == tmpele->TrackerTrk() )
286 >            IsLeptonFootprint = kTRUE;
287 >        }
288 >        if( pf->HasGsfTrk() ) {
289 >          if( pf->GsfTrk() == tmpele->GsfTrk() )
290 >            IsLeptonFootprint = kTRUE;
291 >        }
292 >        // PF charged
293 >        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479
294 >            && MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015)
295 >          IsLeptonFootprint = kTRUE;
296 >        // PF gamma
297 >        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
298 >            && MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.08)
299 >          IsLeptonFootprint = kTRUE;
300 >      } // loop over electrons
301 >      
302 >      /* KH - commented for sync
303 >      //
304 >      // Check for muons
305 >      //
306 >      for (Int_t q=0; q < muonsToVeto.size(); ++q) {
307 >        const Muon *tmpmu = muonsToVeto[q];
308 >        // 4l muon
309 >        if( pf->HasTrackerTrk() ) {
310 >          if( pf->TrackerTrk() == tmpmu->TrackerTrk() )
311 >            IsLeptonFootprint = kTRUE;
312 >        }
313 >        // PF charged
314 >        if (pf->Charge() != 0 && MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01)
315 >          IsLeptonFootprint = kTRUE;
316 >      } // loop over muons
317 >      */
318 >
319 >    if (IsLeptonFootprint)
320 >      continue;
321 >
322 >    //
323 >    // Charged Iso Rings
324 >    //
325 >    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
326 >
327 >      if( dr < 0.01 ) continue; // only for muon iso mva?
328 >      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
329 >
330 > //       if( pf->HasTrackerTrk() ) {
331 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
332 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
333 > //                            << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
334 > //                            << dr << endl;
335 > //       }
336 > //       if( pf->HasGsfTrk() ) {
337 > //      if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
338 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
339 > //                            << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
340 > //                            << dr << endl;
341 > //       }
342 >
343 >      // Footprint Veto
344 >      if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
345 >      if (dr >= 0.1 && dr < 0.2) tmpChargedIso_DR0p1To0p2 += pf->Pt();
346 >      if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
347 >      if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
348 >      if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
349 >      if (dr >= 0.5 && dr < 0.7) tmpChargedIso_DR0p5To0p7 += pf->Pt();
350 >    }
351 >
352 >    //
353 >    // Gamma Iso Rings
354 >    //
355 >    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
356 >      if (dr < 0.1) tmpGammaIso_DR0p0To0p1 += pf->Pt();
357 >      if (dr >= 0.1 && dr < 0.2) tmpGammaIso_DR0p1To0p2 += pf->Pt();
358 >      if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
359 >      if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
360 >      if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
361 >      if (dr >= 0.5 && dr < 0.7) tmpGammaIso_DR0p5To0p7 += pf->Pt();
362 >    }
363 >
364 >    //
365 >    // Other Neutral Iso Rings
366 >    //
367 >    else {
368 >      if (dr < 0.1) tmpNeutralHadronIso_DR0p0To0p1 += pf->Pt();
369 >      if (dr >= 0.1 && dr < 0.2) tmpNeutralHadronIso_DR0p1To0p2 += pf->Pt();
370 >      if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
371 >      if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
372 >      if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
373 >      if (dr >= 0.5 && dr < 0.7) tmpNeutralHadronIso_DR0p5To0p7 += pf->Pt();
374 >    }
375 >
376 >    }
377 >
378 >  }
379 >
380 >  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/mu->Pt(), 2.5);
381 >  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/mu->Pt(), 2.5);
382 >  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/mu->Pt(), 2.5);
383 >  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/mu->Pt(), 2.5);
384 >  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/mu->Pt(), 2.5);
385 >
386 >
387 >  double rho = 0;
388 >  if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
389 >    rho = fPUEnergyDensity->At(0)->Rho();
390 >
391 > //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
392 > //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
393 >  
394 >  // WARNING!!!!  
395 >  // hardcode for sync ...
396 >  EffectiveAreaVersion = muT.kMuEAData2011;
397 >  // WARNING!!!!  
398 >
399 >
400 >  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
401 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p0To0p1,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
402 >                                 ,2.5)
403 >                             ,0.0);
404 >  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
405 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p1To0p2,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
406 >                                 ,2.5)
407 >                             ,0.0);
408 >  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
409 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p2To0p3,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
410 >                                 ,2.5)
411 >                             ,0.0);
412 >  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
413 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p3To0p4,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
414 >                                 ,2.5)
415 >                             ,0.0);
416 >  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
417 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p4To0p5,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
418 >                                 ,2.5)
419 >                             ,0.0);
420 >
421 >
422 >
423 >  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
424 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p0To0p1,
425 >                                                                 mu->Eta(),EffectiveAreaVersion))/mu->Pt()
426 >                                         , 2.5)
427 >                                     , 0.0);
428 >  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
429 >                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p1To0p2,
430 >                                                                   mu->Eta(),EffectiveAreaVersion))/mu->Pt()
431 >                                           , 2.5)
432 >                                       , 0.0);
433 >  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
434 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p2To0p3,
435 >                                                                 mu->Eta(),EffectiveAreaVersion))/mu->Pt()
436 >                                         , 2.5)
437 >                                     , 0.0);
438 >  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
439 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p3To0p4,
440 >                                                                 mu->Eta(), EffectiveAreaVersion))/mu->Pt()
441 >                                         , 2.5)
442 >                                     , 0.0);
443 >  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
444 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p4To0p5,
445 >                                                                 mu->Eta(), EffectiveAreaVersion))/mu->Pt()
446 >                                         , 2.5)
447 >                                     , 0.0);
448 >
449 >
450 >  double mvaval = muIsoMVA->MVAValue_IsoRings( mu->Pt(),
451 >                                               mu->Eta(),
452 >                                               mu->IsGlobalMuon(),
453 >                                               mu->IsTrackerMuon(),
454 >                                               fChargedIso_DR0p0To0p1,
455 >                                               fChargedIso_DR0p1To0p2,
456 >                                               fChargedIso_DR0p2To0p3,
457 >                                               fChargedIso_DR0p3To0p4,
458 >                                               fChargedIso_DR0p4To0p5,
459 >                                               fGammaIso_DR0p0To0p1,
460 >                                               fGammaIso_DR0p1To0p2,
461 >                                               fGammaIso_DR0p2To0p3,
462 >                                               fGammaIso_DR0p3To0p4,
463 >                                               fGammaIso_DR0p4To0p5,
464 >                                               fNeutralHadronIso_DR0p0To0p1,
465 >                                               fNeutralHadronIso_DR0p1To0p2,
466 >                                               fNeutralHadronIso_DR0p2To0p3,
467 >                                               fNeutralHadronIso_DR0p3To0p4,
468 >                                               fNeutralHadronIso_DR0p4To0p5,
469 >                                               ctrl.debug);
470 >
471 >  SelectionStatus status;
472 >  bool pass;
473 >
474 >  pass = false;
475 >  if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
476 >      && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN0)   pass = true;
477 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
478 >           && fabs(mu->Eta()) <= 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN1)  pass = true;
479 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
480 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN2)  pass = true;
481 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
482 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN3)  pass = true;
483 >  else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN4)  pass = true;
484 >  else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN5)  pass = true;
485 >  if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
486 >
487 >  /*
488 >  pass = false;
489 >  if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
490 >      && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN0)   pass = true;
491 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
492 >           && fabs(mu->Eta()) <= 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN1)  pass = true;
493 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
494 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN2)  pass = true;
495 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
496 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN3)  pass = true;
497 >  else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN4)  pass = true;
498 >  else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN5)  pass = true;
499 >  if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
500 >  */
501 >
502 >  //  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
503 >
504 >  status.isoMVA = mvaval;
505 >
506 >  if(ctrl.debug)  {
507 >    cout << "returning status : " << hex << status.getStatus() << dec << endl;
508 >    cout << "MVAVAL : " << status.isoMVA << endl;
509 >  }
510 >  return status;
511 >
512 > }
513 >
514 >
515 > //--------------------------------------------------------------------------------------------------
516 > SelectionStatus muonIsoMVASelection(ControlFlags &ctrl,
517 >                                    const Muon * mu,
518 >                                    const Vertex * vtx,
519 >                                    const Array<PFCandidate> * fPFCandidates,
520 >                                    float rho,
521 >                                    //const Array<PileupEnergyDensity> * fPUEnergyDensity,
522 >                                    MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
523 >                                    vector<const Muon*> muonsToVeto,
524 >                                    vector<const Electron*> electronsToVeto)
525 > //--------------------------------------------------------------------------------------------------
526 > // hacked version
527 > {
528 >
529 >  if( ctrl.debug ) {
530 >    cout << "muonIsoMVASelection :: muons to veto " << endl;
531 >    for( int i=0; i<muonsToVeto.size(); i++ ) {
532 >      const Muon * vmu = muonsToVeto[i];
533 >      cout << "\tpt: " << vmu->Pt()
534 >           << "\teta: " << vmu->Eta()
535 >           << "\tphi: " << vmu->Phi()
536 >           << endl;
537 >    }
538 >    cout << "muonIsoMVASelection :: electrson to veto " << endl;
539 >    for( int i=0; i<electronsToVeto.size(); i++ ) {
540 >      const Electron * vel = electronsToVeto[i];
541 >      cout << "\tpt: " << vel->Pt()
542 >           << "\teta: " << vel->Eta()
543 >           << "\tphi: " << vel->Phi()
544 >           << endl;
545 >    }
546 >  }
547 >  bool failiso=false;
548 >
549 >  //
550 >  // tmp iso rings
551 >  //
552 >  Double_t tmpChargedIso_DR0p0To0p1  = 0;
553 >  Double_t tmpChargedIso_DR0p1To0p2  = 0;
554 >  Double_t tmpChargedIso_DR0p2To0p3  = 0;
555 >  Double_t tmpChargedIso_DR0p3To0p4  = 0;
556 >  Double_t tmpChargedIso_DR0p4To0p5  = 0;
557 >  Double_t tmpChargedIso_DR0p5To0p7  = 0;
558 >
559 >  Double_t tmpGammaIso_DR0p0To0p1  = 0;
560 >  Double_t tmpGammaIso_DR0p1To0p2  = 0;
561 >  Double_t tmpGammaIso_DR0p2To0p3  = 0;
562 >  Double_t tmpGammaIso_DR0p3To0p4  = 0;
563 >  Double_t tmpGammaIso_DR0p4To0p5  = 0;
564 >  Double_t tmpGammaIso_DR0p5To0p7  = 0;
565 >
566 >  Double_t tmpNeutralHadronIso_DR0p0To0p1  = 0;
567 >  Double_t tmpNeutralHadronIso_DR0p1To0p2  = 0;
568 >  Double_t tmpNeutralHadronIso_DR0p2To0p3  = 0;
569 >  Double_t tmpNeutralHadronIso_DR0p3To0p4  = 0;
570 >  Double_t tmpNeutralHadronIso_DR0p4To0p5  = 0;
571 >  Double_t tmpNeutralHadronIso_DR0p5To0p7  = 0;
572 >
573 >        
574 >
575 >  //
576 >  // final rings for the MVA
577 >  //
578 >  Double_t fChargedIso_DR0p0To0p1;
579 >  Double_t fChargedIso_DR0p1To0p2;
580 >  Double_t fChargedIso_DR0p2To0p3;
581 >  Double_t fChargedIso_DR0p3To0p4;
582 >  Double_t fChargedIso_DR0p4To0p5;
583 >  Double_t fChargedIso_DR0p5To0p7;
584 >
585 >  Double_t fGammaIso_DR0p0To0p1;
586 >  Double_t fGammaIso_DR0p1To0p2;
587 >  Double_t fGammaIso_DR0p2To0p3;
588 >  Double_t fGammaIso_DR0p3To0p4;
589 >  Double_t fGammaIso_DR0p4To0p5;
590 >  Double_t fGammaIso_DR0p5To0p7;
591 >
592 >  Double_t fNeutralHadronIso_DR0p0To0p1;
593 >  Double_t fNeutralHadronIso_DR0p1To0p2;
594 >  Double_t fNeutralHadronIso_DR0p2To0p3;
595 >  Double_t fNeutralHadronIso_DR0p3To0p4;
596 >  Double_t fNeutralHadronIso_DR0p4To0p5;
597 >  Double_t fNeutralHadronIso_DR0p5To0p7;
598 >
599 >
600 >  //
601 >  //Loop over PF Candidates
602 >  //
603 >  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
604 >
605 >    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
606 >
607 >    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
608 >
609 >    Double_t deta = (mu->Eta() - pf->Eta());
610 >    Double_t dphi = MathUtils::DeltaPhi(Double_t(mu->Phi()),Double_t(pf->Phi()));
611 >    Double_t dr = MathUtils::DeltaR(mu->Phi(),mu->Eta(), pf->Phi(), pf->Eta());
612 >    if (dr > 1.0) continue;
613 >
614 >    if (pf->HasTrackerTrk() && (pf->TrackerTrk() == mu->TrackerTrk()) ) continue;
615 >
616 >    //
617 >    // Lepton Footprint Removal
618 >    //
619 >    Bool_t IsLeptonFootprint = kFALSE;
620 >    if (dr < 1.0) {
621 >
622 >      //
623 >      // Check for electrons
624 >      //
625 >      for (Int_t q=0; q < electronsToVeto.size(); ++q) {
626 >        const Electron *tmpele = electronsToVeto[q];
627 >        // 4l electron
628 >        if( pf->HasTrackerTrk() ) {
629 >          if( pf->TrackerTrk() == tmpele->TrackerTrk() )
630 >            IsLeptonFootprint = kTRUE;
631 >        }
632 >        if( pf->HasGsfTrk() ) {
633 >          if( pf->GsfTrk() == tmpele->GsfTrk() )
634 >            IsLeptonFootprint = kTRUE;
635 >        }
636 >        // PF charged
637 >        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479
638 >            && MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015)
639 >          IsLeptonFootprint = kTRUE;
640 >        // PF gamma
641 >        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
642 >            && MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.08)
643 >          IsLeptonFootprint = kTRUE;
644 >      } // loop over electrons
645 >      
646 >      /* KH - commented for sync
647 >      //
648 >      // Check for muons
649 >      //
650 >      for (Int_t q=0; q < muonsToVeto.size(); ++q) {
651 >        const Muon *tmpmu = muonsToVeto[q];
652 >        // 4l muon
653 >        if( pf->HasTrackerTrk() ) {
654 >          if( pf->TrackerTrk() == tmpmu->TrackerTrk() )
655 >            IsLeptonFootprint = kTRUE;
656 >        }
657 >        // PF charged
658 >        if (pf->Charge() != 0 && MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01)
659 >          IsLeptonFootprint = kTRUE;
660 >      } // loop over muons
661 >      */
662 >
663 >    if (IsLeptonFootprint)
664 >      continue;
665 >
666 >    //
667 >    // Charged Iso Rings
668 >    //
669 >    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
670 >
671 >      if( dr < 0.01 ) continue; // only for muon iso mva?
672 >      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
673 >
674 > //       if( pf->HasTrackerTrk() ) {
675 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
676 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
677 > //                            << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
678 > //                            << dr << endl;
679 > //       }
680 > //       if( pf->HasGsfTrk() ) {
681 > //      if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
682 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
683 > //                            << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
684 > //                            << dr << endl;
685 > //       }
686 >
687 >      // Footprint Veto
688 >      if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
689 >      if (dr >= 0.1 && dr < 0.2) tmpChargedIso_DR0p1To0p2 += pf->Pt();
690 >      if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
691 >      if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
692 >      if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
693 >      if (dr >= 0.5 && dr < 0.7) tmpChargedIso_DR0p5To0p7 += pf->Pt();
694 >    }
695 >
696 >    //
697 >    // Gamma Iso Rings
698 >    //
699 >    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
700 >      if (dr < 0.1) tmpGammaIso_DR0p0To0p1 += pf->Pt();
701 >      if (dr >= 0.1 && dr < 0.2) tmpGammaIso_DR0p1To0p2 += pf->Pt();
702 >      if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
703 >      if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
704 >      if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
705 >      if (dr >= 0.5 && dr < 0.7) tmpGammaIso_DR0p5To0p7 += pf->Pt();
706 >    }
707 >
708 >    //
709 >    // Other Neutral Iso Rings
710 >    //
711 >    else {
712 >      if (dr < 0.1) tmpNeutralHadronIso_DR0p0To0p1 += pf->Pt();
713 >      if (dr >= 0.1 && dr < 0.2) tmpNeutralHadronIso_DR0p1To0p2 += pf->Pt();
714 >      if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
715 >      if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
716 >      if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
717 >      if (dr >= 0.5 && dr < 0.7) tmpNeutralHadronIso_DR0p5To0p7 += pf->Pt();
718 >    }
719 >
720 >    }
721 >
722 >  }
723 >
724 >  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/mu->Pt(), 2.5);
725 >  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/mu->Pt(), 2.5);
726 >  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/mu->Pt(), 2.5);
727 >  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/mu->Pt(), 2.5);
728 >  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/mu->Pt(), 2.5);
729 >
730 >
731 > //   double rho = 0;
732 > //   if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
733 > //     rho = fPUEnergyDensity->At(0)->Rho();
734 > //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
735 > //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
736 >  
737 >  // WARNING!!!!  
738 >  // hardcode for sync ...
739 >  EffectiveAreaVersion = muT.kMuEAData2011;
740 >  // WARNING!!!!  
741 >
742 >
743 >  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
744 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p0To0p1,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
745 >                                 ,2.5)
746 >                             ,0.0);
747 >  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
748 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p1To0p2,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
749 >                                 ,2.5)
750 >                             ,0.0);
751 >  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
752 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p2To0p3,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
753 >                                 ,2.5)
754 >                             ,0.0);
755 >  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
756 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p3To0p4,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
757 >                                 ,2.5)
758 >                             ,0.0);
759 >  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
760 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p4To0p5,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
761 >                                 ,2.5)
762 >                             ,0.0);
763 >
764 >
765 >
766 >  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
767 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p0To0p1,
768 >                                                                 mu->Eta(),EffectiveAreaVersion))/mu->Pt()
769 >                                         , 2.5)
770 >                                     , 0.0);
771 >  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
772 >                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p1To0p2,
773 >                                                                   mu->Eta(),EffectiveAreaVersion))/mu->Pt()
774 >                                           , 2.5)
775 >                                       , 0.0);
776 >  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
777 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p2To0p3,
778 >                                                                 mu->Eta(),EffectiveAreaVersion))/mu->Pt()
779 >                                         , 2.5)
780 >                                     , 0.0);
781 >  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
782 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p3To0p4,
783 >                                                                 mu->Eta(), EffectiveAreaVersion))/mu->Pt()
784 >                                         , 2.5)
785 >                                     , 0.0);
786 >  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
787 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p4To0p5,
788 >                                                                 mu->Eta(), EffectiveAreaVersion))/mu->Pt()
789 >                                         , 2.5)
790 >                                     , 0.0);
791 >
792 >
793 >  double mvaval = muIsoMVA->MVAValue_IsoRings( mu->Pt(),
794 >                                               mu->Eta(),
795 >                                               mu->IsGlobalMuon(),
796 >                                               mu->IsTrackerMuon(),
797 >                                               fChargedIso_DR0p0To0p1,
798 >                                               fChargedIso_DR0p1To0p2,
799 >                                               fChargedIso_DR0p2To0p3,
800 >                                               fChargedIso_DR0p3To0p4,
801 >                                               fChargedIso_DR0p4To0p5,
802 >                                               fGammaIso_DR0p0To0p1,
803 >                                               fGammaIso_DR0p1To0p2,
804 >                                               fGammaIso_DR0p2To0p3,
805 >                                               fGammaIso_DR0p3To0p4,
806 >                                               fGammaIso_DR0p4To0p5,
807 >                                               fNeutralHadronIso_DR0p0To0p1,
808 >                                               fNeutralHadronIso_DR0p1To0p2,
809 >                                               fNeutralHadronIso_DR0p2To0p3,
810 >                                               fNeutralHadronIso_DR0p3To0p4,
811 >                                               fNeutralHadronIso_DR0p4To0p5,
812 >                                               ctrl.debug);
813 >
814 >  SelectionStatus status;
815 >  bool pass;
816 >
817 >  pass = false;
818 >  if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
819 >      && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN0)   pass = true;
820 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
821 >           && fabs(mu->Eta()) <= 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN1)  pass = true;
822 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
823 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN2)  pass = true;
824 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
825 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN3)  pass = true;
826 >  else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN4)  pass = true;
827 >  else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN5)  pass = true;
828 >  if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
829 >
830 >  /*
831 >  pass = false;
832 >  if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
833 >      && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN0)   pass = true;
834 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
835 >           && fabs(mu->Eta()) <= 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN1)  pass = true;
836 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
837 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN2)  pass = true;
838 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
839 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN3)  pass = true;
840 >  else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN4)  pass = true;
841 >  else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN5)  pass = true;
842 >  if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
843 >  */
844 >
845 >  //  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
846 >
847 >  status.isoMVA = mvaval;
848 >
849 >  if(ctrl.debug)  {
850 >    cout << "returning status : " << hex << status.getStatus() << dec << endl;
851 >    cout << "MVAVAL : " << status.isoMVA << endl;
852 >  }
853 >  return status;
854 >
855 > }
856 >
857 >
858 > //--------------------------------------------------------------------------------------------------
859 > void initMuonIsoMVA() {
860 > //--------------------------------------------------------------------------------------------------
861 >  muIsoMVA = new MuonIDMVA();
862 >  vector<string> weightFiles;
863 >  weightFiles.push_back("./data/MuonIsoMVAWeights/MuonIsoMVA_BDTG_V0_barrel_lowpt.weights.xml");
864 >  weightFiles.push_back("./data/MuonIsoMVAWeights/MuonIsoMVA_BDTG_V0_barrel_highpt.weights.xml");
865 >  weightFiles.push_back("./data/MuonIsoMVAWeights/MuonIsoMVA_BDTG_V0_endcap_lowpt.weights.xml");
866 >  weightFiles.push_back("./data/MuonIsoMVAWeights/MuonIsoMVA_BDTG_V0_endcap_highpt.weights.xml");
867 >  weightFiles.push_back("./data/MuonIsoMVAWeights/MuonIsoMVA_BDTG_V0_tracker.weights.xml");
868 >  weightFiles.push_back("./data/MuonIsoMVAWeights/MuonIsoMVA_BDTG_V0_global.weights.xml");
869 >  muIsoMVA->Initialize( "MuonIsoMVA",
870 >                        MuonIDMVA::kIsoRingsV0,
871 >                        kTRUE, weightFiles);
872 > }
873 >
874 >
875 >
876 > //--------------------------------------------------------------------------------------------------
877 > double  muonPFIso04(ControlFlags &ctrl,
878 >                    const Muon * mu,
879 >                    const Vertex * vtx,
880 >                    const Array<PFCandidate> * fPFCandidates,
881 >                    const Array<PileupEnergyDensity> * fPUEnergyDensity,
882 >                    MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
883 >                    vector<const PFCandidate*> photonsToVeto)
884 > //--------------------------------------------------------------------------------------------------
885 > {
886 >
887 >  extern double gChargedIso;  
888 >  extern double  gGammaIso;      
889 >  extern double  gNeutralIso;
890 >
891 >  //
892 >  // final iso
893 >  //
894 >  Double_t fChargedIso  = 0.0;
895 >  Double_t fGammaIso  = 0.0;
896 >  Double_t fNeutralHadronIso  = 0.0;
897 >
898 >  //
899 >  //Loop over PF Candidates
900 >  //
901 >  if(ctrl.debug) cout << "  muonPFIso04(): ----> " << endl;
902 >  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
903 >
904 >    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
905 >    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
906 >
907 >    //
908 >    // veto FSR recovered photons
909 >    //
910 >    bool vetoPhoton = false;
911 >    for( int p=0; p<photonsToVeto.size(); p++ ) {
912 >      if( pf == photonsToVeto[p] ) {
913 >        vetoPhoton = true;
914 >        break;
915 >      }
916 >    } if( vetoPhoton ) continue;
917 >    //
918 >    //
919 >    //
920 >
921 >    Double_t deta = (mu->Eta() - pf->Eta());
922 >    Double_t dphi = MathUtils::DeltaPhi(Double_t(mu->Phi()),Double_t(pf->Phi()));
923 >    Double_t dr = MathUtils::DeltaR(mu->Phi(),mu->Eta(), pf->Phi(), pf->Eta());
924 >    if (dr > 0.4) continue;
925 >
926 >    if (pf->HasTrackerTrk() && (pf->TrackerTrk() == mu->TrackerTrk()) ) continue;
927 >
928 >    //
929 >    // Charged Iso
930 >    //
931 >    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
932 >
933 >      //if( dr < 0.01 ) continue; // only for muon iso mva?
934 >      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
935 >      fChargedIso += pf->Pt();
936 >    }
937 >    
938 >    //
939 >    // Gamma Iso
940 >    //
941 >    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
942 >      // KH, add to sync
943 >      if( pf->Pt() > 0.5 && dr > 0.01)
944 >      fGammaIso += pf->Pt();
945 >    }
946 >    
947 >    //
948 >    // Other Neutrals
949 >    //
950 >    else {
951 >    
952 >      if( pf->Pt() > 0.5  && dr > 0.01)
953 >        fNeutralHadronIso += pf->Pt();
954 >    }
955 >  }
956 >
957 >  double rho=0;
958 >  if( (EffectiveAreaVersion == MuonTools::kMuEAFall11MC) ||
959 >      (EffectiveAreaVersion == MuonTools::kMuEAData2011) ) {
960 >    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25()) ||
961 >          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25())))
962 >      rho = fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25();
963 >    //rho = fPUEnergyDensity->At(0)->Rho();
964 >    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
965 >    EffectiveAreaVersion  = MuonTools::kMuEAData2011;
966 >    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
967 >  } else {
968 >    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJetsCentralNeutral()) ||
969 >          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJetsCentralNeutral())))
970 >      rho = fPUEnergyDensity->At(0)->RhoKt6PFJetsCentralNeutral();
971 >    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
972 >    EffectiveAreaVersion  = MuonTools::kMuEAData2012;
973 >    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
974 >  }
975 >  if(ctrl.debug) cout << "    rho: " << rho << endl;
976 >
977 >  TLorentzVector  tmpvec;
978 >  tmpvec.SetPtEtaPhiM(mu->Pt(),mu->Eta(),mu->Phi(),mu->Mass());
979 >  for( int p=0; p<photonsToVeto.size(); p++ ) {
980 >    const PFCandidate * pf  = photonsToVeto[p];
981 >    TLorentzVector pfvec;
982 >    pfvec.SetPtEtaPhiM(pf->Pt(),pf->Eta(),pf->Phi(),0.);
983 >    tmpvec += pfvec;
984 >  }
985 >
986 >  double pfIso = fChargedIso + fmax(0.0,(fGammaIso + fNeutralHadronIso
987 >                                        -rho*muT.MuonEffectiveArea(muT.kMuGammaAndNeutralHadronIso04,
988 >                                                                   //tmpvec.Eta(),EffectiveAreaVersion)));
989 >                                                                   mu->Eta(),EffectiveAreaVersion)));
990 >  gChargedIso = fChargedIso;
991 >  gGammaIso   = fGammaIso;
992 >  gNeutralIso = fNeutralHadronIso;
993 >  
994 >  if( ctrl.debug ) {
995 >    cout << "    PFiso: " << pfIso
996 >         << "\tfChargedIso: " << fChargedIso
997 >         << "\tfGammaIso: " << fGammaIso
998 >         << "\tfNeutralHadronIso: " << fNeutralHadronIso
999 >         << endl;
1000 >  }
1001 >
1002 >  return pfIso;
1003 > }
1004 >
1005 > //--------------------------------------------------------------------------------------------------
1006 > SelectionStatus muonReferenceIsoSelection(ControlFlags &ctrl,
1007 >                                          const Muon * mu,
1008 >                                          const Vertex * vtx,
1009 >                                          const Array<PFCandidate> * fPFCandidates,
1010 >                                          const Array<PileupEnergyDensity> * fPUEnergyDensity,
1011 >                                          MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
1012 >                                          vector<const PFCandidate*> photonsToVeto)
1013 > //--------------------------------------------------------------------------------------------------
1014 > {
1015 >  
1016 >  SelectionStatus status;
1017 >
1018 >  double pfIso = muonPFIso04( ctrl, mu, vtx, fPFCandidates, fPUEnergyDensity,
1019 >                              EffectiveAreaVersion, photonsToVeto);
1020 >  status.isoPF04 = pfIso;
1021 >  status.chisoPF04 = gChargedIso;
1022 >  status.gaisoPF04 = gGammaIso;
1023 >  status.neisoPF04 = gNeutralIso;
1024 >
1025 >  bool pass = false;
1026 >  if( (pfIso/mu->Pt()) < MUON_REFERENCE_PFISO_CUT ) pass = true;
1027 >  
1028 >  if( pass ) {
1029 >    status.orStatus(SelectionStatus::LOOSEISO);
1030 >    status.orStatus(SelectionStatus::TIGHTISO);
1031 >  }
1032 >  if(ctrl.debug)
1033 >    cout << "  --> mu relpfIso: " << pfIso/mu->Pt() << ", returning status : " << hex << status.getStatus() << dec << endl;
1034 >  return status;
1035 > }
1036 >
1037 > //--------------------------------------------------------------------------------------------------
1038 > SelectionStatus electronIsoMVASelection(ControlFlags &ctrl,
1039 >                                        const Electron * ele,
1040 >                                        const Vertex * vtx,
1041 >                                        const Array<PFCandidate> * fPFCandidates,
1042 >                                        const Array<PileupEnergyDensity> * fPUEnergyDensity,
1043 >                                        ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
1044 >                                        vector<const Muon*> muonsToVeto,
1045 >                                        vector<const Electron*> electronsToVeto)
1046 > //--------------------------------------------------------------------------------------------------
1047 > {
1048 >
1049 >  if( ctrl.debug ) {
1050 >    cout << "electronIsoMVASelection :: muons to veto " << endl;
1051 >    for( int i=0; i<muonsToVeto.size(); i++ ) {
1052 >      const Muon * vmu = muonsToVeto[i];
1053 >      cout << "\tpt: " << vmu->Pt()
1054 >           << "\teta: " << vmu->Eta()
1055 >           << "\tphi: " << vmu->Phi()
1056 >           << endl;
1057 >    }
1058 >    cout << "electronIsoMVASelection :: electrson to veto " << endl;
1059 >    for( int i=0; i<electronsToVeto.size(); i++ ) {
1060 >      const Electron * vel = electronsToVeto[i];
1061 >      cout << "\tpt: " << vel->Pt()
1062 >           << "\teta: " << vel->Eta()
1063 >           << "\tphi: " << vel->Phi()
1064 >           << "\ttrk: " << vel->TrackerTrk()
1065 >           << endl;
1066 >    }
1067 >  }
1068 >
1069 >  bool failiso=false;
1070 >
1071 >  //
1072 >  // tmp iso rings
1073 >  //
1074 >  Double_t tmpChargedIso_DR0p0To0p1  = 0;
1075 >  Double_t tmpChargedIso_DR0p1To0p2  = 0;
1076 >  Double_t tmpChargedIso_DR0p2To0p3  = 0;
1077 >  Double_t tmpChargedIso_DR0p3To0p4  = 0;
1078 >  Double_t tmpChargedIso_DR0p4To0p5  = 0;
1079 >
1080 >  Double_t tmpGammaIso_DR0p0To0p1  = 0;
1081 >  Double_t tmpGammaIso_DR0p1To0p2  = 0;
1082 >  Double_t tmpGammaIso_DR0p2To0p3  = 0;
1083 >  Double_t tmpGammaIso_DR0p3To0p4  = 0;
1084 >  Double_t tmpGammaIso_DR0p4To0p5  = 0;
1085 >
1086 >
1087 >  Double_t tmpNeutralHadronIso_DR0p0To0p1  = 0;
1088 >  Double_t tmpNeutralHadronIso_DR0p1To0p2  = 0;
1089 >  Double_t tmpNeutralHadronIso_DR0p2To0p3  = 0;
1090 >  Double_t tmpNeutralHadronIso_DR0p3To0p4  = 0;
1091 >  Double_t tmpNeutralHadronIso_DR0p4To0p5  = 0;
1092 >
1093 >        
1094 >
1095 >  //
1096 >  // final rings for the MVA
1097 >  //
1098 >  Double_t fChargedIso_DR0p0To0p1;
1099 >  Double_t fChargedIso_DR0p1To0p2;
1100 >  Double_t fChargedIso_DR0p2To0p3;
1101 >  Double_t fChargedIso_DR0p3To0p4;
1102 >  Double_t fChargedIso_DR0p4To0p5;
1103 >
1104 >  Double_t fGammaIso_DR0p0To0p1;
1105 >  Double_t fGammaIso_DR0p1To0p2;
1106 >  Double_t fGammaIso_DR0p2To0p3;
1107 >  Double_t fGammaIso_DR0p3To0p4;
1108 >  Double_t fGammaIso_DR0p4To0p5;
1109 >
1110 >  Double_t fNeutralHadronIso_DR0p0To0p1;
1111 >  Double_t fNeutralHadronIso_DR0p1To0p2;
1112 >  Double_t fNeutralHadronIso_DR0p2To0p3;
1113 >  Double_t fNeutralHadronIso_DR0p3To0p4;
1114 >  Double_t fNeutralHadronIso_DR0p4To0p5;
1115 >
1116 >
1117 >  //
1118 >  //Loop over PF Candidates
1119 >  //
1120 >  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
1121 >
1122 >    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
1123 >
1124 >    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
1125 >    Double_t deta = (ele->Eta() - pf->Eta());
1126 >    Double_t dphi = MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
1127 >    Double_t dr = MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
1128 >    if (dr > 1.0) continue;
1129 >
1130 >    if(ctrl.debug) {
1131 >      cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt();
1132 >      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx);
1133 >      cout << endl;
1134 >    }
1135 >
1136 >
1137 >    if ( (pf->HasTrackerTrk() && (pf->TrackerTrk() == ele->TrackerTrk())) ||
1138 >         (pf->HasGsfTrk() && (pf->GsfTrk() == ele->GsfTrk()))) continue;
1139 >    
1140 >
1141 >    //
1142 >    // Lepton Footprint Removal
1143 >    //
1144 >    Bool_t IsLeptonFootprint = kFALSE;
1145 >    if (dr < 1.0) {
1146 >
1147 >
1148 >      //
1149 >      // Check for electrons
1150 >      //
1151 >
1152 >      for (Int_t q=0; q < electronsToVeto.size(); ++q) {
1153 >        const Electron *tmpele = electronsToVeto[q];
1154 >        double tmpdr = MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta());
1155 >
1156 >        // 4l electron
1157 >        if( pf->HasTrackerTrk()  ) {
1158 >          if( pf->TrackerTrk() == tmpele->TrackerTrk() ) {
1159 >            if( ctrl.debug) cout << "\tcharged tktrk, matches 4L ele ..." << endl;
1160 >            IsLeptonFootprint = kTRUE;
1161 >          }
1162 >        }
1163 >        if( pf->HasGsfTrk()  ) {
1164 >          if( pf->GsfTrk() == tmpele->GsfTrk() ) {
1165 >            if( ctrl.debug) cout << "\tcharged gsftrk, matches 4L ele ..." << endl;
1166 >            IsLeptonFootprint = kTRUE;
1167 >          }
1168 >        }
1169 >        // PF charged
1170 >        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479 && tmpdr < 0.015) {
1171 >          if( ctrl.debug) cout << "\tcharged trk, dR matches 4L ele ..." << endl;
1172 >          IsLeptonFootprint = kTRUE;
1173 >        }
1174 >        // PF gamma
1175 >        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
1176 >            && tmpdr < 0.08) {
1177 >          if( ctrl.debug) cout << "\tPF gamma, matches 4L ele ..." << endl;
1178 >          IsLeptonFootprint = kTRUE;
1179 >        }
1180 >      } // loop over electrons
1181 >
1182 >
1183 >      /* KH - comment for sync            
1184 >      //
1185 >      // Check for muons
1186 >      //
1187 >      for (Int_t q=0; q < muonsToVeto.size(); ++q) {
1188 >        const Muon *tmpmu = muonsToVeto[q];
1189 >        // 4l muon
1190 >        if( pf->HasTrackerTrk() ) {
1191 >          if (pf->TrackerTrk() == tmpmu->TrackerTrk() ){
1192 >            if( ctrl.debug) cout << "\tmatches 4L mu ..." << endl;
1193 >            IsLeptonFootprint = kTRUE;
1194 >          }
1195 >        }
1196 >        // PF charged
1197 >        if (pf->Charge() != 0 && MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01) {
1198 >          if( ctrl.debug) cout << "\tcharged trk, dR matches 4L mu ..." << endl;
1199 >          IsLeptonFootprint = kTRUE;
1200 >        }
1201 >      } // loop over muons
1202 >      */
1203 >
1204 >    if (IsLeptonFootprint)
1205 >      continue;
1206 >
1207 >    //
1208 >    // Charged Iso Rings
1209 >    //
1210 >    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1211 >
1212 > //       if( pf->HasGsfTrk() ) {
1213 > //       if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1214 > //       } else if( pf->HasTrackerTrk() ){
1215 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1216 > //       }
1217 >
1218 >      // Veto any PFmuon, or PFEle
1219 >      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
1220 >
1221 >      // Footprint Veto
1222 >      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.015) continue;
1223 >
1224 >      if( ctrl.debug) cout << "charged:: pt: " << pf->Pt()
1225 >                           << "\ttype: " << pf->PFType()
1226 >                           << "\ttrk: " << pf->TrackerTrk() << endl;
1227 >
1228 >      if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
1229 >      if (dr >= 0.1 && dr < 0.2) tmpChargedIso_DR0p1To0p2 += pf->Pt();
1230 >      if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
1231 >      if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
1232 >      if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
1233 >
1234 >    }
1235 >
1236 >    //
1237 >    // Gamma Iso Rings
1238 >    //
1239 >    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1240 >
1241 >      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.08) continue;
1242 >
1243 >      if( ctrl.debug) cout << "gamma:: " << pf->Pt() << " "
1244 >                           << dr << endl;
1245 >
1246 >      if (dr < 0.1) tmpGammaIso_DR0p0To0p1 += pf->Pt();
1247 >      if (dr >= 0.1 && dr < 0.2) tmpGammaIso_DR0p1To0p2 += pf->Pt();
1248 >      if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
1249 >      if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
1250 >      if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
1251 >    }
1252 >
1253 >    //
1254 >    // Other Neutral Iso Rings
1255 >    //
1256 >    else {
1257 >      if( ctrl.debug) cout << "neutral:: " << pf->Pt() << " "
1258 >                           << dr << endl;
1259 >      if (dr < 0.1) tmpNeutralHadronIso_DR0p0To0p1 += pf->Pt();
1260 >      if (dr >= 0.1 && dr < 0.2) tmpNeutralHadronIso_DR0p1To0p2 += pf->Pt();
1261 >      if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
1262 >      if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
1263 >      if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
1264 >    }
1265 >
1266 >    }
1267 >
1268 >  }
1269 >
1270 >  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/ele->Pt(), 2.5);
1271 >  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/ele->Pt(), 2.5);
1272 >  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/ele->Pt(), 2.5);
1273 >  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/ele->Pt(), 2.5);
1274 >  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/ele->Pt(), 2.5);
1275 >
1276 >  if(ctrl.debug) {
1277 >    cout << "fChargedIso_DR0p0To0p1 : " << fChargedIso_DR0p0To0p1  << endl;
1278 >    cout << "fChargedIso_DR0p1To0p2 : " << fChargedIso_DR0p1To0p2  << endl;
1279 >    cout << "fChargedIso_DR0p2To0p3 : " << fChargedIso_DR0p2To0p3  << endl;
1280 >    cout << "fChargedIso_DR0p3To0p4 : " << fChargedIso_DR0p3To0p4  << endl;
1281 >    cout << "fChargedIso_DR0p4To0p5 : " << fChargedIso_DR0p4To0p5  << endl;
1282    }
1283 +
1284 +
1285 +  double rho = 0;
1286 +  if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
1287 +    rho = fPUEnergyDensity->At(0)->Rho();
1288 +  //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
1289 +  //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
1290 +  
1291 +  // WARNING!!!!  
1292 +  // hardcode for sync ...
1293 +  EffectiveAreaVersion = eleT.kEleEAData2011;
1294 +  // WARNING!!!!  
1295 +
1296 +  if( ctrl.debug) {
1297 +    cout << "RHO: " << rho << endl;
1298 +    cout << "eta: " << ele->SCluster()->Eta() << endl;
1299 +    cout << "target: " << EffectiveAreaVersion << endl;
1300 +    cout << "effA 0-1: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p0To0p1,
1301 +                                                       ele->SCluster()->Eta(),
1302 +                                                       EffectiveAreaVersion)
1303 +         << endl;
1304 +    cout << "effA 1-2: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p1To0p2,
1305 +                                                       ele->SCluster()->Eta(),
1306 +                                                       EffectiveAreaVersion)
1307 +         << endl;
1308 +    cout << "effA 2-3: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p2To0p3,
1309 +                                                       ele->SCluster()->Eta(),
1310 +                                                       EffectiveAreaVersion)
1311 +         << endl;
1312 +    cout << "effA 3-4: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p3To0p4,
1313 +                                                       ele->SCluster()->Eta(),
1314 +                                                       EffectiveAreaVersion)
1315 +         << endl;
1316 +  }
1317 +
1318 +  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
1319 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p0To0p1,
1320 +                                                              ele->SCluster()->Eta(),
1321 +                                                              EffectiveAreaVersion))/ele->Pt()
1322 +                                 ,2.5)
1323 +                             ,0.0);
1324 +  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
1325 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p1To0p2,
1326 +                                                              ele->SCluster()->Eta(),
1327 +                                                              EffectiveAreaVersion))/ele->Pt()
1328 +                                 ,2.5)
1329 +                             ,0.0);
1330 +  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
1331 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p2To0p3,
1332 +                                                              ele->SCluster()->Eta()
1333 +                                                              ,EffectiveAreaVersion))/ele->Pt()
1334 +                                 ,2.5)
1335 +                             ,0.0);
1336 +  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
1337 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p3To0p4,
1338 +                                                              ele->SCluster()->Eta(),
1339 +                                                              EffectiveAreaVersion))/ele->Pt()
1340 +                                 ,2.5)
1341 +                             ,0.0);
1342 +  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
1343 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p4To0p5,
1344 +                                                              ele->SCluster()->Eta(),
1345 +                                                              EffectiveAreaVersion))/ele->Pt()
1346 +                                 ,2.5)
1347 +                             ,0.0);
1348 +
1349 +
1350 +  if( ctrl.debug) {
1351 +    cout << "fGammaIso_DR0p0To0p1: " << fGammaIso_DR0p0To0p1 << endl;
1352 +    cout << "fGammaIso_DR0p1To0p2: " << fGammaIso_DR0p1To0p2 << endl;
1353 +    cout << "fGammaIso_DR0p2To0p3: " << fGammaIso_DR0p2To0p3 << endl;
1354 +    cout << "fGammaIso_DR0p3To0p4: " << fGammaIso_DR0p3To0p4 << endl;
1355 +    cout << "fGammaIso_DR0p4To0p5: " << fGammaIso_DR0p4To0p5 << endl;
1356 +  }
1357 +
1358 +  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
1359 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p0To0p1,
1360 +                                                                 ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1361 +                                         , 2.5)
1362 +                                     , 0.0);
1363 +  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
1364 +                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p1To0p2,
1365 +                                                                   ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1366 +                                           , 2.5)
1367 +                                       , 0.0);
1368 +  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
1369 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p2To0p3,
1370 +                                                                 ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1371 +                                         , 2.5)
1372 +                                     , 0.0);
1373 +  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
1374 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p3To0p4,
1375 +                                                                 ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
1376 +                                         , 2.5)
1377 +                                     , 0.0);
1378 +  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
1379 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p4To0p5,
1380 +                                                                 ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
1381 +                                         , 2.5)
1382 +                                     , 0.0);
1383 +
1384 +  if( ctrl.debug) {
1385 +    cout << "fNeutralHadronIso_DR0p0To0p1: " << fNeutralHadronIso_DR0p0To0p1 << endl;
1386 +    cout << "fNeutralHadronIso_DR0p1To0p2: " << fNeutralHadronIso_DR0p1To0p2 << endl;
1387 +    cout << "fNeutralHadronIso_DR0p2To0p3: " << fNeutralHadronIso_DR0p2To0p3 << endl;
1388 +    cout << "fNeutralHadronIso_DR0p3To0p4: " << fNeutralHadronIso_DR0p3To0p4 << endl;
1389 +    cout << "fNeutralHadronIso_DR0p4To0p5: " << fNeutralHadronIso_DR0p4To0p5 << endl;
1390 +  }
1391 +
1392 +  double mvaval = eleIsoMVA->MVAValue_IsoRings( ele->Pt(),
1393 +                                                ele->SCluster()->Eta(),
1394 +                                                fChargedIso_DR0p0To0p1,
1395 +                                                fChargedIso_DR0p1To0p2,
1396 +                                                fChargedIso_DR0p2To0p3,
1397 +                                                fChargedIso_DR0p3To0p4,
1398 +                                                fChargedIso_DR0p4To0p5,
1399 +                                                fGammaIso_DR0p0To0p1,
1400 +                                                fGammaIso_DR0p1To0p2,
1401 +                                                fGammaIso_DR0p2To0p3,
1402 +                                                fGammaIso_DR0p3To0p4,
1403 +                                                fGammaIso_DR0p4To0p5,
1404 +                                                fNeutralHadronIso_DR0p0To0p1,
1405 +                                                fNeutralHadronIso_DR0p1To0p2,
1406 +                                                fNeutralHadronIso_DR0p2To0p3,
1407 +                                                fNeutralHadronIso_DR0p3To0p4,
1408 +                                                fNeutralHadronIso_DR0p4To0p5,
1409 +                                                ctrl.debug);
1410 +
1411 +  SelectionStatus status;
1412 +  status.isoMVA = mvaval;
1413 +  bool pass = false;
1414 +
1415 +  Int_t subdet = 0;
1416 +  if (fabs(ele->SCluster()->Eta()) < 0.8) subdet = 0;
1417 +  else if (fabs(ele->SCluster()->Eta()) < 1.479) subdet = 1;
1418 +  else subdet = 2;
1419 +
1420 +  Int_t ptBin = 0;
1421 +  if (ele->Pt() >= 10.0) ptBin = 1;
1422 +  
1423 +  Int_t MVABin = -1;
1424 +  if (subdet == 0 && ptBin == 0) MVABin = 0;
1425 +  if (subdet == 1 && ptBin == 0) MVABin = 1;
1426 +  if (subdet == 2 && ptBin == 0) MVABin = 2;
1427 +  if (subdet == 0 && ptBin == 1) MVABin = 3;
1428 +  if (subdet == 1 && ptBin == 1) MVABin = 4;
1429 +  if (subdet == 2 && ptBin == 1) MVABin = 5;
1430 +
1431 +  pass = false;
1432 +  if( MVABin == 0 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN0 ) pass = true;
1433 +  if( MVABin == 1 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN1 ) pass = true;
1434 +  if( MVABin == 2 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN2 ) pass = true;
1435 +  if( MVABin == 3 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN3 ) pass = true;
1436 +  if( MVABin == 4 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN4 ) pass = true;
1437 +  if( MVABin == 5 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN5 ) pass = true;
1438 +  //  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
1439 +  if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
1440 +
1441 + //   pass = false;
1442 + //   if( MVABin == 0 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN0 ) pass = true;
1443 + //   if( MVABin == 1 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN1 ) pass = true;
1444 + //   if( MVABin == 2 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN2 ) pass = true;
1445 + //   if( MVABin == 3 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN3 ) pass = true;
1446 + //   if( MVABin == 4 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN4 ) pass = true;
1447 + //   if( MVABin == 5 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN5 ) pass = true;
1448 + //   if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
1449 +
1450    if(ctrl.debug) cout << "returning status : " << hex << status.getStatus() << dec << endl;
1451    return status;
1452 +  
1453 + }
1454 +
1455 +
1456 + //--------------------------------------------------------------------------------------------------
1457 + SelectionStatus electronIsoMVASelection(ControlFlags &ctrl,
1458 +                                        const Electron * ele,
1459 +                                        const Vertex * vtx,
1460 +                                        const Array<PFCandidate> * fPFCandidates,
1461 +                                        float rho,
1462 +                                        //const Array<PileupEnergyDensity> * fPUEnergyDensity,
1463 +                                        ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
1464 +                                        vector<const Muon*> muonsToVeto,
1465 +                                        vector<const Electron*> electronsToVeto)
1466 + //--------------------------------------------------------------------------------------------------
1467 + // hacked version
1468 + {
1469 +  if( ctrl.debug ) {
1470 +    cout << "================> hacked ele Iso MVA <======================" << endl;
1471 +  }
1472 +
1473 +  if( ctrl.debug ) {
1474 +    cout << "electronIsoMVASelection :: muons to veto " << endl;
1475 +    for( int i=0; i<muonsToVeto.size(); i++ ) {
1476 +      const Muon * vmu = muonsToVeto[i];
1477 +      cout << "\tpt: " << vmu->Pt()
1478 +           << "\teta: " << vmu->Eta()
1479 +           << "\tphi: " << vmu->Phi()
1480 +           << endl;
1481 +    }
1482 +    cout << "electronIsoMVASelection :: electrson to veto " << endl;
1483 +    for( int i=0; i<electronsToVeto.size(); i++ ) {
1484 +      const Electron * vel = electronsToVeto[i];
1485 +      cout << "\tpt: " << vel->Pt()
1486 +           << "\teta: " << vel->Eta()
1487 +           << "\tphi: " << vel->Phi()
1488 +           << "\ttrk: " << vel->TrackerTrk()
1489 +           << endl;
1490 +    }
1491 +  }
1492 +
1493 +  bool failiso=false;
1494 +
1495 +  //
1496 +  // tmp iso rings
1497 +  //
1498 +  Double_t tmpChargedIso_DR0p0To0p1  = 0;
1499 +  Double_t tmpChargedIso_DR0p1To0p2  = 0;
1500 +  Double_t tmpChargedIso_DR0p2To0p3  = 0;
1501 +  Double_t tmpChargedIso_DR0p3To0p4  = 0;
1502 +  Double_t tmpChargedIso_DR0p4To0p5  = 0;
1503 +
1504 +  Double_t tmpGammaIso_DR0p0To0p1  = 0;
1505 +  Double_t tmpGammaIso_DR0p1To0p2  = 0;
1506 +  Double_t tmpGammaIso_DR0p2To0p3  = 0;
1507 +  Double_t tmpGammaIso_DR0p3To0p4  = 0;
1508 +  Double_t tmpGammaIso_DR0p4To0p5  = 0;
1509 +
1510 +
1511 +  Double_t tmpNeutralHadronIso_DR0p0To0p1  = 0;
1512 +  Double_t tmpNeutralHadronIso_DR0p1To0p2  = 0;
1513 +  Double_t tmpNeutralHadronIso_DR0p2To0p3  = 0;
1514 +  Double_t tmpNeutralHadronIso_DR0p3To0p4  = 0;
1515 +  Double_t tmpNeutralHadronIso_DR0p4To0p5  = 0;
1516 +
1517 +        
1518 +
1519 +  //
1520 +  // final rings for the MVA
1521 +  //
1522 +  Double_t fChargedIso_DR0p0To0p1;
1523 +  Double_t fChargedIso_DR0p1To0p2;
1524 +  Double_t fChargedIso_DR0p2To0p3;
1525 +  Double_t fChargedIso_DR0p3To0p4;
1526 +  Double_t fChargedIso_DR0p4To0p5;
1527 +
1528 +  Double_t fGammaIso_DR0p0To0p1;
1529 +  Double_t fGammaIso_DR0p1To0p2;
1530 +  Double_t fGammaIso_DR0p2To0p3;
1531 +  Double_t fGammaIso_DR0p3To0p4;
1532 +  Double_t fGammaIso_DR0p4To0p5;
1533 +
1534 +  Double_t fNeutralHadronIso_DR0p0To0p1;
1535 +  Double_t fNeutralHadronIso_DR0p1To0p2;
1536 +  Double_t fNeutralHadronIso_DR0p2To0p3;
1537 +  Double_t fNeutralHadronIso_DR0p3To0p4;
1538 +  Double_t fNeutralHadronIso_DR0p4To0p5;
1539 +
1540 +
1541 +  //
1542 +  //Loop over PF Candidates
1543 +  //
1544 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
1545 +
1546 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
1547 +
1548 +    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
1549 +    Double_t deta = (ele->Eta() - pf->Eta());
1550 +    Double_t dphi = MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
1551 +    Double_t dr = MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
1552 +    if (dr > 1.0) continue;
1553 +
1554 +    if(ctrl.debug) {
1555 +      cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt();
1556 +      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx);
1557 +      cout << endl;
1558 +    }
1559 +
1560 +
1561 +    if ( (pf->HasTrackerTrk() && (pf->TrackerTrk() == ele->TrackerTrk())) ||
1562 +         (pf->HasGsfTrk() && (pf->GsfTrk() == ele->GsfTrk()))) continue;
1563 +    
1564 +
1565 +    //
1566 +    // Lepton Footprint Removal
1567 +    //
1568 +    Bool_t IsLeptonFootprint = kFALSE;
1569 +    if (dr < 1.0) {
1570 +
1571 +
1572 +      //
1573 +      // Check for electrons
1574 +      //
1575 +
1576 +      for (Int_t q=0; q < electronsToVeto.size(); ++q) {
1577 +        const Electron *tmpele = electronsToVeto[q];
1578 +        double tmpdr = MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta());
1579 +
1580 +        // 4l electron
1581 +        if( pf->HasTrackerTrk()  ) {
1582 +          if( pf->TrackerTrk() == tmpele->TrackerTrk() ) {
1583 +            if( ctrl.debug) cout << "\tcharged tktrk, matches 4L ele ..." << endl;
1584 +            IsLeptonFootprint = kTRUE;
1585 +          }
1586 +        }
1587 +        if( pf->HasGsfTrk()  ) {
1588 +          if( pf->GsfTrk() == tmpele->GsfTrk() ) {
1589 +            if( ctrl.debug) cout << "\tcharged gsftrk, matches 4L ele ..." << endl;
1590 +            IsLeptonFootprint = kTRUE;
1591 +          }
1592 +        }
1593 +        // PF charged
1594 +        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479 && tmpdr < 0.015) {
1595 +          if( ctrl.debug) cout << "\tcharged trk, dR matches 4L ele ..." << endl;
1596 +          IsLeptonFootprint = kTRUE;
1597 +        }
1598 +        // PF gamma
1599 +        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
1600 +            && tmpdr < 0.08) {
1601 +          if( ctrl.debug) cout << "\tPF gamma, matches 4L ele ..." << endl;
1602 +          IsLeptonFootprint = kTRUE;
1603 +        }
1604 +      } // loop over electrons
1605 +
1606 +
1607 +      /* KH - comment for sync            
1608 +      //
1609 +      // Check for muons
1610 +      //
1611 +      for (Int_t q=0; q < muonsToVeto.size(); ++q) {
1612 +        const Muon *tmpmu = muonsToVeto[q];
1613 +        // 4l muon
1614 +        if( pf->HasTrackerTrk() ) {
1615 +          if (pf->TrackerTrk() == tmpmu->TrackerTrk() ){
1616 +            if( ctrl.debug) cout << "\tmatches 4L mu ..." << endl;
1617 +            IsLeptonFootprint = kTRUE;
1618 +          }
1619 +        }
1620 +        // PF charged
1621 +        if (pf->Charge() != 0 && MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01) {
1622 +          if( ctrl.debug) cout << "\tcharged trk, dR matches 4L mu ..." << endl;
1623 +          IsLeptonFootprint = kTRUE;
1624 +        }
1625 +      } // loop over muons
1626 +      */
1627 +
1628 +    if (IsLeptonFootprint)
1629 +      continue;
1630 +
1631 +    //
1632 +    // Charged Iso Rings
1633 +    //
1634 +    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1635 +
1636 + //       if( pf->HasGsfTrk() ) {
1637 + //       if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1638 + //       } else if( pf->HasTrackerTrk() ){
1639 + //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1640 + //       }
1641 +
1642 +      // Veto any PFmuon, or PFEle
1643 +      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
1644 +
1645 +      // Footprint Veto
1646 +      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.015) continue;
1647 +
1648 +      if( ctrl.debug) cout << "charged:: pt: " << pf->Pt()
1649 +                           << "\ttype: " << pf->PFType()
1650 +                           << "\ttrk: " << pf->TrackerTrk() << endl;
1651 +
1652 +      if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
1653 +      if (dr >= 0.1 && dr < 0.2) tmpChargedIso_DR0p1To0p2 += pf->Pt();
1654 +      if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
1655 +      if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
1656 +      if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
1657 +
1658 +    }
1659 +
1660 +    //
1661 +    // Gamma Iso Rings
1662 +    //
1663 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1664 +
1665 +      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.08) continue;
1666 +
1667 +      if( ctrl.debug) cout << "gamma:: " << pf->Pt() << " "
1668 +                           << dr << endl;
1669 +
1670 +      if (dr < 0.1) tmpGammaIso_DR0p0To0p1 += pf->Pt();
1671 +      if (dr >= 0.1 && dr < 0.2) tmpGammaIso_DR0p1To0p2 += pf->Pt();
1672 +      if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
1673 +      if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
1674 +      if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
1675 +    }
1676 +
1677 +    //
1678 +    // Other Neutral Iso Rings
1679 +    //
1680 +    else {
1681 +      if( ctrl.debug) cout << "neutral:: " << pf->Pt() << " "
1682 +                           << dr << endl;
1683 +      if (dr < 0.1) tmpNeutralHadronIso_DR0p0To0p1 += pf->Pt();
1684 +      if (dr >= 0.1 && dr < 0.2) tmpNeutralHadronIso_DR0p1To0p2 += pf->Pt();
1685 +      if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
1686 +      if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
1687 +      if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
1688 +    }
1689 +
1690 +    }
1691 +
1692 +  }
1693 +
1694 +  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/ele->Pt(), 2.5);
1695 +  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/ele->Pt(), 2.5);
1696 +  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/ele->Pt(), 2.5);
1697 +  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/ele->Pt(), 2.5);
1698 +  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/ele->Pt(), 2.5);
1699 +
1700 +  if(ctrl.debug) {
1701 +    cout << "fChargedIso_DR0p0To0p1 : " << fChargedIso_DR0p0To0p1  << endl;
1702 +    cout << "fChargedIso_DR0p1To0p2 : " << fChargedIso_DR0p1To0p2  << endl;
1703 +    cout << "fChargedIso_DR0p2To0p3 : " << fChargedIso_DR0p2To0p3  << endl;
1704 +    cout << "fChargedIso_DR0p3To0p4 : " << fChargedIso_DR0p3To0p4  << endl;
1705 +    cout << "fChargedIso_DR0p4To0p5 : " << fChargedIso_DR0p4To0p5  << endl;
1706 +  }
1707 +
1708 +
1709 +  //  rho=0;
1710 +  //  double rho = 0;
1711 +  //   if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
1712 +  //     rho = fPUEnergyDensity->At(0)->Rho();
1713 +  //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
1714 +  //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
1715 +  
1716 +  // WARNING!!!!  
1717 +  // hardcode for sync ...
1718 +  EffectiveAreaVersion = eleT.kEleEAData2011;
1719 +  // WARNING!!!!  
1720 +
1721 +  if( ctrl.debug) {
1722 +    cout << "RHO: " << rho << endl;
1723 +    cout << "eta: " << ele->SCluster()->Eta() << endl;
1724 +    cout << "target: " << EffectiveAreaVersion << endl;
1725 +    cout << "effA 0-1: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p0To0p1,
1726 +                                                       ele->SCluster()->Eta(),
1727 +                                                       EffectiveAreaVersion)
1728 +         << endl;
1729 +    cout << "effA 1-2: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p1To0p2,
1730 +                                                       ele->SCluster()->Eta(),
1731 +                                                       EffectiveAreaVersion)
1732 +         << endl;
1733 +    cout << "effA 2-3: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p2To0p3,
1734 +                                                       ele->SCluster()->Eta(),
1735 +                                                       EffectiveAreaVersion)
1736 +         << endl;
1737 +    cout << "effA 3-4: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p3To0p4,
1738 +                                                       ele->SCluster()->Eta(),
1739 +                                                       EffectiveAreaVersion)
1740 +         << endl;
1741 +  }
1742 +
1743 +  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
1744 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p0To0p1,
1745 +                                                              ele->SCluster()->Eta(),
1746 +                                                              EffectiveAreaVersion))/ele->Pt()
1747 +                                 ,2.5)
1748 +                             ,0.0);
1749 +  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
1750 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p1To0p2,
1751 +                                                              ele->SCluster()->Eta(),
1752 +                                                              EffectiveAreaVersion))/ele->Pt()
1753 +                                 ,2.5)
1754 +                             ,0.0);
1755 +  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
1756 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p2To0p3,
1757 +                                                              ele->SCluster()->Eta()
1758 +                                                              ,EffectiveAreaVersion))/ele->Pt()
1759 +                                 ,2.5)
1760 +                             ,0.0);
1761 +  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
1762 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p3To0p4,
1763 +                                                              ele->SCluster()->Eta(),
1764 +                                                              EffectiveAreaVersion))/ele->Pt()
1765 +                                 ,2.5)
1766 +                             ,0.0);
1767 +  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
1768 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p4To0p5,
1769 +                                                              ele->SCluster()->Eta(),
1770 +                                                              EffectiveAreaVersion))/ele->Pt()
1771 +                                 ,2.5)
1772 +                             ,0.0);
1773 +
1774 +
1775 +  if( ctrl.debug) {
1776 +    cout << "fGammaIso_DR0p0To0p1: " << fGammaIso_DR0p0To0p1 << endl;
1777 +    cout << "fGammaIso_DR0p1To0p2: " << fGammaIso_DR0p1To0p2 << endl;
1778 +    cout << "fGammaIso_DR0p2To0p3: " << fGammaIso_DR0p2To0p3 << endl;
1779 +    cout << "fGammaIso_DR0p3To0p4: " << fGammaIso_DR0p3To0p4 << endl;
1780 +    cout << "fGammaIso_DR0p4To0p5: " << fGammaIso_DR0p4To0p5 << endl;
1781 +  }
1782 +
1783 +  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
1784 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p0To0p1,
1785 +                                                                 ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1786 +                                         , 2.5)
1787 +                                     , 0.0);
1788 +  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
1789 +                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p1To0p2,
1790 +                                                                   ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1791 +                                           , 2.5)
1792 +                                       , 0.0);
1793 +  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
1794 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p2To0p3,
1795 +                                                                 ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1796 +                                         , 2.5)
1797 +                                     , 0.0);
1798 +  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
1799 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p3To0p4,
1800 +                                                                 ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
1801 +                                         , 2.5)
1802 +                                     , 0.0);
1803 +  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
1804 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p4To0p5,
1805 +                                                                 ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
1806 +                                         , 2.5)
1807 +                                     , 0.0);
1808 +
1809 +  if( ctrl.debug) {
1810 +    cout << "fNeutralHadronIso_DR0p0To0p1: " << fNeutralHadronIso_DR0p0To0p1 << endl;
1811 +    cout << "fNeutralHadronIso_DR0p1To0p2: " << fNeutralHadronIso_DR0p1To0p2 << endl;
1812 +    cout << "fNeutralHadronIso_DR0p2To0p3: " << fNeutralHadronIso_DR0p2To0p3 << endl;
1813 +    cout << "fNeutralHadronIso_DR0p3To0p4: " << fNeutralHadronIso_DR0p3To0p4 << endl;
1814 +    cout << "fNeutralHadronIso_DR0p4To0p5: " << fNeutralHadronIso_DR0p4To0p5 << endl;
1815 +  }
1816 +
1817 +  double mvaval = eleIsoMVA->MVAValue_IsoRings( ele->Pt(),
1818 +                                                ele->SCluster()->Eta(),
1819 +                                                fChargedIso_DR0p0To0p1,
1820 +                                                fChargedIso_DR0p1To0p2,
1821 +                                                fChargedIso_DR0p2To0p3,
1822 +                                                fChargedIso_DR0p3To0p4,
1823 +                                                fChargedIso_DR0p4To0p5,
1824 +                                                fGammaIso_DR0p0To0p1,
1825 +                                                fGammaIso_DR0p1To0p2,
1826 +                                                fGammaIso_DR0p2To0p3,
1827 +                                                fGammaIso_DR0p3To0p4,
1828 +                                                fGammaIso_DR0p4To0p5,
1829 +                                                fNeutralHadronIso_DR0p0To0p1,
1830 +                                                fNeutralHadronIso_DR0p1To0p2,
1831 +                                                fNeutralHadronIso_DR0p2To0p3,
1832 +                                                fNeutralHadronIso_DR0p3To0p4,
1833 +                                                fNeutralHadronIso_DR0p4To0p5,
1834 +                                                ctrl.debug);
1835 +
1836 +  SelectionStatus status;
1837 +  status.isoMVA = mvaval;
1838 +  bool pass = false;
1839 +
1840 +  Int_t subdet = 0;
1841 +  if (fabs(ele->SCluster()->Eta()) < 0.8) subdet = 0;
1842 +  else if (fabs(ele->SCluster()->Eta()) < 1.479) subdet = 1;
1843 +  else subdet = 2;
1844 +
1845 +  Int_t ptBin = 0;
1846 +  if (ele->Pt() >= 10.0) ptBin = 1;
1847 +  
1848 +  Int_t MVABin = -1;
1849 +  if (subdet == 0 && ptBin == 0) MVABin = 0;
1850 +  if (subdet == 1 && ptBin == 0) MVABin = 1;
1851 +  if (subdet == 2 && ptBin == 0) MVABin = 2;
1852 +  if (subdet == 0 && ptBin == 1) MVABin = 3;
1853 +  if (subdet == 1 && ptBin == 1) MVABin = 4;
1854 +  if (subdet == 2 && ptBin == 1) MVABin = 5;
1855 +
1856 +  pass = false;
1857 +  if( MVABin == 0 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN0 ) pass = true;
1858 +  if( MVABin == 1 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN1 ) pass = true;
1859 +  if( MVABin == 2 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN2 ) pass = true;
1860 +  if( MVABin == 3 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN3 ) pass = true;
1861 +  if( MVABin == 4 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN4 ) pass = true;
1862 +  if( MVABin == 5 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN5 ) pass = true;
1863 +  if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
1864 +
1865 + //   pass = false;
1866 + //   if( MVABin == 0 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN0 ) pass = true;
1867 + //   if( MVABin == 1 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN1 ) pass = true;
1868 + //   if( MVABin == 2 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN2 ) pass = true;
1869 + //   if( MVABin == 3 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN3 ) pass = true;
1870 + //   if( MVABin == 4 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN4 ) pass = true;
1871 + //   if( MVABin == 5 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN5 ) pass = true;
1872 + //   if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
1873 +
1874 +  if(ctrl.debug) cout << "returning status : " << hex << status.getStatus() << dec << endl;
1875 +  return status;
1876 +  
1877 + }
1878 +
1879 +
1880 + //--------------------------------------------------------------------------------------------------
1881 + void initElectronIsoMVA() {
1882 + //--------------------------------------------------------------------------------------------------
1883 +  eleIsoMVA = new ElectronIDMVA();
1884 +  vector<string> weightFiles;
1885 +  weightFiles.push_back("../MitPhysics/data/ElectronMVAWeights/ElectronIso_BDTG_V0_BarrelPt5To10.weights.xml");
1886 +  weightFiles.push_back("../MitPhysics/data/ElectronMVAWeights/ElectronIso_BDTG_V0_EndcapPt5To10.weights.xml");
1887 +  weightFiles.push_back("../MitPhysics/data/ElectronMVAWeights/ElectronIso_BDTG_V0_BarrelPt10ToInf.weights.xml");
1888 +  weightFiles.push_back("../MitPhysics/data/ElectronMVAWeights/ElectronIso_BDTG_V0_EndcapPt10ToInf.weights.xml");
1889 +  eleIsoMVA->Initialize( "ElectronIsoMVA",
1890 +                        ElectronIDMVA::kIsoRingsV0,
1891 +                        kTRUE, weightFiles);
1892 + }
1893 +
1894 +
1895 +
1896 +
1897 + //--------------------------------------------------------------------------------------------------
1898 + float electronPFIso04(ControlFlags &ctrl,
1899 +                      const Electron * ele,
1900 +                      const Vertex * vtx,
1901 +                      const Array<PFCandidate> * fPFCandidates,
1902 +                      const Array<PileupEnergyDensity> * fPUEnergyDensity,
1903 +                      ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
1904 +                      vector<const PFCandidate*> photonsToVeto)        
1905 + //--------------------------------------------------------------------------------------------------
1906 + {
1907 +
1908 +  //
1909 +  // final iso
1910 +  //
1911 +  Double_t fChargedIso = 0.0;
1912 +  Double_t fGammaIso = 0.0;
1913 +  Double_t fNeutralHadronIso = 0.0;
1914 +
1915 +
1916 +  //
1917 +  //Loop over PF Candidates
1918 +  //
1919 +  if(ctrl.debug) cout << "  electronPFIso04(): ----> " << endl;
1920 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
1921 +
1922 +    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
1923 +
1924 +    //
1925 +    // veto FSR recovered photons
1926 +    //
1927 +    bool vetoPhoton = false;
1928 +    for( int p=0; p<photonsToVeto.size(); p++ ) {
1929 +      if( pf == photonsToVeto[p] ) {
1930 +        vetoPhoton = true;
1931 +        break;
1932 +      }
1933 +    } if( vetoPhoton ) continue;
1934 +
1935 +    Double_t deta = (ele->Eta() - pf->Eta());
1936 +    Double_t dphi = MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
1937 +    Double_t dr = MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
1938 +
1939 +    if (dr > 0.4) continue;
1940 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
1941 +
1942 +    if(ctrl.debug) {
1943 +      cout << "    pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt() << "\tdR: " << dr;
1944 +      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx)
1945 +                                     << "\ttrk: " << pf->HasTrackerTrk()
1946 +                                     << "\tgsf: " << pf->HasGsfTrk();
1947 +      cout << endl;
1948 +    }
1949 +
1950 +    //
1951 +    // sync : I don't think theyre doing this ...
1952 +    //
1953 +    //     if ( (pf->HasTrackerTrk() && (pf->TrackerTrk() == ele->TrackerTrk())) ||
1954 +    //   (pf->HasGsfTrk() && (pf->GsfTrk() == ele->GsfTrk()))) {
1955 +    //       if( ctrl.debug ) cout << "\tskipping, matches to the electron ..."  << endl;
1956 +    //       continue;
1957 +    //     }
1958 +
1959 +
1960 +    //
1961 +    // Lepton Footprint Removal
1962 +    //
1963 +    Bool_t IsLeptonFootprint = kFALSE;
1964 +    if (dr < 1.0) {
1965 +
1966 +
1967 +    //
1968 +    // Charged Iso
1969 +    //
1970 +    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1971 +
1972 +      // Veto any PFmuon, or PFEle
1973 +      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) {
1974 +        if( ctrl.debug ) cout << "    skipping, pf is an ele or mu .." <<endl;
1975 +        continue;
1976 +      }
1977 +
1978 +      // Footprint Veto
1979 +      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.015) continue;
1980 +
1981 +      if( ctrl.debug) cout << "    charged:: pt: " << pf->Pt()
1982 +                           << "\ttype: " << pf->PFType()
1983 +                           << "\ttrk: " << pf->TrackerTrk() << endl;
1984 +
1985 +      fChargedIso += pf->Pt();
1986 +    }
1987 +
1988 +    //
1989 +    // Gamma Iso
1990 +    //
1991 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1992 +
1993 +      if (fabs(ele->SCluster()->Eta()) > 1.479) {
1994 +        if (MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta()) < 0.08) continue;
1995 +      }
1996 +
1997 +      assert(ele->HasSuperCluster());
1998 +      if(ele->GsfTrk()->NExpectedHitsInner()>0 && pf->MvaGamma() > 0.99 && pf->HasSCluster() && ele->SCluster() == pf->SCluster())      continue;
1999 +
2000 +
2001 +      if( ctrl.debug) cout << "    gamma:: " << pf->Pt() << " "
2002 +                           << dr << endl;
2003 +      // KH, add to sync
2004 +      //      if( pf->Pt() > 0.5 )
2005 +        fGammaIso += pf->Pt();
2006 +    }
2007 +
2008 +    //
2009 +    // Neutral Iso
2010 +    //
2011 +    else {
2012 +      if( ctrl.debug) cout << "    neutral:: " << pf->Pt() << " "
2013 +                           << dr << endl;
2014 +      // KH, add to sync
2015 +      //      if( pf->Pt() > 0.5 )
2016 +        fNeutralHadronIso += pf->Pt();
2017 +    }
2018 +
2019 +    }
2020 +
2021 +  }
2022 +
2023 +
2024 +  double rho=0;
2025 +  if( (EffectiveAreaVersion == ElectronTools::kEleEAFall11MC) ||
2026 +      (EffectiveAreaVersion == ElectronTools::kEleEAData2011) ) {
2027 +    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25()) ||
2028 +          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25())))
2029 +      rho = fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25();
2030 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2031 +    EffectiveAreaVersion  = ElectronTools::kEleEAData2011;
2032 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2033 +  } else {
2034 +    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJets()) ||
2035 +          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJets())))
2036 +      rho = fPUEnergyDensity->At(0)->RhoKt6PFJets();
2037 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2038 +    EffectiveAreaVersion  = ElectronTools::kEleEAData2012;
2039 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2040 +  }
2041 +  if(ctrl.debug) cout << "    rho: " << rho << endl;
2042 +
2043 +  double pfIso = fChargedIso + fmax(0.0,(fGammaIso + fNeutralHadronIso
2044 +                                        -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaAndNeutralHadronIso04,
2045 +                                                                   ele->Eta(),EffectiveAreaVersion)));
2046 +
2047 +
2048 +  gChargedIso = fChargedIso;
2049 +  gGammaIso = fGammaIso;
2050 +  gNeutralIso = fNeutralHadronIso;  
2051 +
2052 +  if( ctrl.debug ) {
2053 +    cout << "    PFiso: " << pfIso
2054 +         << "\tfChargedIso: " << fChargedIso
2055 +         << "\tfGammaIso: " << fGammaIso
2056 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2057 +         << endl;
2058 +  }
2059 +
2060 +  return pfIso;
2061 + }
2062 +
2063 + //--------------------------------------------------------------------------------------------------
2064 + SelectionStatus electronReferenceIsoSelection(ControlFlags &ctrl,
2065 +                                              const Electron * ele,
2066 +                                              const Vertex * vtx,
2067 +                                              const Array<PFCandidate> * fPFCandidates,
2068 +                                              const Array<PileupEnergyDensity> * fPUEnergyDensity,
2069 +                                              ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
2070 +                                              vector<const PFCandidate*> photonsToVeto)
2071 + //--------------------------------------------------------------------------------------------------
2072 + {
2073 +
2074 +  SelectionStatus status;
2075 +
2076 +  double pfIso = electronPFIso04( ctrl, ele, vtx, fPFCandidates, fPUEnergyDensity,
2077 +                                  EffectiveAreaVersion, photonsToVeto);
2078 +  status.isoPF04 = pfIso;
2079 +  status.chisoPF04 = gChargedIso;
2080 +  status.gaisoPF04 = gGammaIso;
2081 +  status.neisoPF04 = gNeutralIso;
2082 +
2083 +  bool pass = false;
2084 +  if( (pfIso/ele->Pt()) < ELECTRON_REFERENCE_PFISO_CUT ) pass = true;
2085 +
2086 +  if( pass ) {
2087 +    status.orStatus(SelectionStatus::LOOSEISO);
2088 +    status.orStatus(SelectionStatus::TIGHTISO);
2089 +  }
2090 +  if(ctrl.debug)
2091 +    cout << "  --> ele relpfIso: " << pfIso/ele->Pt() << ", returning status : " << hex << status.getStatus() << dec << endl;
2092 +  return status;
2093 + }
2094 +
2095 + //--------------------------------------------------------------------------------------------------
2096 + double  dbetaCorrectedIsoDr03(ControlFlags & ctrl,
2097 +                              const PFCandidate * photon,
2098 +                              const Muon * lepton,
2099 +                              const Array<PFCandidate> * fPFCandidates)
2100 + //--------------------------------------------------------------------------------------------------
2101 + {
2102 +
2103 +  //
2104 +  // final iso
2105 +  //
2106 +  Double_t fChargedIso  = 0.0;
2107 +  Double_t fGammaIso  = 0.0;
2108 +  Double_t fNeutralHadronIso  = 0.0;
2109 +  Double_t fpfPU  = 0.0;
2110  
2111 +  //
2112 +  // Loop over PF Candidates
2113 +  //
2114 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2115 +
2116 +    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
2117 +    
2118 +    Double_t deta = (photon->Eta() - pf->Eta());
2119 +    Double_t dphi = MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2120 +    Double_t dr = MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2121 +    if (dr > 0.3) continue;
2122 +
2123 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2124 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2125 +        fpfPU += pf->Pt();
2126 +      continue;
2127 +    }
2128 +    
2129 +    //
2130 +    // skip this photon
2131 +    //
2132 +    if( abs(pf->PFType()) == PFCandidate::eGamma &&
2133 +        pf->Et() == photon->Et() ) continue;
2134 +    
2135 +      
2136 +    //
2137 +    // Charged Iso
2138 +    //
2139 +    if (pf->Charge() != 0 ) {
2140 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2141 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2142 +        fChargedIso += pf->Pt();
2143 +    }
2144 +    
2145 +    //
2146 +    // Gamma Iso
2147 +    //
2148 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
2149 +      if( pf->Pt() > 0.5 && dr > 0.01)
2150 +        fGammaIso += pf->Pt();
2151 +    }
2152 +    
2153 +    //
2154 +    // Other Neutrals
2155 +    //
2156 +    else {
2157 +      if( pf->Pt() > 0.5 && dr > 0.01)
2158 +        fNeutralHadronIso += pf->Pt();
2159 +    }
2160 +    
2161 +  }
2162 +  
2163 +  if( ctrl.debug ) {
2164 +    cout << "  ---> photon dbetaIso :: " << endl;
2165 +    cout << "\tfChargedIso: " << fChargedIso
2166 +         << "\tfGammaIso: " << fGammaIso
2167 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2168 +         << "\tfpfPU: " << fpfPU
2169 +         << endl;
2170 +  }
2171 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso - 0.5*fpfPU;
2172 +  return pfIso/photon->Pt();
2173   }
2174 +
2175 +
2176 + //--------------------------------------------------------------------------------------------------
2177 + double  dbetaCorrectedIsoDr03(ControlFlags & ctrl,
2178 +                              const PFCandidate * photon,
2179 +                              const Electron * lepton,
2180 +                              const Array<PFCandidate> * fPFCandidates)
2181 + //--------------------------------------------------------------------------------------------------
2182 + {
2183 +
2184 +  //
2185 +  // final iso
2186 +  //
2187 +  Double_t fChargedIso  = 0.0;
2188 +  Double_t fGammaIso  = 0.0;
2189 +  Double_t fNeutralHadronIso  = 0.0;
2190 +  Double_t fpfPU  = 0.0;
2191 +
2192 +  //
2193 +  // Loop over PF Candidates
2194 +  //
2195 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2196 +
2197 +    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
2198 +    
2199 +    Double_t deta = (photon->Eta() - pf->Eta());
2200 +    Double_t dphi = MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2201 +    Double_t dr = MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2202 +    if (dr > 0.3) continue;
2203 +
2204 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2205 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2206 +        fpfPU += pf->Pt();
2207 +      continue;
2208 +    }
2209 +    
2210 +    //
2211 +    // skip this photon
2212 +    //
2213 +    if( abs(pf->PFType()) == PFCandidate::eGamma &&
2214 +        pf->Et() == photon->Et() ) continue;
2215 +    
2216 +      
2217 +    //
2218 +    // Charged Iso
2219 +    //
2220 +    if (pf->Charge() != 0 ) {
2221 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2222 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2223 +        fChargedIso += pf->Pt();
2224 +    }
2225 +    
2226 +    //
2227 +    // Gamma Iso
2228 +    //
2229 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
2230 +      if( pf->Pt() > 0.5 && dr > 0.01)
2231 +        fGammaIso += pf->Pt();
2232 +    }
2233 +    
2234 +    //
2235 +    // Other Neutrals
2236 +    //
2237 +    else {
2238 +      if( pf->Pt() > 0.5 && dr > 0.01)
2239 +        fNeutralHadronIso += pf->Pt();
2240 +    }
2241 +    
2242 +  }
2243 +  
2244 +  if( ctrl.debug ) {
2245 +    cout << "  ---> photon dbetaIso :: " << endl;
2246 +    cout << "\tfChargedIso: " << fChargedIso
2247 +         << "\tfGammaIso: " << fGammaIso
2248 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2249 +         << "\tfpfPU: " << fpfPU
2250 +         << endl;
2251 +  }
2252 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso - 0.5*fpfPU;
2253 +  return pfIso/photon->Pt();
2254 + }
2255 +
2256 +
2257 +
2258 +
2259 +
2260 + //--------------------------------------------------------------------------------------------------
2261 + double  nonCorrectedIsoDr03(ControlFlags & ctrl,
2262 +                            const PFCandidate * photon,
2263 +                            const Muon * lepton,
2264 +                            const Array<PFCandidate> * fPFCandidates)
2265 + //--------------------------------------------------------------------------------------------------
2266 + {
2267 +
2268 +  //
2269 +  // final iso
2270 +  //
2271 +  Double_t fChargedIso  = 0.0;
2272 +  Double_t fGammaIso  = 0.0;
2273 +  Double_t fNeutralHadronIso  = 0.0;
2274 +  Double_t fpfPU  = 0.0;
2275 +
2276 +  //
2277 +  // Loop over PF Candidates
2278 +  //
2279 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2280 +
2281 +    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
2282 +
2283 +    Double_t deta = (photon->Eta() - pf->Eta());
2284 +    Double_t dphi = MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2285 +    Double_t dr = MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2286 +    if (dr > 0.3) continue;
2287 +
2288 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2289 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2290 +        fpfPU += pf->Pt();
2291 +      continue;
2292 +    }
2293 +    
2294 +    //
2295 +    // skip this photon
2296 +    //
2297 +    if( abs(pf->PFType()) == PFCandidate::eGamma &&
2298 +        pf->Et() == photon->Et() ) continue;
2299 +    
2300 +      
2301 +    //
2302 +    // Charged Iso
2303 +    //
2304 +    if (pf->Charge() != 0 ) {
2305 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2306 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2307 +        fChargedIso += pf->Pt();
2308 +    }
2309 +    
2310 +    //
2311 +    // Gamma Iso
2312 +    //
2313 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
2314 +      if( pf->Pt() > 0.5 && dr > 0.01)
2315 +        fGammaIso += pf->Pt();
2316 +    }
2317 +    
2318 +    //
2319 +    // Other Neutrals
2320 +    //
2321 +    else {
2322 +      if( pf->Pt() > 0.5 && dr > 0.01)
2323 +        fNeutralHadronIso += pf->Pt();
2324 +    }
2325 +    
2326 +  }
2327 +  
2328 +  if( ctrl.debug ) {
2329 +    cout << "  ---> photon dbetaIso :: " << endl;
2330 +    cout << "\tfChargedIso: " << fChargedIso
2331 +         << "\tfGammaIso: " << fGammaIso
2332 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2333 +         << "\tfpfPU: " << fpfPU
2334 +         << endl;
2335 +  }
2336 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso + fpfPU;
2337 +  return pfIso/photon->Pt();
2338 + }
2339 +
2340 +
2341 +
2342 + //--------------------------------------------------------------------------------------------------
2343 + double  nonCorrectedIsoDr03(ControlFlags & ctrl,
2344 +                            const PFCandidate * photon,
2345 +                            const Electron * lepton,
2346 +                            const Array<PFCandidate> * fPFCandidates)
2347 + //--------------------------------------------------------------------------------------------------
2348 + {
2349 +
2350 +  //
2351 +  // final iso
2352 +  //
2353 +  Double_t fChargedIso  = 0.0;
2354 +  Double_t fGammaIso  = 0.0;
2355 +  Double_t fNeutralHadronIso  = 0.0;
2356 +  Double_t fpfPU  = 0.0;
2357 +
2358 +  //
2359 +  // Loop over PF Candidates
2360 +  //
2361 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2362 +
2363 +    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
2364 +
2365 +    Double_t deta = (photon->Eta() - pf->Eta());
2366 +    Double_t dphi = MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2367 +    Double_t dr = MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2368 +    if (dr > 0.3) continue;
2369 +
2370 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2371 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2372 +        fpfPU += pf->Pt();
2373 +      continue;
2374 +    }
2375 +    
2376 +    //
2377 +    // skip this photon
2378 +    //
2379 +    if( abs(pf->PFType()) == PFCandidate::eGamma &&
2380 +        pf->Et() == photon->Et() ) continue;
2381 +    
2382 +      
2383 +    //
2384 +    // Charged Iso
2385 +    //
2386 +    if (pf->Charge() != 0 ) {
2387 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2388 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2389 +        fChargedIso += pf->Pt();
2390 +    }
2391 +    
2392 +    //
2393 +    // Gamma Iso
2394 +    //
2395 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
2396 +      if( pf->Pt() > 0.5 && dr > 0.01)
2397 +        fGammaIso += pf->Pt();
2398 +    }
2399 +    
2400 +    //
2401 +    // Other Neutrals
2402 +    //
2403 +    else {
2404 +      if( pf->Pt() > 0.5 && dr > 0.01)
2405 +        fNeutralHadronIso += pf->Pt();
2406 +    }
2407 +    
2408 +  }
2409 +  
2410 +  if( ctrl.debug ) {
2411 +    cout << "photon dbetaIso :: " << endl;
2412 +    cout << "\tfChargedIso: " << fChargedIso
2413 +         << "\tfGammaIso: " << fGammaIso
2414 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2415 +         << "\tfpfPU: " << fpfPU
2416 +         << endl;
2417 +  }
2418 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso + fpfPU;
2419 +  return pfIso/photon->Pt();
2420 + }
2421 +
2422 +
2423 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines