ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitHzz4l/LeptonSelection/src/IsolationSelection.cc
(Generate patch)

Comparing UserCode/MitHzz4l/LeptonSelection/src/IsolationSelection.cc (file contents):
Revision 1.14 by khahn, Thu May 10 11:14:33 2012 UTC vs.
Revision 1.31 by khahn, Tue Jun 12 01:23:03 2012 UTC

# Line 16 | Line 16 | mithep::MuonTools       muT;
16   mithep::ElectronIDMVA * eleIsoMVA;
17   mithep::ElectronTools   eleT;
18  
19 + // global hack to sync
20 + double gChargedIso;
21 + double gGammaIso;
22 + double gNeutralIso;
23 +
24 + extern vector<bool> PFnoPUflag;
25 +
26   //--------------------------------------------------------------------------------------------------
27   Float_t computePFMuonIso(const mithep::Muon *muon,
28 <                         const mithep::Vertex & vtx,
28 >                         const mithep::Vertex * vtx,
29                           const mithep::Array<mithep::PFCandidate> * fPFCandidates,
30                           const Double_t dRMax)
31   //--------------------------------------------------------------------------------------------------
# Line 27 | Line 34 | Float_t computePFMuonIso(const mithep::M
34    const Double_t neuPtMin = 1.0;
35    const Double_t dzMax    = 0.1;
36      
37 <  Double_t zLepton = (muon->BestTrk()) ? muon->BestTrk()->DzCorrected(vtx) : 0.0;
37 >  Double_t zLepton = (muon->BestTrk()) ? muon->BestTrk()->DzCorrected(*vtx) : 0.0;
38    
39    Float_t iso=0;
40    for(UInt_t ipf=0; ipf<fPFCandidates->GetEntries(); ipf++) {
# Line 39 | Line 46 | Float_t computePFMuonIso(const mithep::M
46      if(pfcand->TrackerTrk() && muon->TrackerTrk() && (pfcand->TrackerTrk()==muon->TrackerTrk())) continue;
47      
48      // dz cut
49 <    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(vtx) - zLepton) : 0;
49 >    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(*vtx) - zLepton) : 0;
50      if(dz >= dzMax) continue;
51      
52      // check iso cone
# Line 53 | Line 60 | Float_t computePFMuonIso(const mithep::M
60  
61   //--------------------------------------------------------------------------------------------------
62   Float_t computePFEleIso(const mithep::Electron *electron,
63 <                        const mithep::Vertex & fVertex,
63 >                        const mithep::Vertex * fVertex,
64                          const mithep::Array<mithep::PFCandidate> * fPFCandidates,
65                          const Double_t dRMax)
66   //--------------------------------------------------------------------------------------------------
# Line 62 | Line 69 | Float_t computePFEleIso(const mithep::El
69    const Double_t neuPtMin = 1.0;
70    const Double_t dzMax    = 0.1;
71      
72 <  Double_t zLepton = (electron->BestTrk()) ? electron->BestTrk()->DzCorrected(fVertex) : 0.0;
72 >  Double_t zLepton = (electron->BestTrk()) ? electron->BestTrk()->DzCorrected(*fVertex) : 0.0;
73    
74    Float_t iso=0;
75    for(UInt_t ipf=0; ipf<fPFCandidates->GetEntries(); ipf++) {
# Line 71 | Line 78 | Float_t computePFEleIso(const mithep::El
78      if(!pfcand->HasTrk() && (pfcand->Pt()<=neuPtMin)) continue;  // pT cut on neutral particles
79      
80      // dz cut
81 <    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(fVertex) - zLepton) : 0;
81 >    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(*fVertex) - zLepton) : 0;
82      if(dz >= dzMax) continue;
83      
84      // remove THE electron
# Line 175 | Line 182 | bool pairwiseIsoSelection( ControlFlags
182   //--------------------------------------------------------------------------------------------------
183   SelectionStatus muonIsoSelection(ControlFlags &ctrl,
184                                   const mithep::Muon * mu,
185 <                                 const mithep::Vertex & vtx,
185 >                                 const mithep::Vertex * vtx,
186                                   const mithep::Array<mithep::PFCandidate> * fPFCandidateCol   )
187   //--------------------------------------------------------------------------------------------------
188   {
# Line 205 | Line 212 | SelectionStatus muonIsoSelection(Control
212   //--------------------------------------------------------------------------------------------------
213   SelectionStatus electronIsoSelection(ControlFlags &ctrl,
214                                       const mithep::Electron * ele,
215 <                                     const mithep::Vertex &fVertex,
215 >                                     const mithep::Vertex *fVertex,
216                                       const mithep::Array<mithep::PFCandidate> * fPFCandidates)
217   //--------------------------------------------------------------------------------------------------
218   {
# Line 220 | Line 227 | SelectionStatus electronIsoSelection(Con
227    if( ele->IsEB() && ele->Pt() < 20 && reliso > PFISO_ELE_LOOSE_EB_LOWPT ) {
228      failiso = true;
229    }
223  if(ctrl.debug) cout << "before iso check ..." << endl;
230    if( !(ele->IsEB()) && ele->Pt() > 20 && reliso > PFISO_ELE_LOOSE_EE_HIGHPT ) {
225    if(ctrl.debug) cout << "\tit fails ..." << endl;
231      failiso = true;
232    }
233    if( !(ele->IsEB()) && ele->Pt() < 20 && reliso > PFISO_ELE_LOOSE_EE_LOWPT ) {
# Line 245 | Line 250 | bool noIso(ControlFlags &, vector<Simple
250          return true;
251   }
252  
253 +
254   //--------------------------------------------------------------------------------------------------
255   SelectionStatus muonIsoMVASelection(ControlFlags &ctrl,
256                                      const mithep::Muon * mu,
257 <                                    const mithep::Vertex & vtx,
257 >                                    const mithep::Vertex * vtx,
258                                      const mithep::Array<mithep::PFCandidate> * fPFCandidates,
259                                      const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
260                                      mithep::MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
# Line 332 | Line 338 | SelectionStatus muonIsoMVASelection(Cont
338    //Loop over PF Candidates
339    //
340    for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
341 +
342 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
343 +
344      const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
345  
346      Double_t deta = (mu->Eta() - pf->Eta());
# Line 362 | Line 371 | SelectionStatus muonIsoMVASelection(Cont
371              IsLeptonFootprint = kTRUE;
372          }
373          // PF charged
374 <        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) > 1.479
374 >        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479
375              && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015)
376            IsLeptonFootprint = kTRUE;
377          // PF gamma
378 <        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) > 1.479
378 >        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
379              && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.08)
380            IsLeptonFootprint = kTRUE;
381        } // loop over electrons
# Line 399 | Line 408 | SelectionStatus muonIsoMVASelection(Cont
408        if( dr < 0.01 ) continue; // only for muon iso mva?
409        if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
410  
411 <      if( pf->HasTrackerTrk() ) {
412 <        if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
413 <        if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
414 <                              << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
415 <                              << dr << endl;
416 <      }
417 <      if( pf->HasGsfTrk() ) {
418 <        if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
419 <        if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
420 <                              << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
421 <                              << dr << endl;
422 <      }
411 > //       if( pf->HasTrackerTrk() ) {
412 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
413 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
414 > //                            << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
415 > //                            << dr << endl;
416 > //       }
417 > //       if( pf->HasGsfTrk() ) {
418 > //      if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
419 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
420 > //                            << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
421 > //                            << dr << endl;
422 > //       }
423  
424        // Footprint Veto
425        if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
# Line 449 | Line 458 | SelectionStatus muonIsoMVASelection(Cont
458  
459    }
460  
461 <  fChargedIso_DR0p0To0p1   = min((tmpChargedIso_DR0p0To0p1)/mu->Pt(), 2.5);
462 <  fChargedIso_DR0p1To0p2   = min((tmpChargedIso_DR0p1To0p2)/mu->Pt(), 2.5);
463 <  fChargedIso_DR0p2To0p3   = min((tmpChargedIso_DR0p2To0p3)/mu->Pt(), 2.5);
464 <  fChargedIso_DR0p3To0p4   = min((tmpChargedIso_DR0p3To0p4)/mu->Pt(), 2.5);
465 <  fChargedIso_DR0p4To0p5   = min((tmpChargedIso_DR0p4To0p5)/mu->Pt(), 2.5);
461 >  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/mu->Pt(), 2.5);
462 >  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/mu->Pt(), 2.5);
463 >  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/mu->Pt(), 2.5);
464 >  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/mu->Pt(), 2.5);
465 >  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/mu->Pt(), 2.5);
466  
467  
468    double rho = 0;
469    if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
470      rho = fPUEnergyDensity->At(0)->Rho();
471 +
472 + //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
473 + //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
474    
475 +  // WARNING!!!!  
476 +  // hardcode for sync ...
477 +  EffectiveAreaVersion = muT.kMuEAData2011;
478 +  // WARNING!!!!  
479 +
480  
481 <  fGammaIso_DR0p0To0p1 = max(min((tmpGammaIso_DR0p0To0p1
481 >  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
482                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p0To0p1,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
483                                   ,2.5)
484                               ,0.0);
485 <  fGammaIso_DR0p1To0p2 = max(min((tmpGammaIso_DR0p1To0p2
485 >  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
486                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p1To0p2,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
487                                   ,2.5)
488                               ,0.0);
489 <  fGammaIso_DR0p2To0p3 = max(min((tmpGammaIso_DR0p2To0p3
489 >  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
490                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p2To0p3,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
491                                   ,2.5)
492                               ,0.0);
493 <  fGammaIso_DR0p3To0p4 = max(min((tmpGammaIso_DR0p3To0p4
493 >  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
494                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p3To0p4,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
495                                   ,2.5)
496                               ,0.0);
497 <  fGammaIso_DR0p4To0p5 = max(min((tmpGammaIso_DR0p4To0p5
497 >  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
498                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p4To0p5,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
499                                   ,2.5)
500                               ,0.0);
501  
502  
503  
504 <  fNeutralHadronIso_DR0p0To0p1 = max(min((tmpNeutralHadronIso_DR0p0To0p1
504 >  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
505                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p0To0p1,
506                                                                   mu->Eta(),EffectiveAreaVersion))/mu->Pt()
507                                           , 2.5)
508                                       , 0.0);
509 <  fNeutralHadronIso_DR0p1To0p2 = max(min((tmpNeutralHadronIso_DR0p1To0p2
509 >  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
510                                              -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p1To0p2,
511                                                                     mu->Eta(),EffectiveAreaVersion))/mu->Pt()
512                                             , 2.5)
513                                         , 0.0);
514 <  fNeutralHadronIso_DR0p2To0p3 = max(min((tmpNeutralHadronIso_DR0p2To0p3
514 >  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
515                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p2To0p3,
516                                                                   mu->Eta(),EffectiveAreaVersion))/mu->Pt()
517                                           , 2.5)
518                                       , 0.0);
519 <  fNeutralHadronIso_DR0p3To0p4 = max(min((tmpNeutralHadronIso_DR0p3To0p4
519 >  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
520                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p3To0p4,
521                                                                   mu->Eta(), EffectiveAreaVersion))/mu->Pt()
522                                           , 2.5)
523                                       , 0.0);
524 <  fNeutralHadronIso_DR0p4To0p5 = max(min((tmpNeutralHadronIso_DR0p4To0p5
524 >  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
525                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p4To0p5,
526                                                                   mu->Eta(), EffectiveAreaVersion))/mu->Pt()
527                                           , 2.5)
# Line 512 | Line 529 | SelectionStatus muonIsoMVASelection(Cont
529  
530  
531    double mvaval = muIsoMVA->MVAValue_IsoRings( mu->Pt(),
532 <                                             mu->Eta(),
533 <                                             fChargedIso_DR0p0To0p1,
534 <                                             fChargedIso_DR0p1To0p2,
535 <                                             fChargedIso_DR0p2To0p3,
536 <                                             fChargedIso_DR0p3To0p4,
537 <                                             fChargedIso_DR0p4To0p5,
538 <                                             fGammaIso_DR0p0To0p1,
539 <                                             fGammaIso_DR0p1To0p2,
540 <                                             fGammaIso_DR0p2To0p3,
541 <                                             fGammaIso_DR0p3To0p4,
542 <                                             fGammaIso_DR0p4To0p5,
543 <                                             fNeutralHadronIso_DR0p0To0p1,
544 <                                             fNeutralHadronIso_DR0p1To0p2,
545 <                                             fNeutralHadronIso_DR0p2To0p3,
546 <                                             fNeutralHadronIso_DR0p3To0p4,
547 <                                             fNeutralHadronIso_DR0p4To0p5,
548 <                                             ctrl.debug);
532 >                                               mu->Eta(),
533 >                                               mu->IsGlobalMuon(),
534 >                                               mu->IsTrackerMuon(),
535 >                                               fChargedIso_DR0p0To0p1,
536 >                                               fChargedIso_DR0p1To0p2,
537 >                                               fChargedIso_DR0p2To0p3,
538 >                                               fChargedIso_DR0p3To0p4,
539 >                                               fChargedIso_DR0p4To0p5,
540 >                                               fGammaIso_DR0p0To0p1,
541 >                                               fGammaIso_DR0p1To0p2,
542 >                                               fGammaIso_DR0p2To0p3,
543 >                                               fGammaIso_DR0p3To0p4,
544 >                                               fGammaIso_DR0p4To0p5,
545 >                                               fNeutralHadronIso_DR0p0To0p1,
546 >                                               fNeutralHadronIso_DR0p1To0p2,
547 >                                               fNeutralHadronIso_DR0p2To0p3,
548 >                                               fNeutralHadronIso_DR0p3To0p4,
549 >                                               fNeutralHadronIso_DR0p4To0p5,
550 >                                               ctrl.debug);
551 >
552 >  SelectionStatus status;
553 >  bool pass;
554 >
555 >  pass = false;
556 >  if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
557 >      && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN0)   pass = true;
558 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
559 >           && fabs(mu->Eta()) <= 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN1)  pass = true;
560 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
561 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN2)  pass = true;
562 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
563 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN3)  pass = true;
564 >  else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN4)  pass = true;
565 >  else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN5)  pass = true;
566 >  if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
567 >
568 >  /*
569 >  pass = false;
570 >  if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
571 >      && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN0)   pass = true;
572 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
573 >           && fabs(mu->Eta()) <= 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN1)  pass = true;
574 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
575 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN2)  pass = true;
576 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
577 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN3)  pass = true;
578 >  else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN4)  pass = true;
579 >  else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN5)  pass = true;
580 >  if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
581 >  */
582 >
583 >  //  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
584 >
585 >  status.isoMVA = mvaval;
586 >
587 >  if(ctrl.debug)  {
588 >    cout << "returning status : " << hex << status.getStatus() << dec << endl;
589 >    cout << "MVAVAL : " << status.isoMVA << endl;
590 >  }
591 >  return status;
592 >
593 > }
594 >
595 >
596 > //--------------------------------------------------------------------------------------------------
597 > SelectionStatus muonIsoMVASelection(ControlFlags &ctrl,
598 >                                    const mithep::Muon * mu,
599 >                                    const mithep::Vertex * vtx,
600 >                                    const mithep::Array<mithep::PFCandidate> * fPFCandidates,
601 >                                    float rho,
602 >                                    //const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
603 >                                    mithep::MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
604 >                                    vector<const mithep::Muon*> muonsToVeto,
605 >                                    vector<const mithep::Electron*> electronsToVeto)
606 > //--------------------------------------------------------------------------------------------------
607 > // hacked version
608 > {
609 >
610 >  if( ctrl.debug ) {
611 >    cout << "muonIsoMVASelection :: muons to veto " << endl;
612 >    for( int i=0; i<muonsToVeto.size(); i++ ) {
613 >      const mithep::Muon * vmu = muonsToVeto[i];
614 >      cout << "\tpt: " << vmu->Pt()
615 >           << "\teta: " << vmu->Eta()
616 >           << "\tphi: " << vmu->Phi()
617 >           << endl;
618 >    }
619 >    cout << "muonIsoMVASelection :: electrson to veto " << endl;
620 >    for( int i=0; i<electronsToVeto.size(); i++ ) {
621 >      const mithep::Electron * vel = electronsToVeto[i];
622 >      cout << "\tpt: " << vel->Pt()
623 >           << "\teta: " << vel->Eta()
624 >           << "\tphi: " << vel->Phi()
625 >           << endl;
626 >    }
627 >  }
628 >  bool failiso=false;
629 >
630 >  //
631 >  // tmp iso rings
632 >  //
633 >  Double_t tmpChargedIso_DR0p0To0p1  = 0;
634 >  Double_t tmpChargedIso_DR0p1To0p2  = 0;
635 >  Double_t tmpChargedIso_DR0p2To0p3  = 0;
636 >  Double_t tmpChargedIso_DR0p3To0p4  = 0;
637 >  Double_t tmpChargedIso_DR0p4To0p5  = 0;
638 >  Double_t tmpChargedIso_DR0p5To0p7  = 0;
639 >
640 >  Double_t tmpGammaIso_DR0p0To0p1  = 0;
641 >  Double_t tmpGammaIso_DR0p1To0p2  = 0;
642 >  Double_t tmpGammaIso_DR0p2To0p3  = 0;
643 >  Double_t tmpGammaIso_DR0p3To0p4  = 0;
644 >  Double_t tmpGammaIso_DR0p4To0p5  = 0;
645 >  Double_t tmpGammaIso_DR0p5To0p7  = 0;
646 >
647 >  Double_t tmpNeutralHadronIso_DR0p0To0p1  = 0;
648 >  Double_t tmpNeutralHadronIso_DR0p1To0p2  = 0;
649 >  Double_t tmpNeutralHadronIso_DR0p2To0p3  = 0;
650 >  Double_t tmpNeutralHadronIso_DR0p3To0p4  = 0;
651 >  Double_t tmpNeutralHadronIso_DR0p4To0p5  = 0;
652 >  Double_t tmpNeutralHadronIso_DR0p5To0p7  = 0;
653 >
654 >        
655 >
656 >  //
657 >  // final rings for the MVA
658 >  //
659 >  Double_t fChargedIso_DR0p0To0p1;
660 >  Double_t fChargedIso_DR0p1To0p2;
661 >  Double_t fChargedIso_DR0p2To0p3;
662 >  Double_t fChargedIso_DR0p3To0p4;
663 >  Double_t fChargedIso_DR0p4To0p5;
664 >  Double_t fChargedIso_DR0p5To0p7;
665 >
666 >  Double_t fGammaIso_DR0p0To0p1;
667 >  Double_t fGammaIso_DR0p1To0p2;
668 >  Double_t fGammaIso_DR0p2To0p3;
669 >  Double_t fGammaIso_DR0p3To0p4;
670 >  Double_t fGammaIso_DR0p4To0p5;
671 >  Double_t fGammaIso_DR0p5To0p7;
672 >
673 >  Double_t fNeutralHadronIso_DR0p0To0p1;
674 >  Double_t fNeutralHadronIso_DR0p1To0p2;
675 >  Double_t fNeutralHadronIso_DR0p2To0p3;
676 >  Double_t fNeutralHadronIso_DR0p3To0p4;
677 >  Double_t fNeutralHadronIso_DR0p4To0p5;
678 >  Double_t fNeutralHadronIso_DR0p5To0p7;
679 >
680 >
681 >  //
682 >  //Loop over PF Candidates
683 >  //
684 >  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
685 >
686 >    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
687 >
688 >    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
689 >
690 >    Double_t deta = (mu->Eta() - pf->Eta());
691 >    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(mu->Phi()),Double_t(pf->Phi()));
692 >    Double_t dr = mithep::MathUtils::DeltaR(mu->Phi(),mu->Eta(), pf->Phi(), pf->Eta());
693 >    if (dr > 1.0) continue;
694 >
695 >    if (pf->HasTrackerTrk() && (pf->TrackerTrk() == mu->TrackerTrk()) ) continue;
696 >
697 >    //
698 >    // Lepton Footprint Removal
699 >    //
700 >    Bool_t IsLeptonFootprint = kFALSE;
701 >    if (dr < 1.0) {
702 >
703 >      //
704 >      // Check for electrons
705 >      //
706 >      for (Int_t q=0; q < electronsToVeto.size(); ++q) {
707 >        const mithep::Electron *tmpele = electronsToVeto[q];
708 >        // 4l electron
709 >        if( pf->HasTrackerTrk() ) {
710 >          if( pf->TrackerTrk() == tmpele->TrackerTrk() )
711 >            IsLeptonFootprint = kTRUE;
712 >        }
713 >        if( pf->HasGsfTrk() ) {
714 >          if( pf->GsfTrk() == tmpele->GsfTrk() )
715 >            IsLeptonFootprint = kTRUE;
716 >        }
717 >        // PF charged
718 >        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479
719 >            && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015)
720 >          IsLeptonFootprint = kTRUE;
721 >        // PF gamma
722 >        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
723 >            && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.08)
724 >          IsLeptonFootprint = kTRUE;
725 >      } // loop over electrons
726 >      
727 >      /* KH - commented for sync
728 >      //
729 >      // Check for muons
730 >      //
731 >      for (Int_t q=0; q < muonsToVeto.size(); ++q) {
732 >        const mithep::Muon *tmpmu = muonsToVeto[q];
733 >        // 4l muon
734 >        if( pf->HasTrackerTrk() ) {
735 >          if( pf->TrackerTrk() == tmpmu->TrackerTrk() )
736 >            IsLeptonFootprint = kTRUE;
737 >        }
738 >        // PF charged
739 >        if (pf->Charge() != 0 && mithep::MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01)
740 >          IsLeptonFootprint = kTRUE;
741 >      } // loop over muons
742 >      */
743 >
744 >    if (IsLeptonFootprint)
745 >      continue;
746 >
747 >    //
748 >    // Charged Iso Rings
749 >    //
750 >    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
751 >
752 >      if( dr < 0.01 ) continue; // only for muon iso mva?
753 >      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
754 >
755 > //       if( pf->HasTrackerTrk() ) {
756 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
757 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
758 > //                            << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
759 > //                            << dr << endl;
760 > //       }
761 > //       if( pf->HasGsfTrk() ) {
762 > //      if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
763 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
764 > //                            << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
765 > //                            << dr << endl;
766 > //       }
767 >
768 >      // Footprint Veto
769 >      if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
770 >      if (dr >= 0.1 && dr < 0.2) tmpChargedIso_DR0p1To0p2 += pf->Pt();
771 >      if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
772 >      if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
773 >      if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
774 >      if (dr >= 0.5 && dr < 0.7) tmpChargedIso_DR0p5To0p7 += pf->Pt();
775 >    }
776 >
777 >    //
778 >    // Gamma Iso Rings
779 >    //
780 >    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
781 >      if (dr < 0.1) tmpGammaIso_DR0p0To0p1 += pf->Pt();
782 >      if (dr >= 0.1 && dr < 0.2) tmpGammaIso_DR0p1To0p2 += pf->Pt();
783 >      if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
784 >      if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
785 >      if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
786 >      if (dr >= 0.5 && dr < 0.7) tmpGammaIso_DR0p5To0p7 += pf->Pt();
787 >    }
788 >
789 >    //
790 >    // Other Neutral Iso Rings
791 >    //
792 >    else {
793 >      if (dr < 0.1) tmpNeutralHadronIso_DR0p0To0p1 += pf->Pt();
794 >      if (dr >= 0.1 && dr < 0.2) tmpNeutralHadronIso_DR0p1To0p2 += pf->Pt();
795 >      if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
796 >      if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
797 >      if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
798 >      if (dr >= 0.5 && dr < 0.7) tmpNeutralHadronIso_DR0p5To0p7 += pf->Pt();
799 >    }
800 >
801 >    }
802 >
803 >  }
804 >
805 >  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/mu->Pt(), 2.5);
806 >  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/mu->Pt(), 2.5);
807 >  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/mu->Pt(), 2.5);
808 >  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/mu->Pt(), 2.5);
809 >  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/mu->Pt(), 2.5);
810 >
811 >
812 > //   double rho = 0;
813 > //   if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
814 > //     rho = fPUEnergyDensity->At(0)->Rho();
815 > //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
816 > //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
817 >  
818 >  // WARNING!!!!  
819 >  // hardcode for sync ...
820 >  EffectiveAreaVersion = muT.kMuEAData2011;
821 >  // WARNING!!!!  
822 >
823 >
824 >  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
825 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p0To0p1,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
826 >                                 ,2.5)
827 >                             ,0.0);
828 >  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
829 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p1To0p2,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
830 >                                 ,2.5)
831 >                             ,0.0);
832 >  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
833 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p2To0p3,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
834 >                                 ,2.5)
835 >                             ,0.0);
836 >  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
837 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p3To0p4,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
838 >                                 ,2.5)
839 >                             ,0.0);
840 >  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
841 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p4To0p5,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
842 >                                 ,2.5)
843 >                             ,0.0);
844 >
845 >
846 >
847 >  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
848 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p0To0p1,
849 >                                                                 mu->Eta(),EffectiveAreaVersion))/mu->Pt()
850 >                                         , 2.5)
851 >                                     , 0.0);
852 >  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
853 >                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p1To0p2,
854 >                                                                   mu->Eta(),EffectiveAreaVersion))/mu->Pt()
855 >                                           , 2.5)
856 >                                       , 0.0);
857 >  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
858 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p2To0p3,
859 >                                                                 mu->Eta(),EffectiveAreaVersion))/mu->Pt()
860 >                                         , 2.5)
861 >                                     , 0.0);
862 >  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
863 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p3To0p4,
864 >                                                                 mu->Eta(), EffectiveAreaVersion))/mu->Pt()
865 >                                         , 2.5)
866 >                                     , 0.0);
867 >  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
868 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p4To0p5,
869 >                                                                 mu->Eta(), EffectiveAreaVersion))/mu->Pt()
870 >                                         , 2.5)
871 >                                     , 0.0);
872 >
873 >
874 >  double mvaval = muIsoMVA->MVAValue_IsoRings( mu->Pt(),
875 >                                               mu->Eta(),
876 >                                               mu->IsGlobalMuon(),
877 >                                               mu->IsTrackerMuon(),
878 >                                               fChargedIso_DR0p0To0p1,
879 >                                               fChargedIso_DR0p1To0p2,
880 >                                               fChargedIso_DR0p2To0p3,
881 >                                               fChargedIso_DR0p3To0p4,
882 >                                               fChargedIso_DR0p4To0p5,
883 >                                               fGammaIso_DR0p0To0p1,
884 >                                               fGammaIso_DR0p1To0p2,
885 >                                               fGammaIso_DR0p2To0p3,
886 >                                               fGammaIso_DR0p3To0p4,
887 >                                               fGammaIso_DR0p4To0p5,
888 >                                               fNeutralHadronIso_DR0p0To0p1,
889 >                                               fNeutralHadronIso_DR0p1To0p2,
890 >                                               fNeutralHadronIso_DR0p2To0p3,
891 >                                               fNeutralHadronIso_DR0p3To0p4,
892 >                                               fNeutralHadronIso_DR0p4To0p5,
893 >                                               ctrl.debug);
894  
895    SelectionStatus status;
896    bool pass;
# Line 546 | Line 908 | SelectionStatus muonIsoMVASelection(Cont
908    else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN5)  pass = true;
909    if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
910  
911 +  /*
912    pass = false;
913    if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
914        && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN0)   pass = true;
# Line 558 | Line 921 | SelectionStatus muonIsoMVASelection(Cont
921    else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN4)  pass = true;
922    else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN5)  pass = true;
923    if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
924 +  */
925  
926    //  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
927  
928 <  if(ctrl.debug) cout << "returning status : " << hex << status.getStatus() << dec << endl;
928 >  status.isoMVA = mvaval;
929 >
930 >  if(ctrl.debug)  {
931 >    cout << "returning status : " << hex << status.getStatus() << dec << endl;
932 >    cout << "MVAVAL : " << status.isoMVA << endl;
933 >  }
934    return status;
935  
936   }
937  
938 +
939   //--------------------------------------------------------------------------------------------------
940   void initMuonIsoMVA() {
941   //--------------------------------------------------------------------------------------------------
# Line 583 | Line 953 | void initMuonIsoMVA() {
953   }
954  
955  
956 +
957 +
958   //--------------------------------------------------------------------------------------------------
959   double  muonPFIso04(ControlFlags &ctrl,
960                      const mithep::Muon * mu,
961 <                    const mithep::Vertex & vtx,
961 >                    const mithep::Vertex * vtx,
962                      const mithep::Array<mithep::PFCandidate> * fPFCandidates,
963                      const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
964                      mithep::MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
965 +                    vector<const mithep::PFCandidate*> photonsToVeto)
966 + //--------------------------------------------------------------------------------------------------
967 + {
968 +
969 +  extern double gChargedIso;  
970 +  extern double  gGammaIso;      
971 +  extern double  gNeutralIso;
972 +
973 +  //
974 +  // final iso
975 +  //
976 +  Double_t fChargedIso  = 0.0;
977 +  Double_t fGammaIso  = 0.0;
978 +  Double_t fNeutralHadronIso  = 0.0;
979 +
980 +  //
981 +  //Loop over PF Candidates
982 +  //
983 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
984 +
985 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
986 +    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
987 +
988 +    //
989 +    // veto FSR recovered photons
990 +    //
991 +    bool vetoPhoton = false;
992 +    for( int p=0; p<photonsToVeto.size(); p++ ) {
993 +      if( pf == photonsToVeto[p] ) {
994 +        vetoPhoton = true;
995 +        break;
996 +      }
997 +    } if( vetoPhoton ) continue;
998 +    //
999 +    //
1000 +    //
1001 +
1002 +    Double_t deta = (mu->Eta() - pf->Eta());
1003 +    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(mu->Phi()),Double_t(pf->Phi()));
1004 +    Double_t dr = mithep::MathUtils::DeltaR(mu->Phi(),mu->Eta(), pf->Phi(), pf->Eta());
1005 +    if (dr > 0.4) continue;
1006 +
1007 +    if (pf->HasTrackerTrk() && (pf->TrackerTrk() == mu->TrackerTrk()) ) continue;
1008 +
1009 +    //
1010 +    // Charged Iso
1011 +    //
1012 +    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1013 +
1014 +      //if( dr < 0.01 ) continue; // only for muon iso mva?
1015 +      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
1016 +      fChargedIso += pf->Pt();
1017 +    }
1018 +    
1019 +    //
1020 +    // Gamma Iso
1021 +    //
1022 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1023 +      // KH, add to sync
1024 +      if( pf->Pt() > 0.5 )
1025 +      fGammaIso += pf->Pt();
1026 +    }
1027 +    
1028 +    //
1029 +    // Other Neutrals
1030 +    //
1031 +    else {
1032 +      if( pf->Pt() > 0.5 )
1033 +        fNeutralHadronIso += pf->Pt();
1034 +    }
1035 +  }
1036 +
1037 +  double rho=0;
1038 +  if( (EffectiveAreaVersion == mithep::MuonTools::kMuEAFall11MC) ||
1039 +      (EffectiveAreaVersion == mithep::MuonTools::kMuEAData2011) ) {
1040 +    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25()) ||
1041 +          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25())))
1042 +      rho = fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25();
1043 +    //rho = fPUEnergyDensity->At(0)->Rho();
1044 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
1045 +    EffectiveAreaVersion  = mithep::MuonTools::kMuEAData2011;
1046 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
1047 +  } else {
1048 +    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJetsCentralNeutral()) ||
1049 +          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJetsCentralNeutral())))
1050 +      rho = fPUEnergyDensity->At(0)->RhoKt6PFJetsCentralNeutral();
1051 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
1052 +    EffectiveAreaVersion  = mithep::MuonTools::kMuEAData2012;
1053 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
1054 +  }
1055 +  if(ctrl.debug) cout << "rho: " << rho << endl;
1056 +
1057 +  TLorentzVector  tmpvec;
1058 +  tmpvec.SetPtEtaPhiM(mu->Pt(),mu->Eta(),mu->Phi(),mu->Mass());
1059 +  for( int p=0; p<photonsToVeto.size(); p++ ) {
1060 +    const mithep::PFCandidate * pf  = photonsToVeto[p];
1061 +    TLorentzVector pfvec;
1062 +    pfvec.SetPtEtaPhiM(pf->Pt(),pf->Eta(),pf->Phi(),0.);
1063 +    tmpvec += pfvec;
1064 +  }
1065 +
1066 +  double pfIso = fChargedIso + fmax(0.0,(fGammaIso + fNeutralHadronIso
1067 +                                        -rho*muT.MuonEffectiveArea(muT.kMuGammaAndNeutralHadronIso04,
1068 +                                                                   //tmpvec.Eta(),EffectiveAreaVersion)));
1069 +                                                                   mu->Eta(),EffectiveAreaVersion)));
1070 +  gChargedIso = fChargedIso;
1071 +  gGammaIso   = fGammaIso;
1072 +  gNeutralIso = fNeutralHadronIso;
1073 +  
1074 +  if( ctrl.debug ) {
1075 +    cout << "PFiso: " << pfIso
1076 +         << "\tfChargedIso: " << fChargedIso
1077 +         << "\tfGammaIso: " << fGammaIso
1078 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
1079 +         << endl;
1080 +  }
1081 +
1082 +  return pfIso;
1083 + }
1084 +
1085 +
1086 +
1087 +
1088 + //--------------------------------------------------------------------------------------------------
1089 + // hacked version
1090 + double  muonPFIso04(ControlFlags &ctrl,
1091 +                    const mithep::Muon * mu,
1092 +                    const mithep::Vertex * vtx,
1093 +                    const mithep::Array<mithep::PFCandidate> * fPFCandidates,
1094 +                    float rho,
1095 +                    mithep::MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
1096                      vector<const mithep::Muon*> muonsToVeto,
1097                      vector<const mithep::Electron*> electronsToVeto)
1098   //--------------------------------------------------------------------------------------------------
1099   {
1100 +
1101 +  extern double gChargedIso;  
1102 +  extern double  gGammaIso;      
1103 +  extern double  gNeutralIso;
1104    
1105    if( ctrl.debug ) {
1106      cout << "muonIsoMVASelection :: muons to veto " << endl;
# Line 625 | Line 1132 | double  muonPFIso04(ControlFlags &ctrl,
1132    //Loop over PF Candidates
1133    //
1134    for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
1135 +
1136 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
1137      const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
1138  
1139      Double_t deta = (mu->Eta() - pf->Eta());
# Line 689 | Line 1198 | double  muonPFIso04(ControlFlags &ctrl,
1198      //
1199      if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1200  
1201 <      if( dr < 0.01 ) continue; // only for muon iso mva?
1201 >      //if( dr < 0.01 ) continue; // only for muon iso mva?
1202        if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
1203  
1204 <      if( pf->HasTrackerTrk() ) {
1205 <        if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1206 <        if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
1207 <                              << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
1208 <                              << dr << endl;
1209 <      }
1210 <      if( pf->HasGsfTrk() ) {
1211 <        if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1212 <        if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
1213 <                              << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
1214 <                              << dr << endl;
1215 <      }
1204 >
1205 > //       if( pf->HasTrackerTrk() ) {
1206 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1207 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
1208 > //                            << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
1209 > //                            << dr << endl;
1210 > //       }
1211 > //       if( pf->HasGsfTrk() ) {
1212 > //      if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1213 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
1214 > //                            << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
1215 > //                            << dr << endl;
1216 > //       }
1217  
1218  
1219        fChargedIso += pf->Pt();
# Line 713 | Line 1223 | double  muonPFIso04(ControlFlags &ctrl,
1223      // Gamma Iso
1224      //
1225      else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1226 +      // KH, add to sync
1227 +      if( pf->Pt() > 0.5 )
1228        fGammaIso += pf->Pt();
1229      }
1230  
# Line 729 | Line 1241 | double  muonPFIso04(ControlFlags &ctrl,
1241      
1242    }
1243    
1244 <  double rho = 0;
1245 <  if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
1246 <    rho = fPUEnergyDensity->At(0)->Rho();
1244 > //   double rho = 0;
1245 > //   if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
1246 > //     rho = fPUEnergyDensity->At(0)->Rho();
1247  
1248    // WARNING!!!!  
1249    // hardcode for sync ...
# Line 739 | Line 1251 | double  muonPFIso04(ControlFlags &ctrl,
1251    // WARNING!!!!  
1252  
1253  
1254 <  double pfIso = fChargedIso + max(0.0,(fGammaIso + fNeutralHadronIso
1254 >  double pfIso = fChargedIso + fmax(0.0,(fGammaIso + fNeutralHadronIso
1255                                          -rho*muT.MuonEffectiveArea(muT.kMuGammaAndNeutralHadronIso04,
1256                                                                     mu->Eta(),EffectiveAreaVersion)));
1257 +  gChargedIso = fChargedIso;
1258 +  gGammaIso   = fGammaIso;
1259 +  gNeutralIso = fNeutralHadronIso;
1260    
1261    return pfIso;
1262   }
1263  
1264 +
1265   //--------------------------------------------------------------------------------------------------
1266   SelectionStatus muonReferenceIsoSelection(ControlFlags &ctrl,
1267                                            const mithep::Muon * mu,
1268 <                                          const mithep::Vertex & vtx,
1268 >                                          const mithep::Vertex * vtx,
1269                                            const mithep::Array<mithep::PFCandidate> * fPFCandidates,
1270                                            const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
1271                                            mithep::MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
1272 +                                          vector<const mithep::PFCandidate*> photonsToVeto)
1273 + //--------------------------------------------------------------------------------------------------
1274 + {
1275 +  
1276 +  SelectionStatus status;
1277 +
1278 +  double pfIso = muonPFIso04( ctrl, mu, vtx, fPFCandidates, fPUEnergyDensity,
1279 +                              EffectiveAreaVersion, photonsToVeto);
1280 +  //  cout << "--------------> setting muon isoPF04 to" << pfIso << endl;
1281 +  status.isoPF04 = pfIso;
1282 +  status.chisoPF04 = gChargedIso;
1283 +  status.gaisoPF04 = gGammaIso;
1284 +  status.neisoPF04 = gNeutralIso;
1285 +
1286 +  bool pass = false;
1287 +  if( (pfIso/mu->Pt()) < MUON_REFERENCE_PFISO_CUT ) pass = true;
1288 +  
1289 +  if( pass ) {
1290 +    status.orStatus(SelectionStatus::LOOSEISO);
1291 +    status.orStatus(SelectionStatus::TIGHTISO);
1292 +  }
1293 +  if(ctrl.debug) {
1294 +    cout << "mu relpfIso: " << pfIso/mu->Pt() << endl;
1295 +    cout << "returning status : " << hex << status.getStatus() << dec << endl;
1296 +  }
1297 +  return status;
1298 +  
1299 + }
1300 +
1301 +
1302 + //--------------------------------------------------------------------------------------------------
1303 + // hacked version
1304 + SelectionStatus muonReferenceIsoSelection(ControlFlags &ctrl,
1305 +                                          const mithep::Muon * mu,
1306 +                                          const mithep::Vertex * vtx,
1307 +                                          const mithep::Array<mithep::PFCandidate> * fPFCandidates,
1308 +                                          float rho,
1309 +                                          mithep::MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
1310                                            vector<const mithep::Muon*> muonsToVeto,
1311                                            vector<const mithep::Electron*> electronsToVeto)
1312   //--------------------------------------------------------------------------------------------------
# Line 760 | Line 1314 | SelectionStatus muonReferenceIsoSelectio
1314    
1315    SelectionStatus status;
1316    
1317 <  double pfIso = muonPFIso04( ctrl, mu, vtx, fPFCandidates, fPUEnergyDensity,
1317 >  double pfIso = muonPFIso04( ctrl, mu, vtx, fPFCandidates, rho,
1318                                EffectiveAreaVersion, muonsToVeto ,electronsToVeto );
1319 +
1320 +  status.isoPF04 = pfIso;
1321 +  status.chisoPF04 = gChargedIso;
1322 +  status.gaisoPF04 = gGammaIso;
1323 +  status.neisoPF04 = gNeutralIso;
1324 +
1325    bool pass = false;
1326    if( (pfIso/mu->Pt()) < MUON_REFERENCE_PFISO_CUT ) pass = true;
1327    
# Line 776 | Line 1336 | SelectionStatus muonReferenceIsoSelectio
1336  
1337  
1338  
1339 +
1340   //--------------------------------------------------------------------------------------------------
1341   SelectionStatus electronIsoMVASelection(ControlFlags &ctrl,
1342                                          const mithep::Electron * ele,
1343 <                                        const mithep::Vertex & vtx,
1343 >                                        const mithep::Vertex * vtx,
1344                                          const mithep::Array<mithep::PFCandidate> * fPFCandidates,
1345                                          const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
1346                                          mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
# Line 818 | Line 1379 | SelectionStatus electronIsoMVASelection(
1379    Double_t tmpChargedIso_DR0p2To0p3  = 0;
1380    Double_t tmpChargedIso_DR0p3To0p4  = 0;
1381    Double_t tmpChargedIso_DR0p4To0p5  = 0;
821  Double_t tmpChargedIso_DR0p5To0p7  = 0;
1382  
1383    Double_t tmpGammaIso_DR0p0To0p1  = 0;
1384    Double_t tmpGammaIso_DR0p1To0p2  = 0;
1385    Double_t tmpGammaIso_DR0p2To0p3  = 0;
1386    Double_t tmpGammaIso_DR0p3To0p4  = 0;
1387    Double_t tmpGammaIso_DR0p4To0p5  = 0;
1388 <  Double_t tmpGammaIso_DR0p5To0p7  = 0;
1388 >
1389  
1390    Double_t tmpNeutralHadronIso_DR0p0To0p1  = 0;
1391    Double_t tmpNeutralHadronIso_DR0p1To0p2  = 0;
1392    Double_t tmpNeutralHadronIso_DR0p2To0p3  = 0;
1393    Double_t tmpNeutralHadronIso_DR0p3To0p4  = 0;
1394    Double_t tmpNeutralHadronIso_DR0p4To0p5  = 0;
835  Double_t tmpNeutralHadronIso_DR0p5To0p7  = 0;
1395  
1396          
1397  
# Line 862 | Line 1421 | SelectionStatus electronIsoMVASelection(
1421    //Loop over PF Candidates
1422    //
1423    for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
1424 +
1425 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
1426 +
1427      const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
1428      Double_t deta = (ele->Eta() - pf->Eta());
1429      Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
1430      Double_t dr = mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
1431 <    if (dr >= 0.5) continue;
1431 >    if (dr > 1.0) continue;
1432 >
1433      if(ctrl.debug) {
1434        cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt();
1435 <      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(vtx);
1435 >      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx);
1436        cout << endl;
1437      }
1438  
# Line 884 | Line 1447 | SelectionStatus electronIsoMVASelection(
1447      Bool_t IsLeptonFootprint = kFALSE;
1448      if (dr < 1.0) {
1449  
1450 +
1451        //
1452        // Check for electrons
1453        //
1454 +
1455        for (Int_t q=0; q < electronsToVeto.size(); ++q) {
1456          const mithep::Electron *tmpele = electronsToVeto[q];
1457 +        double tmpdr = mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta());
1458 +
1459          // 4l electron
1460          if( pf->HasTrackerTrk()  ) {
1461            if( pf->TrackerTrk() == tmpele->TrackerTrk() ) {
# Line 903 | Line 1470 | SelectionStatus electronIsoMVASelection(
1470            }
1471          }
1472          // PF charged
1473 <        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) > 1.479
907 <            && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015) {
1473 >        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479 && tmpdr < 0.015) {
1474            if( ctrl.debug) cout << "\tcharged trk, dR matches 4L ele ..." << endl;
1475            IsLeptonFootprint = kTRUE;
1476          }
1477          // PF gamma
1478 <        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) > 1.479
1479 <            && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.08) {
1478 >        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
1479 >            && tmpdr < 0.08) {
1480            if( ctrl.debug) cout << "\tPF gamma, matches 4L ele ..." << endl;
1481            IsLeptonFootprint = kTRUE;
1482          }
1483        } // loop over electrons
1484  
1485 +
1486        /* KH - comment for sync            
1487        //
1488        // Check for muons
# Line 945 | Line 1512 | SelectionStatus electronIsoMVASelection(
1512      //
1513      if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1514  
1515 <      if( pf->HasTrackerTrk() )
1516 <        if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1517 <      if( pf->HasGsfTrk() )
1518 <        if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1515 > //       if( pf->HasGsfTrk() ) {
1516 > //       if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1517 > //       } else if( pf->HasTrackerTrk() ){
1518 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1519 > //       }
1520  
1521        // Veto any PFmuon, or PFEle
1522        if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
# Line 965 | Line 1533 | SelectionStatus electronIsoMVASelection(
1533        if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
1534        if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
1535        if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
968      if (dr >= 0.5 && dr < 0.7) tmpChargedIso_DR0p5To0p7 += pf->Pt();
1536  
1537      }
1538  
# Line 974 | Line 1541 | SelectionStatus electronIsoMVASelection(
1541      //
1542      else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1543  
1544 <      if (fabs(ele->SCluster()->Eta()) > 1.479) {
978 <        if (mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta()) < 0.08) continue;
979 <      }
1544 >      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.08) continue;
1545  
1546        if( ctrl.debug) cout << "gamma:: " << pf->Pt() << " "
1547                             << dr << endl;
# Line 986 | Line 1551 | SelectionStatus electronIsoMVASelection(
1551        if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
1552        if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
1553        if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
989      if (dr >= 0.5 && dr < 0.7) tmpGammaIso_DR0p5To0p7 += pf->Pt();
990
1554      }
1555  
1556      //
# Line 1001 | Line 1564 | SelectionStatus electronIsoMVASelection(
1564        if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
1565        if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
1566        if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
1004      if (dr >= 0.5 && dr < 0.7) tmpNeutralHadronIso_DR0p5To0p7 += pf->Pt();
1567      }
1568  
1569      }
1570  
1571    }
1572  
1573 <  fChargedIso_DR0p0To0p1   = min((tmpChargedIso_DR0p0To0p1)/ele->Pt(), 2.5);
1574 <  fChargedIso_DR0p1To0p2   = min((tmpChargedIso_DR0p1To0p2)/ele->Pt(), 2.5);
1575 <  fChargedIso_DR0p2To0p3   = min((tmpChargedIso_DR0p2To0p3)/ele->Pt(), 2.5);
1576 <  fChargedIso_DR0p3To0p4   = min((tmpChargedIso_DR0p3To0p4)/ele->Pt(), 2.5);
1577 <  fChargedIso_DR0p4To0p5   = min((tmpChargedIso_DR0p4To0p5)/ele->Pt(), 2.5);
1573 >  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/ele->Pt(), 2.5);
1574 >  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/ele->Pt(), 2.5);
1575 >  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/ele->Pt(), 2.5);
1576 >  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/ele->Pt(), 2.5);
1577 >  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/ele->Pt(), 2.5);
1578 >
1579 >  if(ctrl.debug) {
1580 >    cout << "fChargedIso_DR0p0To0p1 : " << fChargedIso_DR0p0To0p1  << endl;
1581 >    cout << "fChargedIso_DR0p1To0p2 : " << fChargedIso_DR0p1To0p2  << endl;
1582 >    cout << "fChargedIso_DR0p2To0p3 : " << fChargedIso_DR0p2To0p3  << endl;
1583 >    cout << "fChargedIso_DR0p3To0p4 : " << fChargedIso_DR0p3To0p4  << endl;
1584 >    cout << "fChargedIso_DR0p4To0p5 : " << fChargedIso_DR0p4To0p5  << endl;
1585 >  }
1586 >
1587  
1588    double rho = 0;
1589    if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
1590      rho = fPUEnergyDensity->At(0)->Rho();
1591 +  //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
1592 +  //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
1593 +  
1594 +  // WARNING!!!!  
1595 +  // hardcode for sync ...
1596 +  EffectiveAreaVersion = eleT.kEleEAData2011;
1597 +  // WARNING!!!!  
1598  
1599    if( ctrl.debug) {
1600      cout << "RHO: " << rho << endl;
# Line 1040 | Line 1618 | SelectionStatus electronIsoMVASelection(
1618           << endl;
1619    }
1620  
1621 <  fGammaIso_DR0p0To0p1 = max(min((tmpGammaIso_DR0p0To0p1
1621 >  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
1622                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p0To0p1,
1623                                                                ele->SCluster()->Eta(),
1624                                                                EffectiveAreaVersion))/ele->Pt()
1625                                   ,2.5)
1626                               ,0.0);
1627 <  fGammaIso_DR0p1To0p2 = max(min((tmpGammaIso_DR0p1To0p2
1627 >  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
1628                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p1To0p2,
1629                                                                ele->SCluster()->Eta(),
1630                                                                EffectiveAreaVersion))/ele->Pt()
1631                                   ,2.5)
1632                               ,0.0);
1633 <  fGammaIso_DR0p2To0p3 = max(min((tmpGammaIso_DR0p2To0p3
1633 >  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
1634                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p2To0p3,
1635                                                                ele->SCluster()->Eta()
1636                                                                ,EffectiveAreaVersion))/ele->Pt()
1637                                   ,2.5)
1638                               ,0.0);
1639 <  fGammaIso_DR0p3To0p4 = max(min((tmpGammaIso_DR0p3To0p4
1639 >  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
1640                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p3To0p4,
1641                                                                ele->SCluster()->Eta(),
1642                                                                EffectiveAreaVersion))/ele->Pt()
1643                                   ,2.5)
1644                               ,0.0);
1645 <  fGammaIso_DR0p4To0p5 = max(min((tmpGammaIso_DR0p4To0p5
1645 >  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
1646                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p4To0p5,
1647                                                                ele->SCluster()->Eta(),
1648                                                                EffectiveAreaVersion))/ele->Pt()
# Line 1072 | Line 1650 | SelectionStatus electronIsoMVASelection(
1650                               ,0.0);
1651  
1652  
1653 <  fNeutralHadronIso_DR0p0To0p1 = max(min((tmpNeutralHadronIso_DR0p0To0p1
1653 >  if( ctrl.debug) {
1654 >    cout << "fGammaIso_DR0p0To0p1: " << fGammaIso_DR0p0To0p1 << endl;
1655 >    cout << "fGammaIso_DR0p1To0p2: " << fGammaIso_DR0p1To0p2 << endl;
1656 >    cout << "fGammaIso_DR0p2To0p3: " << fGammaIso_DR0p2To0p3 << endl;
1657 >    cout << "fGammaIso_DR0p3To0p4: " << fGammaIso_DR0p3To0p4 << endl;
1658 >    cout << "fGammaIso_DR0p4To0p5: " << fGammaIso_DR0p4To0p5 << endl;
1659 >  }
1660 >
1661 >  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
1662                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p0To0p1,
1663                                                                   ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1664                                           , 2.5)
1665                                       , 0.0);
1666 <  fNeutralHadronIso_DR0p1To0p2 = max(min((tmpNeutralHadronIso_DR0p1To0p2
1666 >  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
1667                                              -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p1To0p2,
1668                                                                     ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1669                                             , 2.5)
1670                                         , 0.0);
1671 <  fNeutralHadronIso_DR0p2To0p3 = max(min((tmpNeutralHadronIso_DR0p2To0p3
1671 >  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
1672                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p2To0p3,
1673                                                                   ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1674                                           , 2.5)
1675                                       , 0.0);
1676 <  fNeutralHadronIso_DR0p3To0p4 = max(min((tmpNeutralHadronIso_DR0p3To0p4
1676 >  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
1677                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p3To0p4,
1678                                                                   ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
1679                                           , 2.5)
1680                                       , 0.0);
1681 <  fNeutralHadronIso_DR0p4To0p5 = max(min((tmpNeutralHadronIso_DR0p4To0p5
1681 >  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
1682                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p4To0p5,
1683                                                                   ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
1684                                           , 2.5)
1685                                       , 0.0);
1686  
1687 +  if( ctrl.debug) {
1688 +    cout << "fNeutralHadronIso_DR0p0To0p1: " << fNeutralHadronIso_DR0p0To0p1 << endl;
1689 +    cout << "fNeutralHadronIso_DR0p1To0p2: " << fNeutralHadronIso_DR0p1To0p2 << endl;
1690 +    cout << "fNeutralHadronIso_DR0p2To0p3: " << fNeutralHadronIso_DR0p2To0p3 << endl;
1691 +    cout << "fNeutralHadronIso_DR0p3To0p4: " << fNeutralHadronIso_DR0p3To0p4 << endl;
1692 +    cout << "fNeutralHadronIso_DR0p4To0p5: " << fNeutralHadronIso_DR0p4To0p5 << endl;
1693 +  }
1694 +
1695    double mvaval = eleIsoMVA->MVAValue_IsoRings( ele->Pt(),
1696                                                  ele->SCluster()->Eta(),
1697                                                  fChargedIso_DR0p0To0p1,
# Line 1118 | Line 1712 | SelectionStatus electronIsoMVASelection(
1712                                                  ctrl.debug);
1713  
1714    SelectionStatus status;
1715 +  status.isoMVA = mvaval;
1716    bool pass = false;
1717  
1718    Int_t subdet = 0;
1719    if (fabs(ele->SCluster()->Eta()) < 0.8) subdet = 0;
1720    else if (fabs(ele->SCluster()->Eta()) < 1.479) subdet = 1;
1721    else subdet = 2;
1722 +
1723    Int_t ptBin = 0;
1724 <  if (ele->Pt() > 10.0) ptBin = 1;
1724 >  if (ele->Pt() >= 10.0) ptBin = 1;
1725 >  
1726 >  Int_t MVABin = -1;
1727 >  if (subdet == 0 && ptBin == 0) MVABin = 0;
1728 >  if (subdet == 1 && ptBin == 0) MVABin = 1;
1729 >  if (subdet == 2 && ptBin == 0) MVABin = 2;
1730 >  if (subdet == 0 && ptBin == 1) MVABin = 3;
1731 >  if (subdet == 1 && ptBin == 1) MVABin = 4;
1732 >  if (subdet == 2 && ptBin == 1) MVABin = 5;
1733 >
1734 >  pass = false;
1735 >  if( MVABin == 0 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN0 ) pass = true;
1736 >  if( MVABin == 1 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN1 ) pass = true;
1737 >  if( MVABin == 2 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN2 ) pass = true;
1738 >  if( MVABin == 3 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN3 ) pass = true;
1739 >  if( MVABin == 4 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN4 ) pass = true;
1740 >  if( MVABin == 5 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN5 ) pass = true;
1741 >  //  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
1742 >  if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
1743 >
1744 > //   pass = false;
1745 > //   if( MVABin == 0 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN0 ) pass = true;
1746 > //   if( MVABin == 1 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN1 ) pass = true;
1747 > //   if( MVABin == 2 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN2 ) pass = true;
1748 > //   if( MVABin == 3 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN3 ) pass = true;
1749 > //   if( MVABin == 4 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN4 ) pass = true;
1750 > //   if( MVABin == 5 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN5 ) pass = true;
1751 > //   if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
1752 >
1753 >  if(ctrl.debug) cout << "returning status : " << hex << status.getStatus() << dec << endl;
1754 >  return status;
1755 >  
1756 > }
1757 >
1758 >
1759 > //--------------------------------------------------------------------------------------------------
1760 > SelectionStatus electronIsoMVASelection(ControlFlags &ctrl,
1761 >                                        const mithep::Electron * ele,
1762 >                                        const mithep::Vertex * vtx,
1763 >                                        const mithep::Array<mithep::PFCandidate> * fPFCandidates,
1764 >                                        float rho,
1765 >                                        //const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
1766 >                                        mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
1767 >                                        vector<const mithep::Muon*> muonsToVeto,
1768 >                                        vector<const mithep::Electron*> electronsToVeto)
1769 > //--------------------------------------------------------------------------------------------------
1770 > // hacked version
1771 > {
1772 >  if( ctrl.debug ) {
1773 >    cout << "================> hacked ele Iso MVA <======================" << endl;
1774 >  }
1775 >
1776 >  if( ctrl.debug ) {
1777 >    cout << "electronIsoMVASelection :: muons to veto " << endl;
1778 >    for( int i=0; i<muonsToVeto.size(); i++ ) {
1779 >      const mithep::Muon * vmu = muonsToVeto[i];
1780 >      cout << "\tpt: " << vmu->Pt()
1781 >           << "\teta: " << vmu->Eta()
1782 >           << "\tphi: " << vmu->Phi()
1783 >           << endl;
1784 >    }
1785 >    cout << "electronIsoMVASelection :: electrson to veto " << endl;
1786 >    for( int i=0; i<electronsToVeto.size(); i++ ) {
1787 >      const mithep::Electron * vel = electronsToVeto[i];
1788 >      cout << "\tpt: " << vel->Pt()
1789 >           << "\teta: " << vel->Eta()
1790 >           << "\tphi: " << vel->Phi()
1791 >           << "\ttrk: " << vel->TrackerTrk()
1792 >           << endl;
1793 >    }
1794 >  }
1795 >
1796 >  bool failiso=false;
1797 >
1798 >  //
1799 >  // tmp iso rings
1800 >  //
1801 >  Double_t tmpChargedIso_DR0p0To0p1  = 0;
1802 >  Double_t tmpChargedIso_DR0p1To0p2  = 0;
1803 >  Double_t tmpChargedIso_DR0p2To0p3  = 0;
1804 >  Double_t tmpChargedIso_DR0p3To0p4  = 0;
1805 >  Double_t tmpChargedIso_DR0p4To0p5  = 0;
1806 >
1807 >  Double_t tmpGammaIso_DR0p0To0p1  = 0;
1808 >  Double_t tmpGammaIso_DR0p1To0p2  = 0;
1809 >  Double_t tmpGammaIso_DR0p2To0p3  = 0;
1810 >  Double_t tmpGammaIso_DR0p3To0p4  = 0;
1811 >  Double_t tmpGammaIso_DR0p4To0p5  = 0;
1812 >
1813 >
1814 >  Double_t tmpNeutralHadronIso_DR0p0To0p1  = 0;
1815 >  Double_t tmpNeutralHadronIso_DR0p1To0p2  = 0;
1816 >  Double_t tmpNeutralHadronIso_DR0p2To0p3  = 0;
1817 >  Double_t tmpNeutralHadronIso_DR0p3To0p4  = 0;
1818 >  Double_t tmpNeutralHadronIso_DR0p4To0p5  = 0;
1819 >
1820 >        
1821 >
1822 >  //
1823 >  // final rings for the MVA
1824 >  //
1825 >  Double_t fChargedIso_DR0p0To0p1;
1826 >  Double_t fChargedIso_DR0p1To0p2;
1827 >  Double_t fChargedIso_DR0p2To0p3;
1828 >  Double_t fChargedIso_DR0p3To0p4;
1829 >  Double_t fChargedIso_DR0p4To0p5;
1830 >
1831 >  Double_t fGammaIso_DR0p0To0p1;
1832 >  Double_t fGammaIso_DR0p1To0p2;
1833 >  Double_t fGammaIso_DR0p2To0p3;
1834 >  Double_t fGammaIso_DR0p3To0p4;
1835 >  Double_t fGammaIso_DR0p4To0p5;
1836 >
1837 >  Double_t fNeutralHadronIso_DR0p0To0p1;
1838 >  Double_t fNeutralHadronIso_DR0p1To0p2;
1839 >  Double_t fNeutralHadronIso_DR0p2To0p3;
1840 >  Double_t fNeutralHadronIso_DR0p3To0p4;
1841 >  Double_t fNeutralHadronIso_DR0p4To0p5;
1842 >
1843 >
1844 >  //
1845 >  //Loop over PF Candidates
1846 >  //
1847 >  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
1848 >
1849 >    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
1850 >
1851 >    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
1852 >    Double_t deta = (ele->Eta() - pf->Eta());
1853 >    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
1854 >    Double_t dr = mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
1855 >    if (dr > 1.0) continue;
1856 >
1857 >    if(ctrl.debug) {
1858 >      cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt();
1859 >      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx);
1860 >      cout << endl;
1861 >    }
1862 >
1863 >
1864 >    if ( (pf->HasTrackerTrk() && (pf->TrackerTrk() == ele->TrackerTrk())) ||
1865 >         (pf->HasGsfTrk() && (pf->GsfTrk() == ele->GsfTrk()))) continue;
1866 >    
1867 >
1868 >    //
1869 >    // Lepton Footprint Removal
1870 >    //
1871 >    Bool_t IsLeptonFootprint = kFALSE;
1872 >    if (dr < 1.0) {
1873 >
1874 >
1875 >      //
1876 >      // Check for electrons
1877 >      //
1878 >
1879 >      for (Int_t q=0; q < electronsToVeto.size(); ++q) {
1880 >        const mithep::Electron *tmpele = electronsToVeto[q];
1881 >        double tmpdr = mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta());
1882 >
1883 >        // 4l electron
1884 >        if( pf->HasTrackerTrk()  ) {
1885 >          if( pf->TrackerTrk() == tmpele->TrackerTrk() ) {
1886 >            if( ctrl.debug) cout << "\tcharged tktrk, matches 4L ele ..." << endl;
1887 >            IsLeptonFootprint = kTRUE;
1888 >          }
1889 >        }
1890 >        if( pf->HasGsfTrk()  ) {
1891 >          if( pf->GsfTrk() == tmpele->GsfTrk() ) {
1892 >            if( ctrl.debug) cout << "\tcharged gsftrk, matches 4L ele ..." << endl;
1893 >            IsLeptonFootprint = kTRUE;
1894 >          }
1895 >        }
1896 >        // PF charged
1897 >        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479 && tmpdr < 0.015) {
1898 >          if( ctrl.debug) cout << "\tcharged trk, dR matches 4L ele ..." << endl;
1899 >          IsLeptonFootprint = kTRUE;
1900 >        }
1901 >        // PF gamma
1902 >        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
1903 >            && tmpdr < 0.08) {
1904 >          if( ctrl.debug) cout << "\tPF gamma, matches 4L ele ..." << endl;
1905 >          IsLeptonFootprint = kTRUE;
1906 >        }
1907 >      } // loop over electrons
1908 >
1909 >
1910 >      /* KH - comment for sync            
1911 >      //
1912 >      // Check for muons
1913 >      //
1914 >      for (Int_t q=0; q < muonsToVeto.size(); ++q) {
1915 >        const mithep::Muon *tmpmu = muonsToVeto[q];
1916 >        // 4l muon
1917 >        if( pf->HasTrackerTrk() ) {
1918 >          if (pf->TrackerTrk() == tmpmu->TrackerTrk() ){
1919 >            if( ctrl.debug) cout << "\tmatches 4L mu ..." << endl;
1920 >            IsLeptonFootprint = kTRUE;
1921 >          }
1922 >        }
1923 >        // PF charged
1924 >        if (pf->Charge() != 0 && mithep::MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01) {
1925 >          if( ctrl.debug) cout << "\tcharged trk, dR matches 4L mu ..." << endl;
1926 >          IsLeptonFootprint = kTRUE;
1927 >        }
1928 >      } // loop over muons
1929 >      */
1930 >
1931 >    if (IsLeptonFootprint)
1932 >      continue;
1933 >
1934 >    //
1935 >    // Charged Iso Rings
1936 >    //
1937 >    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1938 >
1939 > //       if( pf->HasGsfTrk() ) {
1940 > //       if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1941 > //       } else if( pf->HasTrackerTrk() ){
1942 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1943 > //       }
1944 >
1945 >      // Veto any PFmuon, or PFEle
1946 >      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
1947 >
1948 >      // Footprint Veto
1949 >      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.015) continue;
1950 >
1951 >      if( ctrl.debug) cout << "charged:: pt: " << pf->Pt()
1952 >                           << "\ttype: " << pf->PFType()
1953 >                           << "\ttrk: " << pf->TrackerTrk() << endl;
1954 >
1955 >      if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
1956 >      if (dr >= 0.1 && dr < 0.2) tmpChargedIso_DR0p1To0p2 += pf->Pt();
1957 >      if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
1958 >      if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
1959 >      if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
1960 >
1961 >    }
1962 >
1963 >    //
1964 >    // Gamma Iso Rings
1965 >    //
1966 >    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1967 >
1968 >      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.08) continue;
1969 >
1970 >      if( ctrl.debug) cout << "gamma:: " << pf->Pt() << " "
1971 >                           << dr << endl;
1972 >
1973 >      if (dr < 0.1) tmpGammaIso_DR0p0To0p1 += pf->Pt();
1974 >      if (dr >= 0.1 && dr < 0.2) tmpGammaIso_DR0p1To0p2 += pf->Pt();
1975 >      if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
1976 >      if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
1977 >      if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
1978 >    }
1979 >
1980 >    //
1981 >    // Other Neutral Iso Rings
1982 >    //
1983 >    else {
1984 >      if( ctrl.debug) cout << "neutral:: " << pf->Pt() << " "
1985 >                           << dr << endl;
1986 >      if (dr < 0.1) tmpNeutralHadronIso_DR0p0To0p1 += pf->Pt();
1987 >      if (dr >= 0.1 && dr < 0.2) tmpNeutralHadronIso_DR0p1To0p2 += pf->Pt();
1988 >      if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
1989 >      if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
1990 >      if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
1991 >    }
1992 >
1993 >    }
1994 >
1995 >  }
1996 >
1997 >  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/ele->Pt(), 2.5);
1998 >  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/ele->Pt(), 2.5);
1999 >  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/ele->Pt(), 2.5);
2000 >  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/ele->Pt(), 2.5);
2001 >  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/ele->Pt(), 2.5);
2002 >
2003 >  if(ctrl.debug) {
2004 >    cout << "fChargedIso_DR0p0To0p1 : " << fChargedIso_DR0p0To0p1  << endl;
2005 >    cout << "fChargedIso_DR0p1To0p2 : " << fChargedIso_DR0p1To0p2  << endl;
2006 >    cout << "fChargedIso_DR0p2To0p3 : " << fChargedIso_DR0p2To0p3  << endl;
2007 >    cout << "fChargedIso_DR0p3To0p4 : " << fChargedIso_DR0p3To0p4  << endl;
2008 >    cout << "fChargedIso_DR0p4To0p5 : " << fChargedIso_DR0p4To0p5  << endl;
2009 >  }
2010 >
2011 >
2012 >  //  rho=0;
2013 >  //  double rho = 0;
2014 >  //   if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
2015 >  //     rho = fPUEnergyDensity->At(0)->Rho();
2016 >  //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
2017 >  //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
2018 >  
2019 >  // WARNING!!!!  
2020 >  // hardcode for sync ...
2021 >  EffectiveAreaVersion = eleT.kEleEAData2011;
2022 >  // WARNING!!!!  
2023 >
2024 >  if( ctrl.debug) {
2025 >    cout << "RHO: " << rho << endl;
2026 >    cout << "eta: " << ele->SCluster()->Eta() << endl;
2027 >    cout << "target: " << EffectiveAreaVersion << endl;
2028 >    cout << "effA 0-1: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p0To0p1,
2029 >                                                       ele->SCluster()->Eta(),
2030 >                                                       EffectiveAreaVersion)
2031 >         << endl;
2032 >    cout << "effA 1-2: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p1To0p2,
2033 >                                                       ele->SCluster()->Eta(),
2034 >                                                       EffectiveAreaVersion)
2035 >         << endl;
2036 >    cout << "effA 2-3: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p2To0p3,
2037 >                                                       ele->SCluster()->Eta(),
2038 >                                                       EffectiveAreaVersion)
2039 >         << endl;
2040 >    cout << "effA 3-4: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p3To0p4,
2041 >                                                       ele->SCluster()->Eta(),
2042 >                                                       EffectiveAreaVersion)
2043 >         << endl;
2044 >  }
2045 >
2046 >  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
2047 >                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p0To0p1,
2048 >                                                              ele->SCluster()->Eta(),
2049 >                                                              EffectiveAreaVersion))/ele->Pt()
2050 >                                 ,2.5)
2051 >                             ,0.0);
2052 >  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
2053 >                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p1To0p2,
2054 >                                                              ele->SCluster()->Eta(),
2055 >                                                              EffectiveAreaVersion))/ele->Pt()
2056 >                                 ,2.5)
2057 >                             ,0.0);
2058 >  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
2059 >                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p2To0p3,
2060 >                                                              ele->SCluster()->Eta()
2061 >                                                              ,EffectiveAreaVersion))/ele->Pt()
2062 >                                 ,2.5)
2063 >                             ,0.0);
2064 >  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
2065 >                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p3To0p4,
2066 >                                                              ele->SCluster()->Eta(),
2067 >                                                              EffectiveAreaVersion))/ele->Pt()
2068 >                                 ,2.5)
2069 >                             ,0.0);
2070 >  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
2071 >                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p4To0p5,
2072 >                                                              ele->SCluster()->Eta(),
2073 >                                                              EffectiveAreaVersion))/ele->Pt()
2074 >                                 ,2.5)
2075 >                             ,0.0);
2076 >
2077 >
2078 >  if( ctrl.debug) {
2079 >    cout << "fGammaIso_DR0p0To0p1: " << fGammaIso_DR0p0To0p1 << endl;
2080 >    cout << "fGammaIso_DR0p1To0p2: " << fGammaIso_DR0p1To0p2 << endl;
2081 >    cout << "fGammaIso_DR0p2To0p3: " << fGammaIso_DR0p2To0p3 << endl;
2082 >    cout << "fGammaIso_DR0p3To0p4: " << fGammaIso_DR0p3To0p4 << endl;
2083 >    cout << "fGammaIso_DR0p4To0p5: " << fGammaIso_DR0p4To0p5 << endl;
2084 >  }
2085 >
2086 >  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
2087 >                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p0To0p1,
2088 >                                                                 ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
2089 >                                         , 2.5)
2090 >                                     , 0.0);
2091 >  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
2092 >                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p1To0p2,
2093 >                                                                   ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
2094 >                                           , 2.5)
2095 >                                       , 0.0);
2096 >  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
2097 >                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p2To0p3,
2098 >                                                                 ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
2099 >                                         , 2.5)
2100 >                                     , 0.0);
2101 >  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
2102 >                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p3To0p4,
2103 >                                                                 ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
2104 >                                         , 2.5)
2105 >                                     , 0.0);
2106 >  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
2107 >                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p4To0p5,
2108 >                                                                 ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
2109 >                                         , 2.5)
2110 >                                     , 0.0);
2111 >
2112 >  if( ctrl.debug) {
2113 >    cout << "fNeutralHadronIso_DR0p0To0p1: " << fNeutralHadronIso_DR0p0To0p1 << endl;
2114 >    cout << "fNeutralHadronIso_DR0p1To0p2: " << fNeutralHadronIso_DR0p1To0p2 << endl;
2115 >    cout << "fNeutralHadronIso_DR0p2To0p3: " << fNeutralHadronIso_DR0p2To0p3 << endl;
2116 >    cout << "fNeutralHadronIso_DR0p3To0p4: " << fNeutralHadronIso_DR0p3To0p4 << endl;
2117 >    cout << "fNeutralHadronIso_DR0p4To0p5: " << fNeutralHadronIso_DR0p4To0p5 << endl;
2118 >  }
2119 >
2120 >  double mvaval = eleIsoMVA->MVAValue_IsoRings( ele->Pt(),
2121 >                                                ele->SCluster()->Eta(),
2122 >                                                fChargedIso_DR0p0To0p1,
2123 >                                                fChargedIso_DR0p1To0p2,
2124 >                                                fChargedIso_DR0p2To0p3,
2125 >                                                fChargedIso_DR0p3To0p4,
2126 >                                                fChargedIso_DR0p4To0p5,
2127 >                                                fGammaIso_DR0p0To0p1,
2128 >                                                fGammaIso_DR0p1To0p2,
2129 >                                                fGammaIso_DR0p2To0p3,
2130 >                                                fGammaIso_DR0p3To0p4,
2131 >                                                fGammaIso_DR0p4To0p5,
2132 >                                                fNeutralHadronIso_DR0p0To0p1,
2133 >                                                fNeutralHadronIso_DR0p1To0p2,
2134 >                                                fNeutralHadronIso_DR0p2To0p3,
2135 >                                                fNeutralHadronIso_DR0p3To0p4,
2136 >                                                fNeutralHadronIso_DR0p4To0p5,
2137 >                                                ctrl.debug);
2138 >
2139 >  SelectionStatus status;
2140 >  status.isoMVA = mvaval;
2141 >  bool pass = false;
2142 >
2143 >  Int_t subdet = 0;
2144 >  if (fabs(ele->SCluster()->Eta()) < 0.8) subdet = 0;
2145 >  else if (fabs(ele->SCluster()->Eta()) < 1.479) subdet = 1;
2146 >  else subdet = 2;
2147 >
2148 >  Int_t ptBin = 0;
2149 >  if (ele->Pt() >= 10.0) ptBin = 1;
2150    
2151    Int_t MVABin = -1;
2152    if (subdet == 0 && ptBin == 0) MVABin = 0;
# Line 1144 | Line 2165 | SelectionStatus electronIsoMVASelection(
2165    if( MVABin == 5 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN5 ) pass = true;
2166    if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
2167  
2168 <  pass = false;
2169 <  if( MVABin == 0 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN0 ) pass = true;
2170 <  if( MVABin == 1 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN1 ) pass = true;
2171 <  if( MVABin == 2 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN2 ) pass = true;
2172 <  if( MVABin == 3 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN3 ) pass = true;
2173 <  if( MVABin == 4 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN4 ) pass = true;
2174 <  if( MVABin == 5 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN5 ) pass = true;
2175 <  if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
2168 > //   pass = false;
2169 > //   if( MVABin == 0 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN0 ) pass = true;
2170 > //   if( MVABin == 1 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN1 ) pass = true;
2171 > //   if( MVABin == 2 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN2 ) pass = true;
2172 > //   if( MVABin == 3 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN3 ) pass = true;
2173 > //   if( MVABin == 4 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN4 ) pass = true;
2174 > //   if( MVABin == 5 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN5 ) pass = true;
2175 > //   if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
2176  
2177    if(ctrl.debug) cout << "returning status : " << hex << status.getStatus() << dec << endl;
2178    return status;
# Line 1175 | Line 2196 | void initElectronIsoMVA() {
2196  
2197  
2198  
2199 +
2200 + //--------------------------------------------------------------------------------------------------
2201 + float electronPFIso04(ControlFlags &ctrl,
2202 +                      const mithep::Electron * ele,
2203 +                      const mithep::Vertex * vtx,
2204 +                      const mithep::Array<mithep::PFCandidate> * fPFCandidates,
2205 +                      const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
2206 +                      mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
2207 +                      vector<const mithep::PFCandidate*> photonsToVeto)        
2208 + //--------------------------------------------------------------------------------------------------
2209 + {
2210 +
2211 +  //
2212 +  // final iso
2213 +  //
2214 +  Double_t fChargedIso = 0.0;
2215 +  Double_t fGammaIso = 0.0;
2216 +  Double_t fNeutralHadronIso = 0.0;
2217 +
2218 +
2219 +  //
2220 +  //Loop over PF Candidates
2221 +  //
2222 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2223 +
2224 +    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
2225 +
2226 +    //
2227 +    // veto FSR recovered photons
2228 +    //
2229 +    bool vetoPhoton = false;
2230 +    for( int p=0; p<photonsToVeto.size(); p++ ) {
2231 +      if( pf == photonsToVeto[p] ) {
2232 +        vetoPhoton = true;
2233 +        break;
2234 +      }
2235 +    } if( vetoPhoton ) continue;
2236 +
2237 +    Double_t deta = (ele->Eta() - pf->Eta());
2238 +    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
2239 +    Double_t dr = mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
2240 +
2241 +    if (dr > 0.4) continue;
2242 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
2243 +
2244 +    if(ctrl.debug) {
2245 +      cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt() << "\tdR: " << dr;
2246 +      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx)
2247 +                                     << "\ttrk: " << pf->HasTrackerTrk()
2248 +                                     << "\tgsf: " << pf->HasGsfTrk();
2249 +      
2250 +      cout << endl;
2251 +    }
2252 +
2253 +
2254 +    //
2255 +    // sync : I don't think theyre doing this ...
2256 +    //
2257 +    //     if ( (pf->HasTrackerTrk() && (pf->TrackerTrk() == ele->TrackerTrk())) ||
2258 +    //   (pf->HasGsfTrk() && (pf->GsfTrk() == ele->GsfTrk()))) {
2259 +    //       if( ctrl.debug ) cout << "\tskipping, matches to the electron ..."  << endl;
2260 +    //       continue;
2261 +    //     }
2262 +
2263 +
2264 +    //
2265 +    // Lepton Footprint Removal
2266 +    //
2267 +    Bool_t IsLeptonFootprint = kFALSE;
2268 +    if (dr < 1.0) {
2269 +
2270 +
2271 +    //
2272 +    // Charged Iso
2273 +    //
2274 +    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
2275 +
2276 +      // Veto any PFmuon, or PFEle
2277 +      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) {
2278 +        if( ctrl.debug ) cout << "\t skipping, pf is and ele or mu .." <<endl;
2279 +        continue;
2280 +      }
2281 +
2282 +      // Footprint Veto
2283 +      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.015) continue;
2284 +
2285 +      if( ctrl.debug) cout << "charged:: pt: " << pf->Pt()
2286 +                           << "\ttype: " << pf->PFType()
2287 +                           << "\ttrk: " << pf->TrackerTrk() << endl;
2288 +
2289 +      fChargedIso += pf->Pt();
2290 +    }
2291 +
2292 +    //
2293 +    // Gamma Iso
2294 +    //
2295 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
2296 +
2297 +      if (fabs(ele->SCluster()->Eta()) > 1.479) {
2298 +        if (mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta()) < 0.08) continue;
2299 +      }
2300 +      if( ctrl.debug) cout << "gamma:: " << pf->Pt() << " "
2301 +                           << dr << endl;
2302 +      // KH, add to sync
2303 +      //      if( pf->Pt() > 0.5 )
2304 +        fGammaIso += pf->Pt();
2305 +    }
2306 +
2307 +    //
2308 +    // Neutral Iso
2309 +    //
2310 +    else {
2311 +      if( ctrl.debug) cout << "neutral:: " << pf->Pt() << " "
2312 +                           << dr << endl;
2313 +      // KH, add to sync
2314 +      //      if( pf->Pt() > 0.5 )
2315 +        fNeutralHadronIso += pf->Pt();
2316 +    }
2317 +
2318 +    }
2319 +
2320 +  }
2321 +
2322 +
2323 +  double rho=0;
2324 +  if( (EffectiveAreaVersion == mithep::ElectronTools::kEleEAFall11MC) ||
2325 +      (EffectiveAreaVersion == mithep::ElectronTools::kEleEAData2011) ) {
2326 +    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25()) ||
2327 +          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25())))
2328 +      rho = fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25();
2329 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2330 +    EffectiveAreaVersion  = mithep::ElectronTools::kEleEAData2011;
2331 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2332 +  } else {
2333 +    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJets()) ||
2334 +          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJets())))
2335 +      rho = fPUEnergyDensity->At(0)->RhoKt6PFJets();
2336 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2337 +    EffectiveAreaVersion  = mithep::ElectronTools::kEleEAData2012;
2338 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2339 +  }
2340 +  if(ctrl.debug) cout << "rho: " << rho << endl;
2341 +
2342 +  double pfIso = fChargedIso + fmax(0.0,(fGammaIso + fNeutralHadronIso
2343 +                                        -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaAndNeutralHadronIso04,
2344 +                                                                   ele->Eta(),EffectiveAreaVersion)));
2345 +
2346 +
2347 +  gChargedIso = fChargedIso;
2348 +  gGammaIso = fGammaIso;
2349 +  gNeutralIso = fNeutralHadronIso;  
2350 +
2351 +  if( ctrl.debug ) {
2352 +    cout << "PFiso: " << pfIso
2353 +         << "\tfChargedIso: " << fChargedIso
2354 +         << "\tfGammaIso: " << fGammaIso
2355 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2356 +         << endl;
2357 +  }
2358 +
2359 +  return pfIso;
2360 + }
2361 +
2362 +
2363 +
2364   //--------------------------------------------------------------------------------------------------
2365 + // hacked version
2366   float electronPFIso04(ControlFlags &ctrl,
2367 <                                const mithep::Electron * ele,
2368 <                                const mithep::Vertex & vtx,
2369 <                                const mithep::Array<mithep::PFCandidate> * fPFCandidates,
2370 <                                const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
2371 <                                mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
2372 <                                vector<const mithep::Muon*> muonsToVeto,
2373 <                                vector<const mithep::Electron*> electronsToVeto)
2367 >                      const mithep::Electron * ele,
2368 >                      const mithep::Vertex * vtx,
2369 >                      const mithep::Array<mithep::PFCandidate> * fPFCandidates,
2370 >                      float rho,
2371 >                      mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
2372 >                      vector<const mithep::Muon*> muonsToVeto,
2373 >                      vector<const mithep::Electron*> electronsToVeto)
2374   //--------------------------------------------------------------------------------------------------
2375   {
2376  
# Line 1196 | Line 2383 | float electronPFIso04(ControlFlags &ctrl
2383             << "\tphi: " << vmu->Phi()
2384             << endl;
2385      }
2386 <    cout << "electronIsoMVASelection :: electrson to veto " << endl;
2386 >    cout << "electronIsoMVASelection :: electrons to veto " << endl;
2387      for( int i=0; i<electronsToVeto.size(); i++ ) {
2388        const mithep::Electron * vel = electronsToVeto[i];
2389        cout << "\tpt: " << vel->Pt()
# Line 1220 | Line 2407 | float electronPFIso04(ControlFlags &ctrl
2407    //Loop over PF Candidates
2408    //
2409    for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2410 +
2411 +
2412      const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
2413      Double_t deta = (ele->Eta() - pf->Eta());
2414      Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
2415      Double_t dr = mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
2416 <    if (dr >= 0.4) continue;
2416 >
2417 >    if (dr > 0.4) continue;
2418 >    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
2419 >
2420      if(ctrl.debug) {
2421 <      cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt();
2422 <      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(vtx);
2421 >      cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt() << "\tdR: " << dr;
2422 >      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx)
2423 >                                     << "\ttrk: " << pf->HasTrackerTrk()
2424 >                                     << "\tgsf: " << pf->HasGsfTrk();
2425 >      
2426        cout << endl;
2427      }
2428  
2429  
2430 <    if ( (pf->HasTrackerTrk() && (pf->TrackerTrk() == ele->TrackerTrk())) ||
2431 <         (pf->HasGsfTrk() && (pf->GsfTrk() == ele->GsfTrk()))) continue;
2432 <    
2430 >    //
2431 >    // sync : I don't think theyre doing this ...
2432 >    //
2433 >    //     if ( (pf->HasTrackerTrk() && (pf->TrackerTrk() == ele->TrackerTrk())) ||
2434 >    //   (pf->HasGsfTrk() && (pf->GsfTrk() == ele->GsfTrk()))) {
2435 >    //       if( ctrl.debug ) cout << "\tskipping, matches to the electron ..."  << endl;
2436 >    //       continue;
2437 >    //     }
2438 >
2439  
2440      //
2441      // Lepton Footprint Removal
# Line 1247 | Line 2448 | float electronPFIso04(ControlFlags &ctrl
2448        //
2449        for (Int_t q=0; q < electronsToVeto.size(); ++q) {
2450          const mithep::Electron *tmpele = electronsToVeto[q];
2451 +        /*
2452          // 4l electron
2453          if( pf->HasTrackerTrk()  ) {
2454            if( pf->TrackerTrk() == tmpele->TrackerTrk() ) {
# Line 1260 | Line 2462 | float electronPFIso04(ControlFlags &ctrl
2462              IsLeptonFootprint = kTRUE;
2463            }
2464          }
2465 +        */
2466          // PF charged
2467          if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) > 1.479
2468              && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015) {
# Line 1303 | Line 2506 | float electronPFIso04(ControlFlags &ctrl
2506      //
2507      if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
2508  
2509 <      if( pf->HasTrackerTrk() )
2510 <        if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
2511 <      if( pf->HasGsfTrk() )
2512 <        if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
2509 > //       if( pf->HasTrackerTrk() )
2510 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
2511 > //       if( pf->HasGsfTrk() )
2512 > //      if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
2513  
2514        // Veto any PFmuon, or PFEle
2515 <      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
2515 >      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) {
2516 >        if( ctrl.debug ) cout << "\t skipping, pf is and ele or mu .." <<endl;
2517 >        continue;
2518 >      }
2519  
2520        // Footprint Veto
2521        if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.015) continue;
# Line 1331 | Line 2537 | float electronPFIso04(ControlFlags &ctrl
2537        }
2538        if( ctrl.debug) cout << "gamma:: " << pf->Pt() << " "
2539                             << dr << endl;
2540 <      fGammaIso += pf->Pt();
2540 >      // KH, add to sync
2541 >      //      if( pf->Pt() > 0.5 )
2542 >        fGammaIso += pf->Pt();
2543      }
2544  
2545      //
# Line 1341 | Line 2549 | float electronPFIso04(ControlFlags &ctrl
2549        if( ctrl.debug) cout << "neutral:: " << pf->Pt() << " "
2550                             << dr << endl;
2551        // KH, add to sync
2552 <      if( pf->Pt() > 0.5 )
2552 >      //      if( pf->Pt() > 0.5 )
2553          fNeutralHadronIso += pf->Pt();
2554      }
2555  
# Line 1349 | Line 2557 | float electronPFIso04(ControlFlags &ctrl
2557  
2558    }
2559  
2560 <  double rho = 0;
2561 <  if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
2562 <    rho = fPUEnergyDensity->At(0)->Rho();
2560 > //   double rho = 0;
2561 > //   if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
2562 > //     rho = fPUEnergyDensity->At(0)->Rho();
2563  
2564    // WARNING!!!!  
2565    // hardcode for sync ...
# Line 1359 | Line 2567 | float electronPFIso04(ControlFlags &ctrl
2567    // WARNING!!!!  
2568  
2569  
2570 <  double pfIso = fChargedIso +
2571 <    max(0.0,fGammaIso -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIso04,
2572 <                                                ele->Eta(),EffectiveAreaVersion)) +
2573 <    max(0.0,fNeutralHadronIso -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIso04,
2574 <                                                        ele->Eta(),EffectiveAreaVersion)) ;
2570 >  double pfIso = fChargedIso + fmax(0.0,(fGammaIso + fNeutralHadronIso
2571 >                                        -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaAndNeutralHadronIso04,
2572 >                                                                   ele->Eta(),EffectiveAreaVersion)));
2573 >
2574 >
2575 >  gChargedIso = fChargedIso;
2576 >  gGammaIso = fGammaIso;
2577 >  gNeutralIso = fNeutralHadronIso;  
2578    return pfIso;
2579   }
2580  
2581 +
2582   //--------------------------------------------------------------------------------------------------
2583   SelectionStatus electronReferenceIsoSelection(ControlFlags &ctrl,
2584                                                const mithep::Electron * ele,
2585 <                                              const mithep::Vertex & vtx,
2585 >                                              const mithep::Vertex * vtx,
2586                                                const mithep::Array<mithep::PFCandidate> * fPFCandidates,
2587                                                const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
2588                                                mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
2589 +                                              vector<const mithep::PFCandidate*> photonsToVeto)
2590 + //--------------------------------------------------------------------------------------------------
2591 + {
2592 +
2593 +  SelectionStatus status;
2594 +
2595 +  double pfIso = electronPFIso04( ctrl, ele, vtx, fPFCandidates, fPUEnergyDensity,
2596 +                                  EffectiveAreaVersion, photonsToVeto);
2597 +  //  cout << "--------------> setting electron isoPF04 to " << pfIso << endl;
2598 +  status.isoPF04 = pfIso;
2599 +  status.chisoPF04 = gChargedIso;
2600 +  status.gaisoPF04 = gGammaIso;
2601 +  status.neisoPF04 = gNeutralIso;
2602 +
2603 +  bool pass = false;
2604 +  if( (pfIso/ele->Pt()) < ELECTRON_REFERENCE_PFISO_CUT ) pass = true;
2605 +
2606 +  if( pass ) {
2607 +    status.orStatus(SelectionStatus::LOOSEISO);
2608 +    status.orStatus(SelectionStatus::TIGHTISO);
2609 +  }
2610 +  if(ctrl.debug) {
2611 +    cout << "el relpfIso: " << pfIso/ele->Pt() << endl;
2612 +    cout << "returning status : " << hex << status.getStatus() << dec << endl;
2613 +  }
2614 +  return status;
2615 +
2616 + }
2617 +
2618 +
2619 + //--------------------------------------------------------------------------------------------------
2620 + // hacked version
2621 + SelectionStatus electronReferenceIsoSelection(ControlFlags &ctrl,
2622 +                                              const mithep::Electron * ele,
2623 +                                              const mithep::Vertex * vtx,
2624 +                                              const mithep::Array<mithep::PFCandidate> * fPFCandidates,
2625 +                                              float rho,
2626 +                                              mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
2627                                                vector<const mithep::Muon*> muonsToVeto,
2628                                                vector<const mithep::Electron*> electronsToVeto)
2629   //--------------------------------------------------------------------------------------------------
# Line 1381 | Line 2631 | SelectionStatus electronReferenceIsoSele
2631  
2632    SelectionStatus status;
2633  
2634 <  double pfIso = electronPFIso04( ctrl, ele, vtx, fPFCandidates, fPUEnergyDensity,
2634 >  double pfIso = electronPFIso04( ctrl, ele, vtx, fPFCandidates, rho,
2635                                    EffectiveAreaVersion, muonsToVeto ,electronsToVeto );
2636 +  status.isoPF04 = pfIso;
2637 +  status.chisoPF04 = gChargedIso;
2638 +  status.gaisoPF04 = gGammaIso;
2639 +  status.neisoPF04 = gNeutralIso;
2640    bool pass = false;
2641    if( (pfIso/ele->Pt()) < ELECTRON_REFERENCE_PFISO_CUT ) pass = true;
2642  
# Line 1394 | Line 2648 | SelectionStatus electronReferenceIsoSele
2648    return status;
2649  
2650   }
2651 +
2652 +
2653 +
2654 + //--------------------------------------------------------------------------------------------------
2655 + double  dbetaCorrectedIsoDr03(ControlFlags & ctrl,
2656 +                              const mithep::PFCandidate * photon,
2657 +                              const mithep::Muon * lepton,
2658 +                              const mithep::Array<mithep::PFCandidate> * fPFCandidates)
2659 + //--------------------------------------------------------------------------------------------------
2660 + {
2661 +
2662 +  //
2663 +  // final iso
2664 +  //
2665 +  Double_t fChargedIso  = 0.0;
2666 +  Double_t fGammaIso  = 0.0;
2667 +  Double_t fNeutralHadronIso  = 0.0;
2668 +  Double_t fpfPU  = 0.0;
2669 +
2670 +  //
2671 +  // Loop over PF Candidates
2672 +  //
2673 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2674 +
2675 +    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
2676 +    
2677 +    Double_t deta = (photon->Eta() - pf->Eta());
2678 +    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2679 +    Double_t dr = mithep::MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2680 +    if (dr > 0.3) continue;
2681 +
2682 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2683 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2684 +        fpfPU += pf->Pt();
2685 +      continue;
2686 +    }
2687 +    
2688 +    //
2689 +    // skip this photon
2690 +    //
2691 +    if( abs(pf->PFType()) == mithep::PFCandidate::eGamma &&
2692 +        pf->Et() == photon->Et() ) continue;
2693 +    
2694 +      
2695 +    //
2696 +    // Charged Iso
2697 +    //
2698 +    if (pf->Charge() != 0 ) {
2699 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2700 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2701 +        fChargedIso += pf->Pt();
2702 +    }
2703 +    
2704 +    //
2705 +    // Gamma Iso
2706 +    //
2707 +    else if (abs(pf->PFType()) == mithep::PFCandidate::eGamma) {
2708 +      if( pf->Pt() > 0.5 && dr > 0.01)
2709 +        fGammaIso += pf->Pt();
2710 +    }
2711 +    
2712 +    //
2713 +    // Other Neutrals
2714 +    //
2715 +    else {
2716 +      if( pf->Pt() > 0.5 && dr > 0.01)
2717 +        fNeutralHadronIso += pf->Pt();
2718 +    }
2719 +    
2720 +  }
2721 +  
2722 +  if( ctrl.debug ) {
2723 +    cout << "photon dbetaIso :: " << endl;
2724 +    cout << "\tfChargedIso: " << fChargedIso
2725 +         << "\tfGammaIso: " << fGammaIso
2726 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2727 +         << "\tfpfPU: " << fpfPU
2728 +         << endl;
2729 +  }
2730 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso - 0.5*fpfPU;
2731 +  return pfIso/photon->Pt();
2732 + }
2733 +
2734 +
2735 + //--------------------------------------------------------------------------------------------------
2736 + double  dbetaCorrectedIsoDr03(ControlFlags & ctrl,
2737 +                              const mithep::PFCandidate * photon,
2738 +                              const mithep::Electron * lepton,
2739 +                              const mithep::Array<mithep::PFCandidate> * fPFCandidates)
2740 + //--------------------------------------------------------------------------------------------------
2741 + {
2742 +
2743 +  //
2744 +  // final iso
2745 +  //
2746 +  Double_t fChargedIso  = 0.0;
2747 +  Double_t fGammaIso  = 0.0;
2748 +  Double_t fNeutralHadronIso  = 0.0;
2749 +  Double_t fpfPU  = 0.0;
2750 +
2751 +  //
2752 +  // Loop over PF Candidates
2753 +  //
2754 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2755 +
2756 +    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
2757 +    
2758 +    Double_t deta = (photon->Eta() - pf->Eta());
2759 +    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2760 +    Double_t dr = mithep::MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2761 +    if (dr > 0.3) continue;
2762 +
2763 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2764 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2765 +        fpfPU += pf->Pt();
2766 +      continue;
2767 +    }
2768 +    
2769 +    //
2770 +    // skip this photon
2771 +    //
2772 +    if( abs(pf->PFType()) == mithep::PFCandidate::eGamma &&
2773 +        pf->Et() == photon->Et() ) continue;
2774 +    
2775 +      
2776 +    //
2777 +    // Charged Iso
2778 +    //
2779 +    if (pf->Charge() != 0 ) {
2780 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2781 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2782 +        fChargedIso += pf->Pt();
2783 +    }
2784 +    
2785 +    //
2786 +    // Gamma Iso
2787 +    //
2788 +    else if (abs(pf->PFType()) == mithep::PFCandidate::eGamma) {
2789 +      if( pf->Pt() > 0.5 && dr > 0.01)
2790 +        fGammaIso += pf->Pt();
2791 +    }
2792 +    
2793 +    //
2794 +    // Other Neutrals
2795 +    //
2796 +    else {
2797 +      if( pf->Pt() > 0.5 && dr > 0.01)
2798 +        fNeutralHadronIso += pf->Pt();
2799 +    }
2800 +    
2801 +  }
2802 +  
2803 +  if( ctrl.debug ) {
2804 +    cout << "photon dbetaIso :: " << endl;
2805 +    cout << "\tfChargedIso: " << fChargedIso
2806 +         << "\tfGammaIso: " << fGammaIso
2807 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2808 +         << "\tfpfPU: " << fpfPU
2809 +         << endl;
2810 +  }
2811 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso - 0.5*fpfPU;
2812 +  return pfIso/photon->Pt();
2813 + }
2814 +
2815 +
2816 +
2817 +
2818 +
2819 + //--------------------------------------------------------------------------------------------------
2820 + double  nonCorrectedIsoDr03(ControlFlags & ctrl,
2821 +                            const mithep::PFCandidate * photon,
2822 +                            const mithep::Muon * lepton,
2823 +                            const mithep::Array<mithep::PFCandidate> * fPFCandidates)
2824 + //--------------------------------------------------------------------------------------------------
2825 + {
2826 +
2827 +  //
2828 +  // final iso
2829 +  //
2830 +  Double_t fChargedIso  = 0.0;
2831 +  Double_t fGammaIso  = 0.0;
2832 +  Double_t fNeutralHadronIso  = 0.0;
2833 +  Double_t fpfPU  = 0.0;
2834 +
2835 +  //
2836 +  // Loop over PF Candidates
2837 +  //
2838 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2839 +
2840 +    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
2841 +
2842 +    Double_t deta = (photon->Eta() - pf->Eta());
2843 +    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2844 +    Double_t dr = mithep::MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2845 +    if (dr > 0.3) continue;
2846 +
2847 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2848 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2849 +        fpfPU += pf->Pt();
2850 +      continue;
2851 +    }
2852 +    
2853 +    //
2854 +    // skip this photon
2855 +    //
2856 +    if( abs(pf->PFType()) == mithep::PFCandidate::eGamma &&
2857 +        pf->Et() == photon->Et() ) continue;
2858 +    
2859 +      
2860 +    //
2861 +    // Charged Iso
2862 +    //
2863 +    if (pf->Charge() != 0 ) {
2864 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2865 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2866 +        fChargedIso += pf->Pt();
2867 +    }
2868 +    
2869 +    //
2870 +    // Gamma Iso
2871 +    //
2872 +    else if (abs(pf->PFType()) == mithep::PFCandidate::eGamma) {
2873 +      if( pf->Pt() > 0.5 && dr > 0.01)
2874 +        fGammaIso += pf->Pt();
2875 +    }
2876 +    
2877 +    //
2878 +    // Other Neutrals
2879 +    //
2880 +    else {
2881 +      if( pf->Pt() > 0.5 && dr > 0.01)
2882 +        fNeutralHadronIso += pf->Pt();
2883 +    }
2884 +    
2885 +  }
2886 +  
2887 +  if( ctrl.debug ) {
2888 +    cout << "photon dbetaIso :: " << endl;
2889 +    cout << "\tfChargedIso: " << fChargedIso
2890 +         << "\tfGammaIso: " << fGammaIso
2891 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2892 +         << "\tfpfPU: " << fpfPU
2893 +         << endl;
2894 +  }
2895 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso + fpfPU;
2896 +  return pfIso/photon->Pt();
2897 + }
2898 +
2899 +
2900 +
2901 + //--------------------------------------------------------------------------------------------------
2902 + double  nonCorrectedIsoDr03(ControlFlags & ctrl,
2903 +                            const mithep::PFCandidate * photon,
2904 +                            const mithep::Electron * lepton,
2905 +                            const mithep::Array<mithep::PFCandidate> * fPFCandidates)
2906 + //--------------------------------------------------------------------------------------------------
2907 + {
2908 +
2909 +  //
2910 +  // final iso
2911 +  //
2912 +  Double_t fChargedIso  = 0.0;
2913 +  Double_t fGammaIso  = 0.0;
2914 +  Double_t fNeutralHadronIso  = 0.0;
2915 +  Double_t fpfPU  = 0.0;
2916 +
2917 +  //
2918 +  // Loop over PF Candidates
2919 +  //
2920 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2921 +
2922 +    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
2923 +
2924 +    Double_t deta = (photon->Eta() - pf->Eta());
2925 +    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2926 +    Double_t dr = mithep::MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2927 +    if (dr > 0.3) continue;
2928 +
2929 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2930 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2931 +        fpfPU += pf->Pt();
2932 +      continue;
2933 +    }
2934 +    
2935 +    //
2936 +    // skip this photon
2937 +    //
2938 +    if( abs(pf->PFType()) == mithep::PFCandidate::eGamma &&
2939 +        pf->Et() == photon->Et() ) continue;
2940 +    
2941 +      
2942 +    //
2943 +    // Charged Iso
2944 +    //
2945 +    if (pf->Charge() != 0 ) {
2946 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2947 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2948 +        fChargedIso += pf->Pt();
2949 +    }
2950 +    
2951 +    //
2952 +    // Gamma Iso
2953 +    //
2954 +    else if (abs(pf->PFType()) == mithep::PFCandidate::eGamma) {
2955 +      if( pf->Pt() > 0.5 && dr > 0.01)
2956 +        fGammaIso += pf->Pt();
2957 +    }
2958 +    
2959 +    //
2960 +    // Other Neutrals
2961 +    //
2962 +    else {
2963 +      if( pf->Pt() > 0.5 && dr > 0.01)
2964 +        fNeutralHadronIso += pf->Pt();
2965 +    }
2966 +    
2967 +  }
2968 +  
2969 +  if( ctrl.debug ) {
2970 +    cout << "photon dbetaIso :: " << endl;
2971 +    cout << "\tfChargedIso: " << fChargedIso
2972 +         << "\tfGammaIso: " << fGammaIso
2973 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2974 +         << "\tfpfPU: " << fpfPU
2975 +         << endl;
2976 +  }
2977 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso + fpfPU;
2978 +  return pfIso/photon->Pt();
2979 + }
2980 +
2981 +
2982 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines