ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitHzz4l/LeptonSelection/src/IsolationSelection.cc
(Generate patch)

Comparing UserCode/MitHzz4l/LeptonSelection/src/IsolationSelection.cc (file contents):
Revision 1.8 by khahn, Wed May 2 17:50:58 2012 UTC vs.
Revision 1.34 by dkralph, Tue Oct 23 10:41:23 2012 UTC

# Line 9 | Line 9
9   #include "ElectronTools.h"
10   #include "ElectronIDMVA.h"
11  
12 < using namespace mithep;
12 > MuonIDMVA     * muIsoMVA;
13 > MuonTools       muT;
14 > ElectronIDMVA * eleIsoMVA;
15 > ElectronTools   eleT;
16 >
17 > // global hack to sync
18 > double gChargedIso;
19 > double gGammaIso;
20 > double gNeutralIso;
21  
22 < mithep::MuonIDMVA     * muIsoMVA;
15 < mithep::MuonTools       muT;
16 < mithep::ElectronIDMVA * eleIsoMVA;
17 < mithep::ElectronTools   eleT;
22 > extern vector<bool> PFnoPUflag;
23  
24   //--------------------------------------------------------------------------------------------------
25 < Float_t computePFMuonIso(const mithep::Muon *muon,
26 <                         const mithep::Vertex & vtx,
27 <                         const mithep::Array<mithep::PFCandidate> * fPFCandidates,
25 > Float_t computePFMuonIso(const Muon *muon,
26 >                         const Vertex * vtx,
27 >                         const Array<PFCandidate> * fPFCandidates,
28                           const Double_t dRMax)
29   //--------------------------------------------------------------------------------------------------
30   {
# Line 27 | Line 32 | Float_t computePFMuonIso(const mithep::M
32    const Double_t neuPtMin = 1.0;
33    const Double_t dzMax    = 0.1;
34      
35 <  Double_t zLepton = (muon->BestTrk()) ? muon->BestTrk()->DzCorrected(vtx) : 0.0;
35 >  Double_t zLepton = (muon->BestTrk()) ? muon->BestTrk()->DzCorrected(*vtx) : 0.0;
36    
37    Float_t iso=0;
38    for(UInt_t ipf=0; ipf<fPFCandidates->GetEntries(); ipf++) {
# Line 39 | Line 44 | Float_t computePFMuonIso(const mithep::M
44      if(pfcand->TrackerTrk() && muon->TrackerTrk() && (pfcand->TrackerTrk()==muon->TrackerTrk())) continue;
45      
46      // dz cut
47 <    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(vtx) - zLepton) : 0;
47 >    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(*vtx) - zLepton) : 0;
48      if(dz >= dzMax) continue;
49      
50      // check iso cone
# Line 52 | Line 57 | Float_t computePFMuonIso(const mithep::M
57   }
58  
59   //--------------------------------------------------------------------------------------------------
60 < Float_t computePFEleIso(const mithep::Electron *electron,
61 <                        const mithep::Vertex & fVertex,
62 <                        const mithep::Array<mithep::PFCandidate> * fPFCandidates,
60 > Float_t computePFEleIso(const Electron *electron,
61 >                        const Vertex * fVertex,
62 >                        const Array<PFCandidate> * fPFCandidates,
63                          const Double_t dRMax)
64   //--------------------------------------------------------------------------------------------------
65   {
# Line 62 | Line 67 | Float_t computePFEleIso(const mithep::El
67    const Double_t neuPtMin = 1.0;
68    const Double_t dzMax    = 0.1;
69      
70 <  Double_t zLepton = (electron->BestTrk()) ? electron->BestTrk()->DzCorrected(fVertex) : 0.0;
70 >  Double_t zLepton = (electron->BestTrk()) ? electron->BestTrk()->DzCorrected(*fVertex) : 0.0;
71    
72    Float_t iso=0;
73    for(UInt_t ipf=0; ipf<fPFCandidates->GetEntries(); ipf++) {
# Line 71 | Line 76 | Float_t computePFEleIso(const mithep::El
76      if(!pfcand->HasTrk() && (pfcand->Pt()<=neuPtMin)) continue;  // pT cut on neutral particles
77      
78      // dz cut
79 <    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(fVertex) - zLepton) : 0;
79 >    Double_t dz = (pfcand->BestTrk()) ? fabs(pfcand->BestTrk()->DzCorrected(*fVertex) - zLepton) : 0;
80      if(dz >= dzMax) continue;
81      
82      // remove THE electron
# Line 94 | Line 99 | Float_t computePFEleIso(const mithep::El
99    
100    return iso;
101   };
97
98 //--------------------------------------------------------------------------------------------------
99 bool pairwiseIsoSelection( ControlFlags &ctrl,
100                           vector<SimpleLepton> &lepvec,
101                           float rho )
102 //--------------------------------------------------------------------------------------------------
103 {
104
105  bool passiso=true;
106
107  for( int i=0; i<lepvec.size(); i++ )
108    {
109      
110      if( !(lepvec[i].is4l) ) continue;
111      
112      float effArea_ecal_i, effArea_hcal_i;
113      if( lepvec[i].isEB ) {
114        if( lepvec[i].type == 11 ) {
115          effArea_ecal_i = 0.101;
116          effArea_hcal_i = 0.021;
117        } else {
118          effArea_ecal_i = 0.074;
119          effArea_hcal_i = 0.022;
120        }
121      } else {
122        if( lepvec[i].type == 11 ) {
123          effArea_ecal_i = 0.046;
124          effArea_hcal_i = 0.040;
125        } else {
126          effArea_ecal_i = 0.045;
127          effArea_hcal_i = 0.030;
128        }
129      }
130      
131      float isoEcal_corr_i = lepvec[i].isoEcal - (effArea_ecal_i*rho);
132      float isoHcal_corr_i = lepvec[i].isoHcal - (effArea_hcal_i*rho);
133
134      for( int j=i+1; j<lepvec.size(); j++ )
135        {
136
137          if( !(lepvec[j].is4l) ) continue;
138
139          float effArea_ecal_j, effArea_hcal_j;
140          if( lepvec[j].isEB ) {
141            if( lepvec[j].type == 11 ) {
142              effArea_ecal_j = 0.101;
143              effArea_hcal_j = 0.021;
144            } else {
145              effArea_ecal_j = 0.074;
146              effArea_hcal_j = 0.022;
147            }
148          } else {
149            if( lepvec[j].type == 11 ) {
150              effArea_ecal_j = 0.046;
151              effArea_hcal_j = 0.040;
152            } else {
153              effArea_ecal_j = 0.045;
154              effArea_hcal_j = 0.030;
155            }
156          }
157
158          float isoEcal_corr_j = lepvec[j].isoEcal - (effArea_ecal_j*rho);
159          float isoHcal_corr_j = lepvec[j].isoHcal - (effArea_hcal_j*rho);
160          float RIso_i = (lepvec[i].isoTrk+isoEcal_corr_i+isoHcal_corr_i)/lepvec[i].vec->Pt();
161          float RIso_j = (lepvec[j].isoTrk+isoEcal_corr_j+isoHcal_corr_j)/lepvec[j].vec->Pt();      
162          float comboIso = RIso_i + RIso_j;
163          
164          if( comboIso > 0.35 ) {
165            if( ctrl.debug ) cout << "combo failing for indices: " << i << "," << j << endl;
166            passiso = false;
167            return passiso;
168          }
169        }
170    }
171  
172  return passiso;
173 }
174
102   //--------------------------------------------------------------------------------------------------
103   SelectionStatus muonIsoSelection(ControlFlags &ctrl,
104 <                                 const mithep::Muon * mu,
105 <                                 const mithep::Vertex & vtx,
106 <                                 const mithep::Array<mithep::PFCandidate> * fPFCandidateCol   )
104 >                                 const Muon * mu,
105 >                                 const Vertex * vtx,
106 >                                 const Array<PFCandidate> * fPFCandidateCol   )
107   //--------------------------------------------------------------------------------------------------
108   {
109    float reliso = computePFMuonIso(mu,vtx,fPFCandidateCol,0.3)/mu->Pt();
# Line 204 | Line 131 | SelectionStatus muonIsoSelection(Control
131  
132   //--------------------------------------------------------------------------------------------------
133   SelectionStatus electronIsoSelection(ControlFlags &ctrl,
134 <                                     const mithep::Electron * ele,
135 <                                     const mithep::Vertex &fVertex,
136 <                                     const mithep::Array<mithep::PFCandidate> * fPFCandidates)
134 >                                     const Electron * ele,
135 >                                     const Vertex *fVertex,
136 >                                     const Array<PFCandidate> * fPFCandidates)
137   //--------------------------------------------------------------------------------------------------
138   {
139  
# Line 220 | Line 147 | SelectionStatus electronIsoSelection(Con
147    if( ele->IsEB() && ele->Pt() < 20 && reliso > PFISO_ELE_LOOSE_EB_LOWPT ) {
148      failiso = true;
149    }
223  if(ctrl.debug) cout << "before iso check ..." << endl;
150    if( !(ele->IsEB()) && ele->Pt() > 20 && reliso > PFISO_ELE_LOOSE_EE_HIGHPT ) {
225    if(ctrl.debug) cout << "\tit fails ..." << endl;
151      failiso = true;
152    }
153    if( !(ele->IsEB()) && ele->Pt() < 20 && reliso > PFISO_ELE_LOOSE_EE_LOWPT ) {
# Line 247 | Line 172 | bool noIso(ControlFlags &, vector<Simple
172  
173   //--------------------------------------------------------------------------------------------------
174   SelectionStatus muonIsoMVASelection(ControlFlags &ctrl,
175 <                                    const mithep::Muon * mu,
176 <                                    const mithep::Vertex & vtx,
177 <                                    const mithep::Array<mithep::PFCandidate> * fPFCandidates,
178 <                                    const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
179 <                                    mithep::MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
180 <                                    vector<const mithep::Muon*> muonsToVeto,
181 <                                    vector<const mithep::Electron*> electronsToVeto)
175 >                                    const Muon * mu,
176 >                                    const Vertex * vtx,
177 >                                    const Array<PFCandidate> * fPFCandidates,
178 >                                    const Array<PileupEnergyDensity> * fPUEnergyDensity,
179 >                                    MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
180 >                                    vector<const Muon*> muonsToVeto,
181 >                                    vector<const Electron*> electronsToVeto)
182   //--------------------------------------------------------------------------------------------------
183   {
184  
185    if( ctrl.debug ) {
186      cout << "muonIsoMVASelection :: muons to veto " << endl;
187      for( int i=0; i<muonsToVeto.size(); i++ ) {
188 <      const mithep::Muon * vmu = muonsToVeto[i];
188 >      const Muon * vmu = muonsToVeto[i];
189        cout << "\tpt: " << vmu->Pt()
190             << "\teta: " << vmu->Eta()
191             << "\tphi: " << vmu->Phi()
# Line 268 | Line 193 | SelectionStatus muonIsoMVASelection(Cont
193      }
194      cout << "muonIsoMVASelection :: electrson to veto " << endl;
195      for( int i=0; i<electronsToVeto.size(); i++ ) {
196 <      const mithep::Electron * vel = electronsToVeto[i];
196 >      const Electron * vel = electronsToVeto[i];
197        cout << "\tpt: " << vel->Pt()
198             << "\teta: " << vel->Eta()
199             << "\tphi: " << vel->Phi()
# Line 332 | Line 257 | SelectionStatus muonIsoMVASelection(Cont
257    //Loop over PF Candidates
258    //
259    for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
260 <    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
260 >
261 >    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
262 >
263 >    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
264  
265      Double_t deta = (mu->Eta() - pf->Eta());
266 <    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(mu->Phi()),Double_t(pf->Phi()));
267 <    Double_t dr = mithep::MathUtils::DeltaR(mu->Phi(),mu->Eta(), pf->Phi(), pf->Eta());
266 >    Double_t dphi = MathUtils::DeltaPhi(Double_t(mu->Phi()),Double_t(pf->Phi()));
267 >    Double_t dr = MathUtils::DeltaR(mu->Phi(),mu->Eta(), pf->Phi(), pf->Eta());
268      if (dr > 1.0) continue;
269  
270      if (pf->HasTrackerTrk() && (pf->TrackerTrk() == mu->TrackerTrk()) ) continue;
# Line 351 | Line 279 | SelectionStatus muonIsoMVASelection(Cont
279        // Check for electrons
280        //
281        for (Int_t q=0; q < electronsToVeto.size(); ++q) {
282 <        const mithep::Electron *tmpele = electronsToVeto[q];
282 >        const Electron *tmpele = electronsToVeto[q];
283          // 4l electron
284          if( pf->HasTrackerTrk() ) {
285            if( pf->TrackerTrk() == tmpele->TrackerTrk() )
# Line 362 | Line 290 | SelectionStatus muonIsoMVASelection(Cont
290              IsLeptonFootprint = kTRUE;
291          }
292          // PF charged
293 <        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) > 1.479
294 <            && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015)
293 >        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479
294 >            && MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015)
295            IsLeptonFootprint = kTRUE;
296          // PF gamma
297 <        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) > 1.479
298 <            && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.08)
297 >        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
298 >            && MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.08)
299            IsLeptonFootprint = kTRUE;
300        } // loop over electrons
301        
302 +      /* KH - commented for sync
303        //
304        // Check for muons
305        //
306        for (Int_t q=0; q < muonsToVeto.size(); ++q) {
307 <        const mithep::Muon *tmpmu = muonsToVeto[q];
307 >        const Muon *tmpmu = muonsToVeto[q];
308          // 4l muon
309          if( pf->HasTrackerTrk() ) {
310            if( pf->TrackerTrk() == tmpmu->TrackerTrk() )
311              IsLeptonFootprint = kTRUE;
312          }
313          // PF charged
314 <        if (pf->Charge() != 0 && mithep::MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01)
314 >        if (pf->Charge() != 0 && MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01)
315            IsLeptonFootprint = kTRUE;
316        } // loop over muons
317 <
317 >      */
318  
319      if (IsLeptonFootprint)
320        continue;
# Line 398 | Line 327 | SelectionStatus muonIsoMVASelection(Cont
327        if( dr < 0.01 ) continue; // only for muon iso mva?
328        if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
329  
330 <      if( pf->HasTrackerTrk() ) {
331 <        if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
332 <        if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
333 <                              << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
334 <                              << dr << endl;
335 <      }
336 <      if( pf->HasGsfTrk() ) {
337 <        if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
338 <        if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
339 <                              << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
340 <                              << dr << endl;
341 <      }
330 > //       if( pf->HasTrackerTrk() ) {
331 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
332 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
333 > //                            << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
334 > //                            << dr << endl;
335 > //       }
336 > //       if( pf->HasGsfTrk() ) {
337 > //      if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
338 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
339 > //                            << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
340 > //                            << dr << endl;
341 > //       }
342  
343        // Footprint Veto
344        if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
# Line 448 | Line 377 | SelectionStatus muonIsoMVASelection(Cont
377  
378    }
379  
380 <  fChargedIso_DR0p0To0p1   = min((tmpChargedIso_DR0p0To0p1)/mu->Pt(), 2.5);
381 <  fChargedIso_DR0p1To0p2   = min((tmpChargedIso_DR0p1To0p2)/mu->Pt(), 2.5);
382 <  fChargedIso_DR0p2To0p3   = min((tmpChargedIso_DR0p2To0p3)/mu->Pt(), 2.5);
383 <  fChargedIso_DR0p3To0p4   = min((tmpChargedIso_DR0p3To0p4)/mu->Pt(), 2.5);
384 <  fChargedIso_DR0p4To0p5   = min((tmpChargedIso_DR0p4To0p5)/mu->Pt(), 2.5);
380 >  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/mu->Pt(), 2.5);
381 >  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/mu->Pt(), 2.5);
382 >  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/mu->Pt(), 2.5);
383 >  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/mu->Pt(), 2.5);
384 >  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/mu->Pt(), 2.5);
385  
386  
387    double rho = 0;
388    if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
389      rho = fPUEnergyDensity->At(0)->Rho();
390 +
391 + //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
392 + //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
393    
394 +  // WARNING!!!!  
395 +  // hardcode for sync ...
396 +  EffectiveAreaVersion = muT.kMuEAData2011;
397 +  // WARNING!!!!  
398 +
399  
400 <  fGammaIso_DR0p0To0p1 = max(min((tmpGammaIso_DR0p0To0p1
400 >  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
401                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p0To0p1,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
402                                   ,2.5)
403                               ,0.0);
404 <  fGammaIso_DR0p1To0p2 = max(min((tmpGammaIso_DR0p1To0p2
404 >  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
405                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p1To0p2,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
406                                   ,2.5)
407                               ,0.0);
408 <  fGammaIso_DR0p2To0p3 = max(min((tmpGammaIso_DR0p2To0p3
408 >  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
409                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p2To0p3,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
410                                   ,2.5)
411                               ,0.0);
412 <  fGammaIso_DR0p3To0p4 = max(min((tmpGammaIso_DR0p3To0p4
412 >  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
413                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p3To0p4,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
414                                   ,2.5)
415                               ,0.0);
416 <  fGammaIso_DR0p4To0p5 = max(min((tmpGammaIso_DR0p4To0p5
416 >  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
417                                    -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p4To0p5,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
418                                   ,2.5)
419                               ,0.0);
420  
421  
422  
423 <  fNeutralHadronIso_DR0p0To0p1 = max(min((tmpNeutralHadronIso_DR0p0To0p1
423 >  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
424                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p0To0p1,
425                                                                   mu->Eta(),EffectiveAreaVersion))/mu->Pt()
426                                           , 2.5)
427                                       , 0.0);
428 <  fNeutralHadronIso_DR0p1To0p2 = max(min((tmpNeutralHadronIso_DR0p1To0p2
428 >  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
429                                              -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p1To0p2,
430                                                                     mu->Eta(),EffectiveAreaVersion))/mu->Pt()
431                                             , 2.5)
432                                         , 0.0);
433 <  fNeutralHadronIso_DR0p2To0p3 = max(min((tmpNeutralHadronIso_DR0p2To0p3
433 >  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
434                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p2To0p3,
435                                                                   mu->Eta(),EffectiveAreaVersion))/mu->Pt()
436                                           , 2.5)
437                                       , 0.0);
438 <  fNeutralHadronIso_DR0p3To0p4 = max(min((tmpNeutralHadronIso_DR0p3To0p4
438 >  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
439                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p3To0p4,
440                                                                   mu->Eta(), EffectiveAreaVersion))/mu->Pt()
441                                           , 2.5)
442                                       , 0.0);
443 <  fNeutralHadronIso_DR0p4To0p5 = max(min((tmpNeutralHadronIso_DR0p4To0p5
443 >  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
444                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p4To0p5,
445                                                                   mu->Eta(), EffectiveAreaVersion))/mu->Pt()
446                                           , 2.5)
# Line 511 | Line 448 | SelectionStatus muonIsoMVASelection(Cont
448  
449  
450    double mvaval = muIsoMVA->MVAValue_IsoRings( mu->Pt(),
451 <                                             mu->Eta(),
452 <                                             fChargedIso_DR0p0To0p1,
453 <                                             fChargedIso_DR0p1To0p2,
454 <                                             fChargedIso_DR0p2To0p3,
455 <                                             fChargedIso_DR0p3To0p4,
456 <                                             fChargedIso_DR0p4To0p5,
457 <                                             fGammaIso_DR0p0To0p1,
458 <                                             fGammaIso_DR0p1To0p2,
459 <                                             fGammaIso_DR0p2To0p3,
460 <                                             fGammaIso_DR0p3To0p4,
461 <                                             fGammaIso_DR0p4To0p5,
462 <                                             fNeutralHadronIso_DR0p0To0p1,
463 <                                             fNeutralHadronIso_DR0p1To0p2,
464 <                                             fNeutralHadronIso_DR0p2To0p3,
465 <                                             fNeutralHadronIso_DR0p3To0p4,
466 <                                             fNeutralHadronIso_DR0p4To0p5,
467 <                                             ctrl.debug);
451 >                                               mu->Eta(),
452 >                                               mu->IsGlobalMuon(),
453 >                                               mu->IsTrackerMuon(),
454 >                                               fChargedIso_DR0p0To0p1,
455 >                                               fChargedIso_DR0p1To0p2,
456 >                                               fChargedIso_DR0p2To0p3,
457 >                                               fChargedIso_DR0p3To0p4,
458 >                                               fChargedIso_DR0p4To0p5,
459 >                                               fGammaIso_DR0p0To0p1,
460 >                                               fGammaIso_DR0p1To0p2,
461 >                                               fGammaIso_DR0p2To0p3,
462 >                                               fGammaIso_DR0p3To0p4,
463 >                                               fGammaIso_DR0p4To0p5,
464 >                                               fNeutralHadronIso_DR0p0To0p1,
465 >                                               fNeutralHadronIso_DR0p1To0p2,
466 >                                               fNeutralHadronIso_DR0p2To0p3,
467 >                                               fNeutralHadronIso_DR0p3To0p4,
468 >                                               fNeutralHadronIso_DR0p4To0p5,
469 >                                               ctrl.debug);
470  
471    SelectionStatus status;
472 <  bool pass = false;
472 >  bool pass;
473 >
474 >  pass = false;
475 >  if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
476 >      && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN0)   pass = true;
477 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
478 >           && fabs(mu->Eta()) <= 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN1)  pass = true;
479 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
480 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN2)  pass = true;
481 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
482 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN3)  pass = true;
483 >  else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN4)  pass = true;
484 >  else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_OPT_BIN5)  pass = true;
485 >  if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
486  
487 +  /*
488 +  pass = false;
489    if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
490 <      && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_FORPFID_CUT_BIN0)   pass = true;
490 >      && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN0)   pass = true;
491    else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
492 <           && fabs(mu->Eta()) <= 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_FORPFID_CUT_BIN1)  pass = true;
492 >           && fabs(mu->Eta()) <= 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN1)  pass = true;
493    else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
494 <           && fabs(mu->Eta()) > 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_FORPFID_CUT_BIN2)  pass = true;
494 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN2)  pass = true;
495    else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
496 <           && fabs(mu->Eta()) > 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_FORPFID_CUT_BIN3)  pass = true;
497 <  else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon()
498 <            && mvaval >= MUON_ISOMVA_FORPFID_CUT_BIN4)
499 <    pass = true;
496 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN3)  pass = true;
497 >  else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN4)  pass = true;
498 >  else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN5)  pass = true;
499 >  if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
500 >  */
501 >
502 >  //  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
503 >
504 >  status.isoMVA = mvaval;
505 >
506 >  if(ctrl.debug)  {
507 >    cout << "returning status : " << hex << status.getStatus() << dec << endl;
508 >    cout << "MVAVAL : " << status.isoMVA << endl;
509 >  }
510 >  return status;
511  
512 + }
513  
548  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
514  
515 <  if( pass ) {
516 <    status.orStatus(SelectionStatus::LOOSEISO);
517 <    status.orStatus(SelectionStatus::TIGHTISO);
515 > //--------------------------------------------------------------------------------------------------
516 > SelectionStatus muonIsoMVASelection(ControlFlags &ctrl,
517 >                                    const Muon * mu,
518 >                                    const Vertex * vtx,
519 >                                    const Array<PFCandidate> * fPFCandidates,
520 >                                    float rho,
521 >                                    //const Array<PileupEnergyDensity> * fPUEnergyDensity,
522 >                                    MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
523 >                                    vector<const Muon*> muonsToVeto,
524 >                                    vector<const Electron*> electronsToVeto)
525 > //--------------------------------------------------------------------------------------------------
526 > // hacked version
527 > {
528 >
529 >  if( ctrl.debug ) {
530 >    cout << "muonIsoMVASelection :: muons to veto " << endl;
531 >    for( int i=0; i<muonsToVeto.size(); i++ ) {
532 >      const Muon * vmu = muonsToVeto[i];
533 >      cout << "\tpt: " << vmu->Pt()
534 >           << "\teta: " << vmu->Eta()
535 >           << "\tphi: " << vmu->Phi()
536 >           << endl;
537 >    }
538 >    cout << "muonIsoMVASelection :: electrson to veto " << endl;
539 >    for( int i=0; i<electronsToVeto.size(); i++ ) {
540 >      const Electron * vel = electronsToVeto[i];
541 >      cout << "\tpt: " << vel->Pt()
542 >           << "\teta: " << vel->Eta()
543 >           << "\tphi: " << vel->Phi()
544 >           << endl;
545 >    }
546 >  }
547 >  bool failiso=false;
548 >
549 >  //
550 >  // tmp iso rings
551 >  //
552 >  Double_t tmpChargedIso_DR0p0To0p1  = 0;
553 >  Double_t tmpChargedIso_DR0p1To0p2  = 0;
554 >  Double_t tmpChargedIso_DR0p2To0p3  = 0;
555 >  Double_t tmpChargedIso_DR0p3To0p4  = 0;
556 >  Double_t tmpChargedIso_DR0p4To0p5  = 0;
557 >  Double_t tmpChargedIso_DR0p5To0p7  = 0;
558 >
559 >  Double_t tmpGammaIso_DR0p0To0p1  = 0;
560 >  Double_t tmpGammaIso_DR0p1To0p2  = 0;
561 >  Double_t tmpGammaIso_DR0p2To0p3  = 0;
562 >  Double_t tmpGammaIso_DR0p3To0p4  = 0;
563 >  Double_t tmpGammaIso_DR0p4To0p5  = 0;
564 >  Double_t tmpGammaIso_DR0p5To0p7  = 0;
565 >
566 >  Double_t tmpNeutralHadronIso_DR0p0To0p1  = 0;
567 >  Double_t tmpNeutralHadronIso_DR0p1To0p2  = 0;
568 >  Double_t tmpNeutralHadronIso_DR0p2To0p3  = 0;
569 >  Double_t tmpNeutralHadronIso_DR0p3To0p4  = 0;
570 >  Double_t tmpNeutralHadronIso_DR0p4To0p5  = 0;
571 >  Double_t tmpNeutralHadronIso_DR0p5To0p7  = 0;
572 >
573 >        
574 >
575 >  //
576 >  // final rings for the MVA
577 >  //
578 >  Double_t fChargedIso_DR0p0To0p1;
579 >  Double_t fChargedIso_DR0p1To0p2;
580 >  Double_t fChargedIso_DR0p2To0p3;
581 >  Double_t fChargedIso_DR0p3To0p4;
582 >  Double_t fChargedIso_DR0p4To0p5;
583 >  Double_t fChargedIso_DR0p5To0p7;
584 >
585 >  Double_t fGammaIso_DR0p0To0p1;
586 >  Double_t fGammaIso_DR0p1To0p2;
587 >  Double_t fGammaIso_DR0p2To0p3;
588 >  Double_t fGammaIso_DR0p3To0p4;
589 >  Double_t fGammaIso_DR0p4To0p5;
590 >  Double_t fGammaIso_DR0p5To0p7;
591 >
592 >  Double_t fNeutralHadronIso_DR0p0To0p1;
593 >  Double_t fNeutralHadronIso_DR0p1To0p2;
594 >  Double_t fNeutralHadronIso_DR0p2To0p3;
595 >  Double_t fNeutralHadronIso_DR0p3To0p4;
596 >  Double_t fNeutralHadronIso_DR0p4To0p5;
597 >  Double_t fNeutralHadronIso_DR0p5To0p7;
598 >
599 >
600 >  //
601 >  //Loop over PF Candidates
602 >  //
603 >  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
604 >
605 >    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
606 >
607 >    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
608 >
609 >    Double_t deta = (mu->Eta() - pf->Eta());
610 >    Double_t dphi = MathUtils::DeltaPhi(Double_t(mu->Phi()),Double_t(pf->Phi()));
611 >    Double_t dr = MathUtils::DeltaR(mu->Phi(),mu->Eta(), pf->Phi(), pf->Eta());
612 >    if (dr > 1.0) continue;
613 >
614 >    if (pf->HasTrackerTrk() && (pf->TrackerTrk() == mu->TrackerTrk()) ) continue;
615 >
616 >    //
617 >    // Lepton Footprint Removal
618 >    //
619 >    Bool_t IsLeptonFootprint = kFALSE;
620 >    if (dr < 1.0) {
621 >
622 >      //
623 >      // Check for electrons
624 >      //
625 >      for (Int_t q=0; q < electronsToVeto.size(); ++q) {
626 >        const Electron *tmpele = electronsToVeto[q];
627 >        // 4l electron
628 >        if( pf->HasTrackerTrk() ) {
629 >          if( pf->TrackerTrk() == tmpele->TrackerTrk() )
630 >            IsLeptonFootprint = kTRUE;
631 >        }
632 >        if( pf->HasGsfTrk() ) {
633 >          if( pf->GsfTrk() == tmpele->GsfTrk() )
634 >            IsLeptonFootprint = kTRUE;
635 >        }
636 >        // PF charged
637 >        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479
638 >            && MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015)
639 >          IsLeptonFootprint = kTRUE;
640 >        // PF gamma
641 >        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
642 >            && MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.08)
643 >          IsLeptonFootprint = kTRUE;
644 >      } // loop over electrons
645 >      
646 >      /* KH - commented for sync
647 >      //
648 >      // Check for muons
649 >      //
650 >      for (Int_t q=0; q < muonsToVeto.size(); ++q) {
651 >        const Muon *tmpmu = muonsToVeto[q];
652 >        // 4l muon
653 >        if( pf->HasTrackerTrk() ) {
654 >          if( pf->TrackerTrk() == tmpmu->TrackerTrk() )
655 >            IsLeptonFootprint = kTRUE;
656 >        }
657 >        // PF charged
658 >        if (pf->Charge() != 0 && MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01)
659 >          IsLeptonFootprint = kTRUE;
660 >      } // loop over muons
661 >      */
662 >
663 >    if (IsLeptonFootprint)
664 >      continue;
665 >
666 >    //
667 >    // Charged Iso Rings
668 >    //
669 >    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
670 >
671 >      if( dr < 0.01 ) continue; // only for muon iso mva?
672 >      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
673 >
674 > //       if( pf->HasTrackerTrk() ) {
675 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
676 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
677 > //                            << abs(pf->TrackerTrk()->DzCorrected(vtx)) << " "
678 > //                            << dr << endl;
679 > //       }
680 > //       if( pf->HasGsfTrk() ) {
681 > //      if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
682 > //      if( ctrl.debug ) cout << "charged:: " << pf->PFType() << " " << pf->Pt() << " "
683 > //                            << abs(pf->GsfTrk()->DzCorrected(vtx)) << " "
684 > //                            << dr << endl;
685 > //       }
686 >
687 >      // Footprint Veto
688 >      if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
689 >      if (dr >= 0.1 && dr < 0.2) tmpChargedIso_DR0p1To0p2 += pf->Pt();
690 >      if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
691 >      if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
692 >      if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
693 >      if (dr >= 0.5 && dr < 0.7) tmpChargedIso_DR0p5To0p7 += pf->Pt();
694 >    }
695 >
696 >    //
697 >    // Gamma Iso Rings
698 >    //
699 >    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
700 >      if (dr < 0.1) tmpGammaIso_DR0p0To0p1 += pf->Pt();
701 >      if (dr >= 0.1 && dr < 0.2) tmpGammaIso_DR0p1To0p2 += pf->Pt();
702 >      if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
703 >      if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
704 >      if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
705 >      if (dr >= 0.5 && dr < 0.7) tmpGammaIso_DR0p5To0p7 += pf->Pt();
706 >    }
707 >
708 >    //
709 >    // Other Neutral Iso Rings
710 >    //
711 >    else {
712 >      if (dr < 0.1) tmpNeutralHadronIso_DR0p0To0p1 += pf->Pt();
713 >      if (dr >= 0.1 && dr < 0.2) tmpNeutralHadronIso_DR0p1To0p2 += pf->Pt();
714 >      if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
715 >      if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
716 >      if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
717 >      if (dr >= 0.5 && dr < 0.7) tmpNeutralHadronIso_DR0p5To0p7 += pf->Pt();
718 >    }
719 >
720 >    }
721 >
722 >  }
723 >
724 >  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/mu->Pt(), 2.5);
725 >  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/mu->Pt(), 2.5);
726 >  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/mu->Pt(), 2.5);
727 >  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/mu->Pt(), 2.5);
728 >  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/mu->Pt(), 2.5);
729 >
730 >
731 > //   double rho = 0;
732 > //   if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
733 > //     rho = fPUEnergyDensity->At(0)->Rho();
734 > //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
735 > //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
736 >  
737 >  // WARNING!!!!  
738 >  // hardcode for sync ...
739 >  EffectiveAreaVersion = muT.kMuEAData2011;
740 >  // WARNING!!!!  
741 >
742 >
743 >  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
744 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p0To0p1,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
745 >                                 ,2.5)
746 >                             ,0.0);
747 >  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
748 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p1To0p2,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
749 >                                 ,2.5)
750 >                             ,0.0);
751 >  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
752 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p2To0p3,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
753 >                                 ,2.5)
754 >                             ,0.0);
755 >  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
756 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p3To0p4,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
757 >                                 ,2.5)
758 >                             ,0.0);
759 >  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
760 >                                  -rho*muT.MuonEffectiveArea(muT.kMuGammaIsoDR0p4To0p5,mu->Eta(),EffectiveAreaVersion))/mu->Pt()
761 >                                 ,2.5)
762 >                             ,0.0);
763 >
764 >
765 >
766 >  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
767 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p0To0p1,
768 >                                                                 mu->Eta(),EffectiveAreaVersion))/mu->Pt()
769 >                                         , 2.5)
770 >                                     , 0.0);
771 >  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
772 >                                            -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p1To0p2,
773 >                                                                   mu->Eta(),EffectiveAreaVersion))/mu->Pt()
774 >                                           , 2.5)
775 >                                       , 0.0);
776 >  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
777 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p2To0p3,
778 >                                                                 mu->Eta(),EffectiveAreaVersion))/mu->Pt()
779 >                                         , 2.5)
780 >                                     , 0.0);
781 >  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
782 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p3To0p4,
783 >                                                                 mu->Eta(), EffectiveAreaVersion))/mu->Pt()
784 >                                         , 2.5)
785 >                                     , 0.0);
786 >  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
787 >                                          -rho*muT.MuonEffectiveArea(muT.kMuNeutralHadronIsoDR0p4To0p5,
788 >                                                                 mu->Eta(), EffectiveAreaVersion))/mu->Pt()
789 >                                         , 2.5)
790 >                                     , 0.0);
791 >
792 >
793 >  double mvaval = muIsoMVA->MVAValue_IsoRings( mu->Pt(),
794 >                                               mu->Eta(),
795 >                                               mu->IsGlobalMuon(),
796 >                                               mu->IsTrackerMuon(),
797 >                                               fChargedIso_DR0p0To0p1,
798 >                                               fChargedIso_DR0p1To0p2,
799 >                                               fChargedIso_DR0p2To0p3,
800 >                                               fChargedIso_DR0p3To0p4,
801 >                                               fChargedIso_DR0p4To0p5,
802 >                                               fGammaIso_DR0p0To0p1,
803 >                                               fGammaIso_DR0p1To0p2,
804 >                                               fGammaIso_DR0p2To0p3,
805 >                                               fGammaIso_DR0p3To0p4,
806 >                                               fGammaIso_DR0p4To0p5,
807 >                                               fNeutralHadronIso_DR0p0To0p1,
808 >                                               fNeutralHadronIso_DR0p1To0p2,
809 >                                               fNeutralHadronIso_DR0p2To0p3,
810 >                                               fNeutralHadronIso_DR0p3To0p4,
811 >                                               fNeutralHadronIso_DR0p4To0p5,
812 >                                               ctrl.debug);
813 >
814 >  SelectionStatus status;
815 >  bool pass;
816 >
817 >  pass = false;
818 >  if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
819 >      && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN0)   pass = true;
820 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
821 >           && fabs(mu->Eta()) <= 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN1)  pass = true;
822 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
823 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN2)  pass = true;
824 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
825 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN3)  pass = true;
826 >  else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN4)  pass = true;
827 >  else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_LOOSE_FORPFID_CUT_BIN5)  pass = true;
828 >  if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
829 >
830 >  /*
831 >  pass = false;
832 >  if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
833 >      && fabs(mu->Eta()) <= 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN0)   pass = true;
834 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
835 >           && fabs(mu->Eta()) <= 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN1)  pass = true;
836 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
837 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() <= 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN2)  pass = true;
838 >  else if( mu->IsGlobalMuon() && mu->IsTrackerMuon()
839 >           && fabs(mu->Eta()) > 1.5 && mu->Pt() > 10 && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN3)  pass = true;
840 >  else if( !(mu->IsGlobalMuon()) && mu->IsTrackerMuon() && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN4)  pass = true;
841 >  else if( mu->IsGlobalMuon() && !(mu->IsTrackerMuon()) && mvaval >= MUON_ISOMVA_TIGHT_FORPFID_CUT_BIN5)  pass = true;
842 >  if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
843 >  */
844 >
845 >  //  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
846 >
847 >  status.isoMVA = mvaval;
848 >
849 >  if(ctrl.debug)  {
850 >    cout << "returning status : " << hex << status.getStatus() << dec << endl;
851 >    cout << "MVAVAL : " << status.isoMVA << endl;
852    }
554  if(ctrl.debug) cout << "returning status : " << hex << status.getStatus() << dec << endl;
853    return status;
854  
855   }
856  
857 +
858   //--------------------------------------------------------------------------------------------------
859   void initMuonIsoMVA() {
860   //--------------------------------------------------------------------------------------------------
861 <  muIsoMVA = new mithep::MuonIDMVA();
861 >  muIsoMVA = new MuonIDMVA();
862    vector<string> weightFiles;
863    weightFiles.push_back("./data/MuonIsoMVAWeights/MuonIsoMVA_BDTG_V0_barrel_lowpt.weights.xml");
864    weightFiles.push_back("./data/MuonIsoMVAWeights/MuonIsoMVA_BDTG_V0_barrel_highpt.weights.xml");
# Line 568 | Line 867 | void initMuonIsoMVA() {
867    weightFiles.push_back("./data/MuonIsoMVAWeights/MuonIsoMVA_BDTG_V0_tracker.weights.xml");
868    weightFiles.push_back("./data/MuonIsoMVAWeights/MuonIsoMVA_BDTG_V0_global.weights.xml");
869    muIsoMVA->Initialize( "MuonIsoMVA",
870 <                        mithep::MuonIDMVA::kIsoRingsV0,
870 >                        MuonIDMVA::kIsoRingsV0,
871                          kTRUE, weightFiles);
872   }
873  
874  
875  
876   //--------------------------------------------------------------------------------------------------
877 + double  muonPFIso04(ControlFlags &ctrl,
878 +                    const Muon * mu,
879 +                    const Vertex * vtx,
880 +                    const Array<PFCandidate> * fPFCandidates,
881 +                    const Array<PileupEnergyDensity> * fPUEnergyDensity,
882 +                    MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
883 +                    vector<const PFCandidate*> photonsToVeto)
884 + //--------------------------------------------------------------------------------------------------
885 + {
886 +
887 +  extern double gChargedIso;  
888 +  extern double  gGammaIso;      
889 +  extern double  gNeutralIso;
890 +
891 +  //
892 +  // final iso
893 +  //
894 +  Double_t fChargedIso  = 0.0;
895 +  Double_t fGammaIso  = 0.0;
896 +  Double_t fNeutralHadronIso  = 0.0;
897 +
898 +  //
899 +  //Loop over PF Candidates
900 +  //
901 +  if(ctrl.debug) cout << "  muonPFIso04(): ----> " << endl;
902 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
903 +
904 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
905 +    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
906 +
907 +    //
908 +    // veto FSR recovered photons
909 +    //
910 +    bool vetoPhoton = false;
911 +    for( int p=0; p<photonsToVeto.size(); p++ ) {
912 +      if( pf == photonsToVeto[p] ) {
913 +        vetoPhoton = true;
914 +        break;
915 +      }
916 +    } if( vetoPhoton ) continue;
917 +    //
918 +    //
919 +    //
920 +
921 +    Double_t deta = (mu->Eta() - pf->Eta());
922 +    Double_t dphi = MathUtils::DeltaPhi(Double_t(mu->Phi()),Double_t(pf->Phi()));
923 +    Double_t dr = MathUtils::DeltaR(mu->Phi(),mu->Eta(), pf->Phi(), pf->Eta());
924 +    if (dr > 0.4) continue;
925 +
926 +    if (pf->HasTrackerTrk() && (pf->TrackerTrk() == mu->TrackerTrk()) ) continue;
927 +
928 +    //
929 +    // Charged Iso
930 +    //
931 +    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
932 +
933 +      //if( dr < 0.01 ) continue; // only for muon iso mva?
934 +      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
935 +      fChargedIso += pf->Pt();
936 +    }
937 +    
938 +    //
939 +    // Gamma Iso
940 +    //
941 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
942 +      // KH, add to sync
943 +      if( pf->Pt() > 0.5 && dr > 0.01)
944 +      fGammaIso += pf->Pt();
945 +    }
946 +    
947 +    //
948 +    // Other Neutrals
949 +    //
950 +    else {
951 +    
952 +      if( pf->Pt() > 0.5  && dr > 0.01)
953 +        fNeutralHadronIso += pf->Pt();
954 +    }
955 +  }
956 +
957 +  double rho=0;
958 +  if( (EffectiveAreaVersion == MuonTools::kMuEAFall11MC) ||
959 +      (EffectiveAreaVersion == MuonTools::kMuEAData2011) ) {
960 +    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25()) ||
961 +          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25())))
962 +      rho = fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25();
963 +    //rho = fPUEnergyDensity->At(0)->Rho();
964 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
965 +    EffectiveAreaVersion  = MuonTools::kMuEAData2011;
966 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
967 +  } else {
968 +    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJetsCentralNeutral()) ||
969 +          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJetsCentralNeutral())))
970 +      rho = fPUEnergyDensity->At(0)->RhoKt6PFJetsCentralNeutral();
971 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
972 +    EffectiveAreaVersion  = MuonTools::kMuEAData2012;
973 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
974 +  }
975 +  if(ctrl.debug) cout << "    rho: " << rho << endl;
976 +
977 +  TLorentzVector  tmpvec;
978 +  tmpvec.SetPtEtaPhiM(mu->Pt(),mu->Eta(),mu->Phi(),mu->Mass());
979 +  for( int p=0; p<photonsToVeto.size(); p++ ) {
980 +    const PFCandidate * pf  = photonsToVeto[p];
981 +    TLorentzVector pfvec;
982 +    pfvec.SetPtEtaPhiM(pf->Pt(),pf->Eta(),pf->Phi(),0.);
983 +    tmpvec += pfvec;
984 +  }
985 +
986 +  double pfIso = fChargedIso + fmax(0.0,(fGammaIso + fNeutralHadronIso
987 +                                        -rho*muT.MuonEffectiveArea(muT.kMuGammaAndNeutralHadronIso04,
988 +                                                                   //tmpvec.Eta(),EffectiveAreaVersion)));
989 +                                                                   mu->Eta(),EffectiveAreaVersion)));
990 +  gChargedIso = fChargedIso;
991 +  gGammaIso   = fGammaIso;
992 +  gNeutralIso = fNeutralHadronIso;
993 +  
994 +  if( ctrl.debug ) {
995 +    cout << "    PFiso: " << pfIso
996 +         << "\tfChargedIso: " << fChargedIso
997 +         << "\tfGammaIso: " << fGammaIso
998 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
999 +         << endl;
1000 +  }
1001 +
1002 +  return pfIso;
1003 + }
1004 +
1005 + //--------------------------------------------------------------------------------------------------
1006 + SelectionStatus muonReferenceIsoSelection(ControlFlags &ctrl,
1007 +                                          const Muon * mu,
1008 +                                          const Vertex * vtx,
1009 +                                          const Array<PFCandidate> * fPFCandidates,
1010 +                                          const Array<PileupEnergyDensity> * fPUEnergyDensity,
1011 +                                          MuonTools::EMuonEffectiveAreaTarget EffectiveAreaVersion,
1012 +                                          vector<const PFCandidate*> photonsToVeto)
1013 + //--------------------------------------------------------------------------------------------------
1014 + {
1015 +  
1016 +  SelectionStatus status;
1017 +
1018 +  double pfIso = muonPFIso04( ctrl, mu, vtx, fPFCandidates, fPUEnergyDensity,
1019 +                              EffectiveAreaVersion, photonsToVeto);
1020 +  status.isoPF04 = pfIso;
1021 +  status.chisoPF04 = gChargedIso;
1022 +  status.gaisoPF04 = gGammaIso;
1023 +  status.neisoPF04 = gNeutralIso;
1024 +
1025 +  bool pass = false;
1026 +  if( (pfIso/mu->Pt()) < MUON_REFERENCE_PFISO_CUT ) pass = true;
1027 +  
1028 +  if( pass ) {
1029 +    status.orStatus(SelectionStatus::LOOSEISO);
1030 +    status.orStatus(SelectionStatus::TIGHTISO);
1031 +  }
1032 +  if(ctrl.debug)
1033 +    cout << "  --> mu relpfIso: " << pfIso/mu->Pt() << ", returning status : " << hex << status.getStatus() << dec << endl;
1034 +  return status;
1035 + }
1036 +
1037 + //--------------------------------------------------------------------------------------------------
1038   SelectionStatus electronIsoMVASelection(ControlFlags &ctrl,
1039 <                                        const mithep::Electron * ele,
1040 <                                        const mithep::Vertex & vtx,
1041 <                                        const mithep::Array<mithep::PFCandidate> * fPFCandidates,
1042 <                                        const mithep::Array<mithep::PileupEnergyDensity> * fPUEnergyDensity,
1043 <                                        mithep::ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
1044 <                                        vector<const mithep::Muon*> muonsToVeto,
1045 <                                        vector<const mithep::Electron*> electronsToVeto)
1039 >                                        const Electron * ele,
1040 >                                        const Vertex * vtx,
1041 >                                        const Array<PFCandidate> * fPFCandidates,
1042 >                                        const Array<PileupEnergyDensity> * fPUEnergyDensity,
1043 >                                        ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
1044 >                                        vector<const Muon*> muonsToVeto,
1045 >                                        vector<const Electron*> electronsToVeto)
1046   //--------------------------------------------------------------------------------------------------
1047   {
1048  
1049    if( ctrl.debug ) {
1050      cout << "electronIsoMVASelection :: muons to veto " << endl;
1051      for( int i=0; i<muonsToVeto.size(); i++ ) {
1052 <      const mithep::Muon * vmu = muonsToVeto[i];
1052 >      const Muon * vmu = muonsToVeto[i];
1053        cout << "\tpt: " << vmu->Pt()
1054             << "\teta: " << vmu->Eta()
1055             << "\tphi: " << vmu->Phi()
# Line 597 | Line 1057 | SelectionStatus electronIsoMVASelection(
1057      }
1058      cout << "electronIsoMVASelection :: electrson to veto " << endl;
1059      for( int i=0; i<electronsToVeto.size(); i++ ) {
1060 <      const mithep::Electron * vel = electronsToVeto[i];
1060 >      const Electron * vel = electronsToVeto[i];
1061        cout << "\tpt: " << vel->Pt()
1062             << "\teta: " << vel->Eta()
1063             << "\tphi: " << vel->Phi()
# Line 616 | Line 1076 | SelectionStatus electronIsoMVASelection(
1076    Double_t tmpChargedIso_DR0p2To0p3  = 0;
1077    Double_t tmpChargedIso_DR0p3To0p4  = 0;
1078    Double_t tmpChargedIso_DR0p4To0p5  = 0;
619  Double_t tmpChargedIso_DR0p5To0p7  = 0;
1079  
1080    Double_t tmpGammaIso_DR0p0To0p1  = 0;
1081    Double_t tmpGammaIso_DR0p1To0p2  = 0;
1082    Double_t tmpGammaIso_DR0p2To0p3  = 0;
1083    Double_t tmpGammaIso_DR0p3To0p4  = 0;
1084    Double_t tmpGammaIso_DR0p4To0p5  = 0;
1085 <  Double_t tmpGammaIso_DR0p5To0p7  = 0;
1085 >
1086  
1087    Double_t tmpNeutralHadronIso_DR0p0To0p1  = 0;
1088    Double_t tmpNeutralHadronIso_DR0p1To0p2  = 0;
1089    Double_t tmpNeutralHadronIso_DR0p2To0p3  = 0;
1090    Double_t tmpNeutralHadronIso_DR0p3To0p4  = 0;
1091    Double_t tmpNeutralHadronIso_DR0p4To0p5  = 0;
633  Double_t tmpNeutralHadronIso_DR0p5To0p7  = 0;
1092  
1093          
1094  
# Line 660 | Line 1118 | SelectionStatus electronIsoMVASelection(
1118    //Loop over PF Candidates
1119    //
1120    for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
1121 <    const mithep::PFCandidate *pf = (mithep::PFCandidate*)((*fPFCandidates)[k]);
1121 >
1122 >    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
1123 >
1124 >    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
1125      Double_t deta = (ele->Eta() - pf->Eta());
1126 <    Double_t dphi = mithep::MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
1127 <    Double_t dr = mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
1128 <    if (dr >= 0.5) continue;
1126 >    Double_t dphi = MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
1127 >    Double_t dr = MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
1128 >    if (dr > 1.0) continue;
1129 >
1130      if(ctrl.debug) {
1131        cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt();
1132 <      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(vtx);
1132 >      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx);
1133        cout << endl;
1134      }
1135  
# Line 682 | Line 1144 | SelectionStatus electronIsoMVASelection(
1144      Bool_t IsLeptonFootprint = kFALSE;
1145      if (dr < 1.0) {
1146  
1147 +
1148        //
1149        // Check for electrons
1150        //
1151 +
1152        for (Int_t q=0; q < electronsToVeto.size(); ++q) {
1153 <        const mithep::Electron *tmpele = electronsToVeto[q];
1153 >        const Electron *tmpele = electronsToVeto[q];
1154 >        double tmpdr = MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta());
1155 >
1156          // 4l electron
1157          if( pf->HasTrackerTrk()  ) {
1158            if( pf->TrackerTrk() == tmpele->TrackerTrk() ) {
# Line 701 | Line 1167 | SelectionStatus electronIsoMVASelection(
1167            }
1168          }
1169          // PF charged
1170 <        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) > 1.479
705 <            && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.015) {
1170 >        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479 && tmpdr < 0.015) {
1171            if( ctrl.debug) cout << "\tcharged trk, dR matches 4L ele ..." << endl;
1172            IsLeptonFootprint = kTRUE;
1173          }
1174          // PF gamma
1175 <        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) > 1.479
1176 <            && mithep::MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta()) < 0.08) {
1175 >        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
1176 >            && tmpdr < 0.08) {
1177            if( ctrl.debug) cout << "\tPF gamma, matches 4L ele ..." << endl;
1178            IsLeptonFootprint = kTRUE;
1179          }
1180        } // loop over electrons
1181 <      
1181 >
1182 >
1183 >      /* KH - comment for sync            
1184        //
1185        // Check for muons
1186        //
1187        for (Int_t q=0; q < muonsToVeto.size(); ++q) {
1188 <        const mithep::Muon *tmpmu = muonsToVeto[q];
1188 >        const Muon *tmpmu = muonsToVeto[q];
1189          // 4l muon
1190          if( pf->HasTrackerTrk() ) {
1191            if (pf->TrackerTrk() == tmpmu->TrackerTrk() ){
# Line 727 | Line 1194 | SelectionStatus electronIsoMVASelection(
1194            }
1195          }
1196          // PF charged
1197 <        if (pf->Charge() != 0 && mithep::MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01) {
1197 >        if (pf->Charge() != 0 && MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01) {
1198            if( ctrl.debug) cout << "\tcharged trk, dR matches 4L mu ..." << endl;
1199            IsLeptonFootprint = kTRUE;
1200          }
1201        } // loop over muons
1202 <
1202 >      */
1203  
1204      if (IsLeptonFootprint)
1205        continue;
# Line 742 | Line 1209 | SelectionStatus electronIsoMVASelection(
1209      //
1210      if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1211  
1212 <      if( pf->HasTrackerTrk() )
1213 <        if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1214 <      if( pf->HasGsfTrk() )
1215 <        if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1212 > //       if( pf->HasGsfTrk() ) {
1213 > //       if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1214 > //       } else if( pf->HasTrackerTrk() ){
1215 > //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1216 > //       }
1217  
1218        // Veto any PFmuon, or PFEle
1219        if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
# Line 762 | Line 1230 | SelectionStatus electronIsoMVASelection(
1230        if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
1231        if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
1232        if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
765      if (dr >= 0.5 && dr < 0.7) tmpChargedIso_DR0p5To0p7 += pf->Pt();
1233  
1234      }
1235  
# Line 771 | Line 1238 | SelectionStatus electronIsoMVASelection(
1238      //
1239      else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1240  
1241 <      if (fabs(ele->SCluster()->Eta()) > 1.479) {
775 <        if (mithep::MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta()) < 0.08) continue;
776 <      }
1241 >      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.08) continue;
1242  
1243        if( ctrl.debug) cout << "gamma:: " << pf->Pt() << " "
1244                             << dr << endl;
# Line 783 | Line 1248 | SelectionStatus electronIsoMVASelection(
1248        if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
1249        if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
1250        if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
786      if (dr >= 0.5 && dr < 0.7) tmpGammaIso_DR0p5To0p7 += pf->Pt();
787
1251      }
1252  
1253      //
# Line 798 | Line 1261 | SelectionStatus electronIsoMVASelection(
1261        if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
1262        if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
1263        if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
801      if (dr >= 0.5 && dr < 0.7) tmpNeutralHadronIso_DR0p5To0p7 += pf->Pt();
1264      }
1265  
1266      }
1267  
1268    }
1269  
1270 <  fChargedIso_DR0p0To0p1   = min((tmpChargedIso_DR0p0To0p1)/ele->Pt(), 2.5);
1271 <  fChargedIso_DR0p1To0p2   = min((tmpChargedIso_DR0p1To0p2)/ele->Pt(), 2.5);
1272 <  fChargedIso_DR0p2To0p3   = min((tmpChargedIso_DR0p2To0p3)/ele->Pt(), 2.5);
1273 <  fChargedIso_DR0p3To0p4   = min((tmpChargedIso_DR0p3To0p4)/ele->Pt(), 2.5);
1274 <  fChargedIso_DR0p4To0p5   = min((tmpChargedIso_DR0p4To0p5)/ele->Pt(), 2.5);
1270 >  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/ele->Pt(), 2.5);
1271 >  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/ele->Pt(), 2.5);
1272 >  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/ele->Pt(), 2.5);
1273 >  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/ele->Pt(), 2.5);
1274 >  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/ele->Pt(), 2.5);
1275 >
1276 >  if(ctrl.debug) {
1277 >    cout << "fChargedIso_DR0p0To0p1 : " << fChargedIso_DR0p0To0p1  << endl;
1278 >    cout << "fChargedIso_DR0p1To0p2 : " << fChargedIso_DR0p1To0p2  << endl;
1279 >    cout << "fChargedIso_DR0p2To0p3 : " << fChargedIso_DR0p2To0p3  << endl;
1280 >    cout << "fChargedIso_DR0p3To0p4 : " << fChargedIso_DR0p3To0p4  << endl;
1281 >    cout << "fChargedIso_DR0p4To0p5 : " << fChargedIso_DR0p4To0p5  << endl;
1282 >  }
1283 >
1284  
1285    double rho = 0;
1286    if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
1287      rho = fPUEnergyDensity->At(0)->Rho();
1288 +  //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
1289 +  //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
1290 +  
1291 +  // WARNING!!!!  
1292 +  // hardcode for sync ...
1293 +  EffectiveAreaVersion = eleT.kEleEAData2011;
1294 +  // WARNING!!!!  
1295  
1296    if( ctrl.debug) {
1297      cout << "RHO: " << rho << endl;
# Line 837 | Line 1315 | SelectionStatus electronIsoMVASelection(
1315           << endl;
1316    }
1317  
1318 <  fGammaIso_DR0p0To0p1 = max(min((tmpGammaIso_DR0p0To0p1
1318 >  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
1319                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p0To0p1,
1320                                                                ele->SCluster()->Eta(),
1321                                                                EffectiveAreaVersion))/ele->Pt()
1322                                   ,2.5)
1323                               ,0.0);
1324 <  fGammaIso_DR0p1To0p2 = max(min((tmpGammaIso_DR0p1To0p2
1324 >  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
1325                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p1To0p2,
1326                                                                ele->SCluster()->Eta(),
1327                                                                EffectiveAreaVersion))/ele->Pt()
1328                                   ,2.5)
1329                               ,0.0);
1330 <  fGammaIso_DR0p2To0p3 = max(min((tmpGammaIso_DR0p2To0p3
1330 >  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
1331                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p2To0p3,
1332                                                                ele->SCluster()->Eta()
1333                                                                ,EffectiveAreaVersion))/ele->Pt()
1334                                   ,2.5)
1335                               ,0.0);
1336 <  fGammaIso_DR0p3To0p4 = max(min((tmpGammaIso_DR0p3To0p4
1336 >  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
1337                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p3To0p4,
1338                                                                ele->SCluster()->Eta(),
1339                                                                EffectiveAreaVersion))/ele->Pt()
1340                                   ,2.5)
1341                               ,0.0);
1342 <  fGammaIso_DR0p4To0p5 = max(min((tmpGammaIso_DR0p4To0p5
1342 >  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
1343                                    -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p4To0p5,
1344                                                                ele->SCluster()->Eta(),
1345                                                                EffectiveAreaVersion))/ele->Pt()
# Line 869 | Line 1347 | SelectionStatus electronIsoMVASelection(
1347                               ,0.0);
1348  
1349  
1350 <  fNeutralHadronIso_DR0p0To0p1 = max(min((tmpNeutralHadronIso_DR0p0To0p1
1350 >  if( ctrl.debug) {
1351 >    cout << "fGammaIso_DR0p0To0p1: " << fGammaIso_DR0p0To0p1 << endl;
1352 >    cout << "fGammaIso_DR0p1To0p2: " << fGammaIso_DR0p1To0p2 << endl;
1353 >    cout << "fGammaIso_DR0p2To0p3: " << fGammaIso_DR0p2To0p3 << endl;
1354 >    cout << "fGammaIso_DR0p3To0p4: " << fGammaIso_DR0p3To0p4 << endl;
1355 >    cout << "fGammaIso_DR0p4To0p5: " << fGammaIso_DR0p4To0p5 << endl;
1356 >  }
1357 >
1358 >  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
1359                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p0To0p1,
1360                                                                   ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1361                                           , 2.5)
1362                                       , 0.0);
1363 <  fNeutralHadronIso_DR0p1To0p2 = max(min((tmpNeutralHadronIso_DR0p1To0p2
1363 >  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
1364                                              -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p1To0p2,
1365                                                                     ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1366                                             , 2.5)
1367                                         , 0.0);
1368 <  fNeutralHadronIso_DR0p2To0p3 = max(min((tmpNeutralHadronIso_DR0p2To0p3
1368 >  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
1369                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p2To0p3,
1370                                                                   ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1371                                           , 2.5)
1372                                       , 0.0);
1373 <  fNeutralHadronIso_DR0p3To0p4 = max(min((tmpNeutralHadronIso_DR0p3To0p4
1373 >  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
1374                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p3To0p4,
1375                                                                   ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
1376                                           , 2.5)
1377                                       , 0.0);
1378 <  fNeutralHadronIso_DR0p4To0p5 = max(min((tmpNeutralHadronIso_DR0p4To0p5
1378 >  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
1379                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p4To0p5,
1380                                                                   ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
1381                                           , 2.5)
1382                                       , 0.0);
1383  
1384 +  if( ctrl.debug) {
1385 +    cout << "fNeutralHadronIso_DR0p0To0p1: " << fNeutralHadronIso_DR0p0To0p1 << endl;
1386 +    cout << "fNeutralHadronIso_DR0p1To0p2: " << fNeutralHadronIso_DR0p1To0p2 << endl;
1387 +    cout << "fNeutralHadronIso_DR0p2To0p3: " << fNeutralHadronIso_DR0p2To0p3 << endl;
1388 +    cout << "fNeutralHadronIso_DR0p3To0p4: " << fNeutralHadronIso_DR0p3To0p4 << endl;
1389 +    cout << "fNeutralHadronIso_DR0p4To0p5: " << fNeutralHadronIso_DR0p4To0p5 << endl;
1390 +  }
1391 +
1392    double mvaval = eleIsoMVA->MVAValue_IsoRings( ele->Pt(),
1393                                                  ele->SCluster()->Eta(),
1394                                                  fChargedIso_DR0p0To0p1,
# Line 915 | Line 1409 | SelectionStatus electronIsoMVASelection(
1409                                                  ctrl.debug);
1410  
1411    SelectionStatus status;
1412 +  status.isoMVA = mvaval;
1413    bool pass = false;
1414  
1415    Int_t subdet = 0;
1416    if (fabs(ele->SCluster()->Eta()) < 0.8) subdet = 0;
1417    else if (fabs(ele->SCluster()->Eta()) < 1.479) subdet = 1;
1418    else subdet = 2;
1419 +
1420    Int_t ptBin = 0;
1421 <  if (ele->Pt() > 10.0) ptBin = 1;
1421 >  if (ele->Pt() >= 10.0) ptBin = 1;
1422    
1423    Int_t MVABin = -1;
1424    if (subdet == 0 && ptBin == 0) MVABin = 0;
# Line 931 | Line 1427 | SelectionStatus electronIsoMVASelection(
1427    if (subdet == 0 && ptBin == 1) MVABin = 3;
1428    if (subdet == 1 && ptBin == 1) MVABin = 4;
1429    if (subdet == 2 && ptBin == 1) MVABin = 5;
934
935  if( MVABin == 0 && mvaval > ELECTRON_ISOMVA_CUT_BIN0 ) pass = true;
936  if( MVABin == 1 && mvaval > ELECTRON_ISOMVA_CUT_BIN1 ) pass = true;
937  if( MVABin == 2 && mvaval > ELECTRON_ISOMVA_CUT_BIN2 ) pass = true;
938  if( MVABin == 3 && mvaval > ELECTRON_ISOMVA_CUT_BIN3 ) pass = true;
939  if( MVABin == 4 && mvaval > ELECTRON_ISOMVA_CUT_BIN4 ) pass = true;
940  if( MVABin == 5 && mvaval > ELECTRON_ISOMVA_CUT_BIN5 ) pass = true;
1430  
1431 <  // pre-selection iso ...
1432 <  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
1431 >  pass = false;
1432 >  if( MVABin == 0 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN0 ) pass = true;
1433 >  if( MVABin == 1 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN1 ) pass = true;
1434 >  if( MVABin == 2 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN2 ) pass = true;
1435 >  if( MVABin == 3 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN3 ) pass = true;
1436 >  if( MVABin == 4 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN4 ) pass = true;
1437 >  if( MVABin == 5 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_OPT_BIN5 ) pass = true;
1438 >  //  pass &= (fChargedIso_DR0p0To0p1 + fChargedIso_DR0p1To0p2 + fChargedIso_DR0p2To0p3 < 0.7);
1439 >  if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
1440 >
1441 > //   pass = false;
1442 > //   if( MVABin == 0 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN0 ) pass = true;
1443 > //   if( MVABin == 1 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN1 ) pass = true;
1444 > //   if( MVABin == 2 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN2 ) pass = true;
1445 > //   if( MVABin == 3 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN3 ) pass = true;
1446 > //   if( MVABin == 4 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN4 ) pass = true;
1447 > //   if( MVABin == 5 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN5 ) pass = true;
1448 > //   if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
1449  
945  if( pass ) {
946    status.orStatus(SelectionStatus::LOOSEISO);
947    status.orStatus(SelectionStatus::TIGHTISO);
948  }
1450    if(ctrl.debug) cout << "returning status : " << hex << status.getStatus() << dec << endl;
1451    return status;
1452 +  
1453 + }
1454 +
1455 +
1456 + //--------------------------------------------------------------------------------------------------
1457 + SelectionStatus electronIsoMVASelection(ControlFlags &ctrl,
1458 +                                        const Electron * ele,
1459 +                                        const Vertex * vtx,
1460 +                                        const Array<PFCandidate> * fPFCandidates,
1461 +                                        float rho,
1462 +                                        //const Array<PileupEnergyDensity> * fPUEnergyDensity,
1463 +                                        ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
1464 +                                        vector<const Muon*> muonsToVeto,
1465 +                                        vector<const Electron*> electronsToVeto)
1466 + //--------------------------------------------------------------------------------------------------
1467 + // hacked version
1468 + {
1469 +  if( ctrl.debug ) {
1470 +    cout << "================> hacked ele Iso MVA <======================" << endl;
1471 +  }
1472 +
1473 +  if( ctrl.debug ) {
1474 +    cout << "electronIsoMVASelection :: muons to veto " << endl;
1475 +    for( int i=0; i<muonsToVeto.size(); i++ ) {
1476 +      const Muon * vmu = muonsToVeto[i];
1477 +      cout << "\tpt: " << vmu->Pt()
1478 +           << "\teta: " << vmu->Eta()
1479 +           << "\tphi: " << vmu->Phi()
1480 +           << endl;
1481 +    }
1482 +    cout << "electronIsoMVASelection :: electrson to veto " << endl;
1483 +    for( int i=0; i<electronsToVeto.size(); i++ ) {
1484 +      const Electron * vel = electronsToVeto[i];
1485 +      cout << "\tpt: " << vel->Pt()
1486 +           << "\teta: " << vel->Eta()
1487 +           << "\tphi: " << vel->Phi()
1488 +           << "\ttrk: " << vel->TrackerTrk()
1489 +           << endl;
1490 +    }
1491 +  }
1492 +
1493 +  bool failiso=false;
1494 +
1495 +  //
1496 +  // tmp iso rings
1497 +  //
1498 +  Double_t tmpChargedIso_DR0p0To0p1  = 0;
1499 +  Double_t tmpChargedIso_DR0p1To0p2  = 0;
1500 +  Double_t tmpChargedIso_DR0p2To0p3  = 0;
1501 +  Double_t tmpChargedIso_DR0p3To0p4  = 0;
1502 +  Double_t tmpChargedIso_DR0p4To0p5  = 0;
1503 +
1504 +  Double_t tmpGammaIso_DR0p0To0p1  = 0;
1505 +  Double_t tmpGammaIso_DR0p1To0p2  = 0;
1506 +  Double_t tmpGammaIso_DR0p2To0p3  = 0;
1507 +  Double_t tmpGammaIso_DR0p3To0p4  = 0;
1508 +  Double_t tmpGammaIso_DR0p4To0p5  = 0;
1509 +
1510 +
1511 +  Double_t tmpNeutralHadronIso_DR0p0To0p1  = 0;
1512 +  Double_t tmpNeutralHadronIso_DR0p1To0p2  = 0;
1513 +  Double_t tmpNeutralHadronIso_DR0p2To0p3  = 0;
1514 +  Double_t tmpNeutralHadronIso_DR0p3To0p4  = 0;
1515 +  Double_t tmpNeutralHadronIso_DR0p4To0p5  = 0;
1516  
1517 +        
1518 +
1519 +  //
1520 +  // final rings for the MVA
1521 +  //
1522 +  Double_t fChargedIso_DR0p0To0p1;
1523 +  Double_t fChargedIso_DR0p1To0p2;
1524 +  Double_t fChargedIso_DR0p2To0p3;
1525 +  Double_t fChargedIso_DR0p3To0p4;
1526 +  Double_t fChargedIso_DR0p4To0p5;
1527 +
1528 +  Double_t fGammaIso_DR0p0To0p1;
1529 +  Double_t fGammaIso_DR0p1To0p2;
1530 +  Double_t fGammaIso_DR0p2To0p3;
1531 +  Double_t fGammaIso_DR0p3To0p4;
1532 +  Double_t fGammaIso_DR0p4To0p5;
1533 +
1534 +  Double_t fNeutralHadronIso_DR0p0To0p1;
1535 +  Double_t fNeutralHadronIso_DR0p1To0p2;
1536 +  Double_t fNeutralHadronIso_DR0p2To0p3;
1537 +  Double_t fNeutralHadronIso_DR0p3To0p4;
1538 +  Double_t fNeutralHadronIso_DR0p4To0p5;
1539 +
1540 +
1541 +  //
1542 +  //Loop over PF Candidates
1543 +  //
1544 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
1545 +
1546 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
1547 +
1548 +    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
1549 +    Double_t deta = (ele->Eta() - pf->Eta());
1550 +    Double_t dphi = MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
1551 +    Double_t dr = MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
1552 +    if (dr > 1.0) continue;
1553 +
1554 +    if(ctrl.debug) {
1555 +      cout << "pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt();
1556 +      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx);
1557 +      cout << endl;
1558 +    }
1559 +
1560 +
1561 +    if ( (pf->HasTrackerTrk() && (pf->TrackerTrk() == ele->TrackerTrk())) ||
1562 +         (pf->HasGsfTrk() && (pf->GsfTrk() == ele->GsfTrk()))) continue;
1563 +    
1564 +
1565 +    //
1566 +    // Lepton Footprint Removal
1567 +    //
1568 +    Bool_t IsLeptonFootprint = kFALSE;
1569 +    if (dr < 1.0) {
1570 +
1571 +
1572 +      //
1573 +      // Check for electrons
1574 +      //
1575 +
1576 +      for (Int_t q=0; q < electronsToVeto.size(); ++q) {
1577 +        const Electron *tmpele = electronsToVeto[q];
1578 +        double tmpdr = MathUtils::DeltaR(tmpele->Phi(),tmpele->Eta(), pf->Phi(), pf->Eta());
1579 +
1580 +        // 4l electron
1581 +        if( pf->HasTrackerTrk()  ) {
1582 +          if( pf->TrackerTrk() == tmpele->TrackerTrk() ) {
1583 +            if( ctrl.debug) cout << "\tcharged tktrk, matches 4L ele ..." << endl;
1584 +            IsLeptonFootprint = kTRUE;
1585 +          }
1586 +        }
1587 +        if( pf->HasGsfTrk()  ) {
1588 +          if( pf->GsfTrk() == tmpele->GsfTrk() ) {
1589 +            if( ctrl.debug) cout << "\tcharged gsftrk, matches 4L ele ..." << endl;
1590 +            IsLeptonFootprint = kTRUE;
1591 +          }
1592 +        }
1593 +        // PF charged
1594 +        if (pf->Charge() != 0 && fabs(tmpele->SCluster()->Eta()) >= 1.479 && tmpdr < 0.015) {
1595 +          if( ctrl.debug) cout << "\tcharged trk, dR matches 4L ele ..." << endl;
1596 +          IsLeptonFootprint = kTRUE;
1597 +        }
1598 +        // PF gamma
1599 +        if (abs(pf->PFType()) == PFCandidate::eGamma && fabs(tmpele->SCluster()->Eta()) >= 1.479
1600 +            && tmpdr < 0.08) {
1601 +          if( ctrl.debug) cout << "\tPF gamma, matches 4L ele ..." << endl;
1602 +          IsLeptonFootprint = kTRUE;
1603 +        }
1604 +      } // loop over electrons
1605 +
1606 +
1607 +      /* KH - comment for sync            
1608 +      //
1609 +      // Check for muons
1610 +      //
1611 +      for (Int_t q=0; q < muonsToVeto.size(); ++q) {
1612 +        const Muon *tmpmu = muonsToVeto[q];
1613 +        // 4l muon
1614 +        if( pf->HasTrackerTrk() ) {
1615 +          if (pf->TrackerTrk() == tmpmu->TrackerTrk() ){
1616 +            if( ctrl.debug) cout << "\tmatches 4L mu ..." << endl;
1617 +            IsLeptonFootprint = kTRUE;
1618 +          }
1619 +        }
1620 +        // PF charged
1621 +        if (pf->Charge() != 0 && MathUtils::DeltaR(tmpmu->Phi(),tmpmu->Eta(), pf->Phi(), pf->Eta()) < 0.01) {
1622 +          if( ctrl.debug) cout << "\tcharged trk, dR matches 4L mu ..." << endl;
1623 +          IsLeptonFootprint = kTRUE;
1624 +        }
1625 +      } // loop over muons
1626 +      */
1627 +
1628 +    if (IsLeptonFootprint)
1629 +      continue;
1630 +
1631 +    //
1632 +    // Charged Iso Rings
1633 +    //
1634 +    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1635 +
1636 + //       if( pf->HasGsfTrk() ) {
1637 + //       if (abs(pf->GsfTrk()->DzCorrected(vtx)) > 0.2) continue;
1638 + //       } else if( pf->HasTrackerTrk() ){
1639 + //      if (abs(pf->TrackerTrk()->DzCorrected(vtx)) > 0.2) continue;
1640 + //       }
1641 +
1642 +      // Veto any PFmuon, or PFEle
1643 +      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) continue;
1644 +
1645 +      // Footprint Veto
1646 +      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.015) continue;
1647 +
1648 +      if( ctrl.debug) cout << "charged:: pt: " << pf->Pt()
1649 +                           << "\ttype: " << pf->PFType()
1650 +                           << "\ttrk: " << pf->TrackerTrk() << endl;
1651 +
1652 +      if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
1653 +      if (dr >= 0.1 && dr < 0.2) tmpChargedIso_DR0p1To0p2 += pf->Pt();
1654 +      if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
1655 +      if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
1656 +      if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
1657 +
1658 +    }
1659 +
1660 +    //
1661 +    // Gamma Iso Rings
1662 +    //
1663 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1664 +
1665 +      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.08) continue;
1666 +
1667 +      if( ctrl.debug) cout << "gamma:: " << pf->Pt() << " "
1668 +                           << dr << endl;
1669 +
1670 +      if (dr < 0.1) tmpGammaIso_DR0p0To0p1 += pf->Pt();
1671 +      if (dr >= 0.1 && dr < 0.2) tmpGammaIso_DR0p1To0p2 += pf->Pt();
1672 +      if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
1673 +      if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
1674 +      if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
1675 +    }
1676 +
1677 +    //
1678 +    // Other Neutral Iso Rings
1679 +    //
1680 +    else {
1681 +      if( ctrl.debug) cout << "neutral:: " << pf->Pt() << " "
1682 +                           << dr << endl;
1683 +      if (dr < 0.1) tmpNeutralHadronIso_DR0p0To0p1 += pf->Pt();
1684 +      if (dr >= 0.1 && dr < 0.2) tmpNeutralHadronIso_DR0p1To0p2 += pf->Pt();
1685 +      if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
1686 +      if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
1687 +      if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
1688 +    }
1689 +
1690 +    }
1691 +
1692 +  }
1693 +
1694 +  fChargedIso_DR0p0To0p1   = fmin((tmpChargedIso_DR0p0To0p1)/ele->Pt(), 2.5);
1695 +  fChargedIso_DR0p1To0p2   = fmin((tmpChargedIso_DR0p1To0p2)/ele->Pt(), 2.5);
1696 +  fChargedIso_DR0p2To0p3   = fmin((tmpChargedIso_DR0p2To0p3)/ele->Pt(), 2.5);
1697 +  fChargedIso_DR0p3To0p4   = fmin((tmpChargedIso_DR0p3To0p4)/ele->Pt(), 2.5);
1698 +  fChargedIso_DR0p4To0p5   = fmin((tmpChargedIso_DR0p4To0p5)/ele->Pt(), 2.5);
1699 +
1700 +  if(ctrl.debug) {
1701 +    cout << "fChargedIso_DR0p0To0p1 : " << fChargedIso_DR0p0To0p1  << endl;
1702 +    cout << "fChargedIso_DR0p1To0p2 : " << fChargedIso_DR0p1To0p2  << endl;
1703 +    cout << "fChargedIso_DR0p2To0p3 : " << fChargedIso_DR0p2To0p3  << endl;
1704 +    cout << "fChargedIso_DR0p3To0p4 : " << fChargedIso_DR0p3To0p4  << endl;
1705 +    cout << "fChargedIso_DR0p4To0p5 : " << fChargedIso_DR0p4To0p5  << endl;
1706 +  }
1707 +
1708 +
1709 +  //  rho=0;
1710 +  //  double rho = 0;
1711 +  //   if (!(isnan(fPUEnergyDensity->At(0)->Rho()) || isinf(fPUEnergyDensity->At(0)->Rho())))
1712 +  //     rho = fPUEnergyDensity->At(0)->Rho();
1713 +  //   if (!(isnan(fPUEnergyDensity->At(0)->RhoLowEta()) || isinf(fPUEnergyDensity->At(0)->RhoLowEta())))
1714 +  //     rho = fPUEnergyDensity->At(0)->RhoLowEta();
1715 +  
1716 +  // WARNING!!!!  
1717 +  // hardcode for sync ...
1718 +  EffectiveAreaVersion = eleT.kEleEAData2011;
1719 +  // WARNING!!!!  
1720 +
1721 +  if( ctrl.debug) {
1722 +    cout << "RHO: " << rho << endl;
1723 +    cout << "eta: " << ele->SCluster()->Eta() << endl;
1724 +    cout << "target: " << EffectiveAreaVersion << endl;
1725 +    cout << "effA 0-1: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p0To0p1,
1726 +                                                       ele->SCluster()->Eta(),
1727 +                                                       EffectiveAreaVersion)
1728 +         << endl;
1729 +    cout << "effA 1-2: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p1To0p2,
1730 +                                                       ele->SCluster()->Eta(),
1731 +                                                       EffectiveAreaVersion)
1732 +         << endl;
1733 +    cout << "effA 2-3: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p2To0p3,
1734 +                                                       ele->SCluster()->Eta(),
1735 +                                                       EffectiveAreaVersion)
1736 +         << endl;
1737 +    cout << "effA 3-4: " << eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p3To0p4,
1738 +                                                       ele->SCluster()->Eta(),
1739 +                                                       EffectiveAreaVersion)
1740 +         << endl;
1741 +  }
1742 +
1743 +  fGammaIso_DR0p0To0p1 = fmax(fmin((tmpGammaIso_DR0p0To0p1
1744 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p0To0p1,
1745 +                                                              ele->SCluster()->Eta(),
1746 +                                                              EffectiveAreaVersion))/ele->Pt()
1747 +                                 ,2.5)
1748 +                             ,0.0);
1749 +  fGammaIso_DR0p1To0p2 = fmax(fmin((tmpGammaIso_DR0p1To0p2
1750 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p1To0p2,
1751 +                                                              ele->SCluster()->Eta(),
1752 +                                                              EffectiveAreaVersion))/ele->Pt()
1753 +                                 ,2.5)
1754 +                             ,0.0);
1755 +  fGammaIso_DR0p2To0p3 = fmax(fmin((tmpGammaIso_DR0p2To0p3
1756 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p2To0p3,
1757 +                                                              ele->SCluster()->Eta()
1758 +                                                              ,EffectiveAreaVersion))/ele->Pt()
1759 +                                 ,2.5)
1760 +                             ,0.0);
1761 +  fGammaIso_DR0p3To0p4 = fmax(fmin((tmpGammaIso_DR0p3To0p4
1762 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p3To0p4,
1763 +                                                              ele->SCluster()->Eta(),
1764 +                                                              EffectiveAreaVersion))/ele->Pt()
1765 +                                 ,2.5)
1766 +                             ,0.0);
1767 +  fGammaIso_DR0p4To0p5 = fmax(fmin((tmpGammaIso_DR0p4To0p5
1768 +                                  -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaIsoDR0p4To0p5,
1769 +                                                              ele->SCluster()->Eta(),
1770 +                                                              EffectiveAreaVersion))/ele->Pt()
1771 +                                 ,2.5)
1772 +                             ,0.0);
1773 +
1774 +
1775 +  if( ctrl.debug) {
1776 +    cout << "fGammaIso_DR0p0To0p1: " << fGammaIso_DR0p0To0p1 << endl;
1777 +    cout << "fGammaIso_DR0p1To0p2: " << fGammaIso_DR0p1To0p2 << endl;
1778 +    cout << "fGammaIso_DR0p2To0p3: " << fGammaIso_DR0p2To0p3 << endl;
1779 +    cout << "fGammaIso_DR0p3To0p4: " << fGammaIso_DR0p3To0p4 << endl;
1780 +    cout << "fGammaIso_DR0p4To0p5: " << fGammaIso_DR0p4To0p5 << endl;
1781 +  }
1782 +
1783 +  fNeutralHadronIso_DR0p0To0p1 = fmax(fmin((tmpNeutralHadronIso_DR0p0To0p1
1784 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p0To0p1,
1785 +                                                                 ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1786 +                                         , 2.5)
1787 +                                     , 0.0);
1788 +  fNeutralHadronIso_DR0p1To0p2 = fmax(fmin((tmpNeutralHadronIso_DR0p1To0p2
1789 +                                            -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p1To0p2,
1790 +                                                                   ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1791 +                                           , 2.5)
1792 +                                       , 0.0);
1793 +  fNeutralHadronIso_DR0p2To0p3 = fmax(fmin((tmpNeutralHadronIso_DR0p2To0p3
1794 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p2To0p3,
1795 +                                                                 ele->SCluster()->Eta(),EffectiveAreaVersion))/ele->Pt()
1796 +                                         , 2.5)
1797 +                                     , 0.0);
1798 +  fNeutralHadronIso_DR0p3To0p4 = fmax(fmin((tmpNeutralHadronIso_DR0p3To0p4
1799 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p3To0p4,
1800 +                                                                 ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
1801 +                                         , 2.5)
1802 +                                     , 0.0);
1803 +  fNeutralHadronIso_DR0p4To0p5 = fmax(fmin((tmpNeutralHadronIso_DR0p4To0p5
1804 +                                          -rho*eleT.ElectronEffectiveArea(eleT.kEleNeutralHadronIsoDR0p4To0p5,
1805 +                                                                 ele->SCluster()->Eta(), EffectiveAreaVersion))/ele->Pt()
1806 +                                         , 2.5)
1807 +                                     , 0.0);
1808 +
1809 +  if( ctrl.debug) {
1810 +    cout << "fNeutralHadronIso_DR0p0To0p1: " << fNeutralHadronIso_DR0p0To0p1 << endl;
1811 +    cout << "fNeutralHadronIso_DR0p1To0p2: " << fNeutralHadronIso_DR0p1To0p2 << endl;
1812 +    cout << "fNeutralHadronIso_DR0p2To0p3: " << fNeutralHadronIso_DR0p2To0p3 << endl;
1813 +    cout << "fNeutralHadronIso_DR0p3To0p4: " << fNeutralHadronIso_DR0p3To0p4 << endl;
1814 +    cout << "fNeutralHadronIso_DR0p4To0p5: " << fNeutralHadronIso_DR0p4To0p5 << endl;
1815 +  }
1816 +
1817 +  double mvaval = eleIsoMVA->MVAValue_IsoRings( ele->Pt(),
1818 +                                                ele->SCluster()->Eta(),
1819 +                                                fChargedIso_DR0p0To0p1,
1820 +                                                fChargedIso_DR0p1To0p2,
1821 +                                                fChargedIso_DR0p2To0p3,
1822 +                                                fChargedIso_DR0p3To0p4,
1823 +                                                fChargedIso_DR0p4To0p5,
1824 +                                                fGammaIso_DR0p0To0p1,
1825 +                                                fGammaIso_DR0p1To0p2,
1826 +                                                fGammaIso_DR0p2To0p3,
1827 +                                                fGammaIso_DR0p3To0p4,
1828 +                                                fGammaIso_DR0p4To0p5,
1829 +                                                fNeutralHadronIso_DR0p0To0p1,
1830 +                                                fNeutralHadronIso_DR0p1To0p2,
1831 +                                                fNeutralHadronIso_DR0p2To0p3,
1832 +                                                fNeutralHadronIso_DR0p3To0p4,
1833 +                                                fNeutralHadronIso_DR0p4To0p5,
1834 +                                                ctrl.debug);
1835 +
1836 +  SelectionStatus status;
1837 +  status.isoMVA = mvaval;
1838 +  bool pass = false;
1839 +
1840 +  Int_t subdet = 0;
1841 +  if (fabs(ele->SCluster()->Eta()) < 0.8) subdet = 0;
1842 +  else if (fabs(ele->SCluster()->Eta()) < 1.479) subdet = 1;
1843 +  else subdet = 2;
1844 +
1845 +  Int_t ptBin = 0;
1846 +  if (ele->Pt() >= 10.0) ptBin = 1;
1847 +  
1848 +  Int_t MVABin = -1;
1849 +  if (subdet == 0 && ptBin == 0) MVABin = 0;
1850 +  if (subdet == 1 && ptBin == 0) MVABin = 1;
1851 +  if (subdet == 2 && ptBin == 0) MVABin = 2;
1852 +  if (subdet == 0 && ptBin == 1) MVABin = 3;
1853 +  if (subdet == 1 && ptBin == 1) MVABin = 4;
1854 +  if (subdet == 2 && ptBin == 1) MVABin = 5;
1855 +
1856 +  pass = false;
1857 +  if( MVABin == 0 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN0 ) pass = true;
1858 +  if( MVABin == 1 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN1 ) pass = true;
1859 +  if( MVABin == 2 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN2 ) pass = true;
1860 +  if( MVABin == 3 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN3 ) pass = true;
1861 +  if( MVABin == 4 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN4 ) pass = true;
1862 +  if( MVABin == 5 && mvaval > ELECTRON_LOOSE_ISOMVA_CUT_BIN5 ) pass = true;
1863 +  if( pass ) status.orStatus(SelectionStatus::LOOSEISO);
1864 +
1865 + //   pass = false;
1866 + //   if( MVABin == 0 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN0 ) pass = true;
1867 + //   if( MVABin == 1 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN1 ) pass = true;
1868 + //   if( MVABin == 2 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN2 ) pass = true;
1869 + //   if( MVABin == 3 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN3 ) pass = true;
1870 + //   if( MVABin == 4 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN4 ) pass = true;
1871 + //   if( MVABin == 5 && mvaval > ELECTRON_TIGHT_ISOMVA_CUT_BIN5 ) pass = true;
1872 + //   if( pass ) status.orStatus(SelectionStatus::TIGHTISO);
1873 +
1874 +  if(ctrl.debug) cout << "returning status : " << hex << status.getStatus() << dec << endl;
1875 +  return status;
1876 +  
1877   }
1878  
1879  
1880   //--------------------------------------------------------------------------------------------------
1881   void initElectronIsoMVA() {
1882   //--------------------------------------------------------------------------------------------------
1883 <  eleIsoMVA = new mithep::ElectronIDMVA();
1883 >  eleIsoMVA = new ElectronIDMVA();
1884    vector<string> weightFiles;
1885    weightFiles.push_back("../MitPhysics/data/ElectronMVAWeights/ElectronIso_BDTG_V0_BarrelPt5To10.weights.xml");
1886    weightFiles.push_back("../MitPhysics/data/ElectronMVAWeights/ElectronIso_BDTG_V0_EndcapPt5To10.weights.xml");
1887    weightFiles.push_back("../MitPhysics/data/ElectronMVAWeights/ElectronIso_BDTG_V0_BarrelPt10ToInf.weights.xml");
1888    weightFiles.push_back("../MitPhysics/data/ElectronMVAWeights/ElectronIso_BDTG_V0_EndcapPt10ToInf.weights.xml");
1889    eleIsoMVA->Initialize( "ElectronIsoMVA",
1890 <                        mithep::ElectronIDMVA::kIsoRingsV0,
1890 >                        ElectronIDMVA::kIsoRingsV0,
1891                          kTRUE, weightFiles);
1892   }
1893 +
1894 +
1895 +
1896 +
1897 + //--------------------------------------------------------------------------------------------------
1898 + float electronPFIso04(ControlFlags &ctrl,
1899 +                      const Electron * ele,
1900 +                      const Vertex * vtx,
1901 +                      const Array<PFCandidate> * fPFCandidates,
1902 +                      const Array<PileupEnergyDensity> * fPUEnergyDensity,
1903 +                      ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
1904 +                      vector<const PFCandidate*> photonsToVeto)        
1905 + //--------------------------------------------------------------------------------------------------
1906 + {
1907 +
1908 +  //
1909 +  // final iso
1910 +  //
1911 +  Double_t fChargedIso = 0.0;
1912 +  Double_t fGammaIso = 0.0;
1913 +  Double_t fNeutralHadronIso = 0.0;
1914 +
1915 +
1916 +  //
1917 +  //Loop over PF Candidates
1918 +  //
1919 +  if(ctrl.debug) cout << "  electronPFIso04(): ----> " << endl;
1920 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
1921 +
1922 +    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
1923 +
1924 +    //
1925 +    // veto FSR recovered photons
1926 +    //
1927 +    bool vetoPhoton = false;
1928 +    for( int p=0; p<photonsToVeto.size(); p++ ) {
1929 +      if( pf == photonsToVeto[p] ) {
1930 +        vetoPhoton = true;
1931 +        break;
1932 +      }
1933 +    } if( vetoPhoton ) continue;
1934 +
1935 +    Double_t deta = (ele->Eta() - pf->Eta());
1936 +    Double_t dphi = MathUtils::DeltaPhi(Double_t(ele->Phi()),Double_t(pf->Phi()));
1937 +    Double_t dr = MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta());
1938 +
1939 +    if (dr > 0.4) continue;
1940 +    if( !(PFnoPUflag[k]) ) continue; // my PF no PU hack
1941 +
1942 +    if(ctrl.debug) {
1943 +      cout << "    pf :: type: " << pf->PFType() << "\tpt: " << pf->Pt() << "\tdR: " << dr;
1944 +      if( pf->HasTrackerTrk() ) cout << "\tdZ: " << pf->TrackerTrk()->DzCorrected(*vtx)
1945 +                                     << "\ttrk: " << pf->HasTrackerTrk()
1946 +                                     << "\tgsf: " << pf->HasGsfTrk();
1947 +      cout << endl;
1948 +    }
1949 +
1950 +    //
1951 +    // sync : I don't think theyre doing this ...
1952 +    //
1953 +    //     if ( (pf->HasTrackerTrk() && (pf->TrackerTrk() == ele->TrackerTrk())) ||
1954 +    //   (pf->HasGsfTrk() && (pf->GsfTrk() == ele->GsfTrk()))) {
1955 +    //       if( ctrl.debug ) cout << "\tskipping, matches to the electron ..."  << endl;
1956 +    //       continue;
1957 +    //     }
1958 +
1959 +
1960 +    //
1961 +    // Lepton Footprint Removal
1962 +    //
1963 +    Bool_t IsLeptonFootprint = kFALSE;
1964 +    if (dr < 1.0) {
1965 +
1966 +
1967 +    //
1968 +    // Charged Iso
1969 +    //
1970 +    if (pf->Charge() != 0 && (pf->HasTrackerTrk()||pf->HasGsfTrk()) ) {
1971 +
1972 +      // Veto any PFmuon, or PFEle
1973 +      if (abs(pf->PFType()) == PFCandidate::eElectron || abs(pf->PFType()) == PFCandidate::eMuon) {
1974 +        if( ctrl.debug ) cout << "    skipping, pf is an ele or mu .." <<endl;
1975 +        continue;
1976 +      }
1977 +
1978 +      // Footprint Veto
1979 +      if (fabs(ele->SCluster()->Eta()) > 1.479 && dr < 0.015) continue;
1980 +
1981 +      if( ctrl.debug) cout << "    charged:: pt: " << pf->Pt()
1982 +                           << "\ttype: " << pf->PFType()
1983 +                           << "\ttrk: " << pf->TrackerTrk() << endl;
1984 +
1985 +      fChargedIso += pf->Pt();
1986 +    }
1987 +
1988 +    //
1989 +    // Gamma Iso
1990 +    //
1991 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
1992 +
1993 +      if (fabs(ele->SCluster()->Eta()) > 1.479) {
1994 +        if (MathUtils::DeltaR(ele->Phi(),ele->Eta(), pf->Phi(), pf->Eta()) < 0.08) continue;
1995 +      }
1996 +
1997 +      assert(ele->HasSuperCluster());
1998 +      if(ele->GsfTrk()->NExpectedHitsInner()>0 && pf->MvaGamma() > 0.99 && pf->HasSCluster() && ele->SCluster() == pf->SCluster())      continue;
1999 +
2000 +
2001 +      if( ctrl.debug) cout << "    gamma:: " << pf->Pt() << " "
2002 +                           << dr << endl;
2003 +      // KH, add to sync
2004 +      //      if( pf->Pt() > 0.5 )
2005 +        fGammaIso += pf->Pt();
2006 +    }
2007 +
2008 +    //
2009 +    // Neutral Iso
2010 +    //
2011 +    else {
2012 +      if( ctrl.debug) cout << "    neutral:: " << pf->Pt() << " "
2013 +                           << dr << endl;
2014 +      // KH, add to sync
2015 +      //      if( pf->Pt() > 0.5 )
2016 +        fNeutralHadronIso += pf->Pt();
2017 +    }
2018 +
2019 +    }
2020 +
2021 +  }
2022 +
2023 +
2024 +  double rho=0;
2025 +  if( (EffectiveAreaVersion == ElectronTools::kEleEAFall11MC) ||
2026 +      (EffectiveAreaVersion == ElectronTools::kEleEAData2011) ) {
2027 +    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25()) ||
2028 +          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25())))
2029 +      rho = fPUEnergyDensity->At(0)->RhoKt6PFJetsForIso25();
2030 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2031 +    EffectiveAreaVersion  = ElectronTools::kEleEAData2011;
2032 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2033 +  } else {
2034 +    if (!(isnan(fPUEnergyDensity->At(0)->RhoKt6PFJets()) ||
2035 +          isinf(fPUEnergyDensity->At(0)->RhoKt6PFJets())))
2036 +      rho = fPUEnergyDensity->At(0)->RhoKt6PFJets();
2037 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2038 +    EffectiveAreaVersion  = ElectronTools::kEleEAData2012;
2039 +    // !!!!!!!!!!!!! TMP HACK FOR SYNC !!!!!!!!!!!!!!!!!!!!!
2040 +  }
2041 +  if(ctrl.debug) cout << "    rho: " << rho << endl;
2042 +
2043 +  double pfIso = fChargedIso + fmax(0.0,(fGammaIso + fNeutralHadronIso
2044 +                                        -rho*eleT.ElectronEffectiveArea(eleT.kEleGammaAndNeutralHadronIso04,
2045 +                                                                   ele->Eta(),EffectiveAreaVersion)));
2046 +
2047 +
2048 +  gChargedIso = fChargedIso;
2049 +  gGammaIso = fGammaIso;
2050 +  gNeutralIso = fNeutralHadronIso;  
2051 +
2052 +  if( ctrl.debug ) {
2053 +    cout << "    PFiso: " << pfIso
2054 +         << "\tfChargedIso: " << fChargedIso
2055 +         << "\tfGammaIso: " << fGammaIso
2056 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2057 +         << endl;
2058 +  }
2059 +
2060 +  return pfIso;
2061 + }
2062 +
2063 + //--------------------------------------------------------------------------------------------------
2064 + SelectionStatus electronReferenceIsoSelection(ControlFlags &ctrl,
2065 +                                              const Electron * ele,
2066 +                                              const Vertex * vtx,
2067 +                                              const Array<PFCandidate> * fPFCandidates,
2068 +                                              const Array<PileupEnergyDensity> * fPUEnergyDensity,
2069 +                                              ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaVersion,
2070 +                                              vector<const PFCandidate*> photonsToVeto)
2071 + //--------------------------------------------------------------------------------------------------
2072 + {
2073 +
2074 +  SelectionStatus status;
2075 +
2076 +  double pfIso = electronPFIso04( ctrl, ele, vtx, fPFCandidates, fPUEnergyDensity,
2077 +                                  EffectiveAreaVersion, photonsToVeto);
2078 +  status.isoPF04 = pfIso;
2079 +  status.chisoPF04 = gChargedIso;
2080 +  status.gaisoPF04 = gGammaIso;
2081 +  status.neisoPF04 = gNeutralIso;
2082 +
2083 +  bool pass = false;
2084 +  if( (pfIso/ele->Pt()) < ELECTRON_REFERENCE_PFISO_CUT ) pass = true;
2085 +
2086 +  if( pass ) {
2087 +    status.orStatus(SelectionStatus::LOOSEISO);
2088 +    status.orStatus(SelectionStatus::TIGHTISO);
2089 +  }
2090 +  if(ctrl.debug)
2091 +    cout << "  --> ele relpfIso: " << pfIso/ele->Pt() << ", returning status : " << hex << status.getStatus() << dec << endl;
2092 +  return status;
2093 + }
2094 +
2095 + //--------------------------------------------------------------------------------------------------
2096 + double  dbetaCorrectedIsoDr03(ControlFlags & ctrl,
2097 +                              const PFCandidate * photon,
2098 +                              const Muon * lepton,
2099 +                              const Array<PFCandidate> * fPFCandidates)
2100 + //--------------------------------------------------------------------------------------------------
2101 + {
2102 +
2103 +  //
2104 +  // final iso
2105 +  //
2106 +  Double_t fChargedIso  = 0.0;
2107 +  Double_t fGammaIso  = 0.0;
2108 +  Double_t fNeutralHadronIso  = 0.0;
2109 +  Double_t fpfPU  = 0.0;
2110 +
2111 +  //
2112 +  // Loop over PF Candidates
2113 +  //
2114 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2115 +
2116 +    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
2117 +    
2118 +    Double_t deta = (photon->Eta() - pf->Eta());
2119 +    Double_t dphi = MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2120 +    Double_t dr = MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2121 +    if (dr > 0.3) continue;
2122 +
2123 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2124 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2125 +        fpfPU += pf->Pt();
2126 +      continue;
2127 +    }
2128 +    
2129 +    //
2130 +    // skip this photon
2131 +    //
2132 +    if( abs(pf->PFType()) == PFCandidate::eGamma &&
2133 +        pf->Et() == photon->Et() ) continue;
2134 +    
2135 +      
2136 +    //
2137 +    // Charged Iso
2138 +    //
2139 +    if (pf->Charge() != 0 ) {
2140 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2141 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2142 +        fChargedIso += pf->Pt();
2143 +    }
2144 +    
2145 +    //
2146 +    // Gamma Iso
2147 +    //
2148 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
2149 +      if( pf->Pt() > 0.5 && dr > 0.01)
2150 +        fGammaIso += pf->Pt();
2151 +    }
2152 +    
2153 +    //
2154 +    // Other Neutrals
2155 +    //
2156 +    else {
2157 +      if( pf->Pt() > 0.5 && dr > 0.01)
2158 +        fNeutralHadronIso += pf->Pt();
2159 +    }
2160 +    
2161 +  }
2162 +  
2163 +  if( ctrl.debug ) {
2164 +    cout << "  ---> photon dbetaIso :: " << endl;
2165 +    cout << "\tfChargedIso: " << fChargedIso
2166 +         << "\tfGammaIso: " << fGammaIso
2167 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2168 +         << "\tfpfPU: " << fpfPU
2169 +         << endl;
2170 +  }
2171 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso - 0.5*fpfPU;
2172 +  return pfIso/photon->Pt();
2173 + }
2174 +
2175 +
2176 + //--------------------------------------------------------------------------------------------------
2177 + double  dbetaCorrectedIsoDr03(ControlFlags & ctrl,
2178 +                              const PFCandidate * photon,
2179 +                              const Electron * lepton,
2180 +                              const Array<PFCandidate> * fPFCandidates)
2181 + //--------------------------------------------------------------------------------------------------
2182 + {
2183 +
2184 +  //
2185 +  // final iso
2186 +  //
2187 +  Double_t fChargedIso  = 0.0;
2188 +  Double_t fGammaIso  = 0.0;
2189 +  Double_t fNeutralHadronIso  = 0.0;
2190 +  Double_t fpfPU  = 0.0;
2191 +
2192 +  //
2193 +  // Loop over PF Candidates
2194 +  //
2195 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2196 +
2197 +    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
2198 +    
2199 +    Double_t deta = (photon->Eta() - pf->Eta());
2200 +    Double_t dphi = MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2201 +    Double_t dr = MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2202 +    if (dr > 0.3) continue;
2203 +
2204 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2205 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2206 +        fpfPU += pf->Pt();
2207 +      continue;
2208 +    }
2209 +    
2210 +    //
2211 +    // skip this photon
2212 +    //
2213 +    if( abs(pf->PFType()) == PFCandidate::eGamma &&
2214 +        pf->Et() == photon->Et() ) continue;
2215 +    
2216 +      
2217 +    //
2218 +    // Charged Iso
2219 +    //
2220 +    if (pf->Charge() != 0 ) {
2221 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2222 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2223 +        fChargedIso += pf->Pt();
2224 +    }
2225 +    
2226 +    //
2227 +    // Gamma Iso
2228 +    //
2229 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
2230 +      if( pf->Pt() > 0.5 && dr > 0.01)
2231 +        fGammaIso += pf->Pt();
2232 +    }
2233 +    
2234 +    //
2235 +    // Other Neutrals
2236 +    //
2237 +    else {
2238 +      if( pf->Pt() > 0.5 && dr > 0.01)
2239 +        fNeutralHadronIso += pf->Pt();
2240 +    }
2241 +    
2242 +  }
2243 +  
2244 +  if( ctrl.debug ) {
2245 +    cout << "  ---> photon dbetaIso :: " << endl;
2246 +    cout << "\tfChargedIso: " << fChargedIso
2247 +         << "\tfGammaIso: " << fGammaIso
2248 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2249 +         << "\tfpfPU: " << fpfPU
2250 +         << endl;
2251 +  }
2252 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso - 0.5*fpfPU;
2253 +  return pfIso/photon->Pt();
2254 + }
2255 +
2256 +
2257 +
2258 +
2259 +
2260 + //--------------------------------------------------------------------------------------------------
2261 + double  nonCorrectedIsoDr03(ControlFlags & ctrl,
2262 +                            const PFCandidate * photon,
2263 +                            const Muon * lepton,
2264 +                            const Array<PFCandidate> * fPFCandidates)
2265 + //--------------------------------------------------------------------------------------------------
2266 + {
2267 +
2268 +  //
2269 +  // final iso
2270 +  //
2271 +  Double_t fChargedIso  = 0.0;
2272 +  Double_t fGammaIso  = 0.0;
2273 +  Double_t fNeutralHadronIso  = 0.0;
2274 +  Double_t fpfPU  = 0.0;
2275 +
2276 +  //
2277 +  // Loop over PF Candidates
2278 +  //
2279 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2280 +
2281 +    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
2282 +
2283 +    Double_t deta = (photon->Eta() - pf->Eta());
2284 +    Double_t dphi = MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2285 +    Double_t dr = MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2286 +    if (dr > 0.3) continue;
2287 +
2288 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2289 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2290 +        fpfPU += pf->Pt();
2291 +      continue;
2292 +    }
2293 +    
2294 +    //
2295 +    // skip this photon
2296 +    //
2297 +    if( abs(pf->PFType()) == PFCandidate::eGamma &&
2298 +        pf->Et() == photon->Et() ) continue;
2299 +    
2300 +      
2301 +    //
2302 +    // Charged Iso
2303 +    //
2304 +    if (pf->Charge() != 0 ) {
2305 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2306 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2307 +        fChargedIso += pf->Pt();
2308 +    }
2309 +    
2310 +    //
2311 +    // Gamma Iso
2312 +    //
2313 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
2314 +      if( pf->Pt() > 0.5 && dr > 0.01)
2315 +        fGammaIso += pf->Pt();
2316 +    }
2317 +    
2318 +    //
2319 +    // Other Neutrals
2320 +    //
2321 +    else {
2322 +      if( pf->Pt() > 0.5 && dr > 0.01)
2323 +        fNeutralHadronIso += pf->Pt();
2324 +    }
2325 +    
2326 +  }
2327 +  
2328 +  if( ctrl.debug ) {
2329 +    cout << "  ---> photon dbetaIso :: " << endl;
2330 +    cout << "\tfChargedIso: " << fChargedIso
2331 +         << "\tfGammaIso: " << fGammaIso
2332 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2333 +         << "\tfpfPU: " << fpfPU
2334 +         << endl;
2335 +  }
2336 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso + fpfPU;
2337 +  return pfIso/photon->Pt();
2338 + }
2339 +
2340 +
2341 +
2342 + //--------------------------------------------------------------------------------------------------
2343 + double  nonCorrectedIsoDr03(ControlFlags & ctrl,
2344 +                            const PFCandidate * photon,
2345 +                            const Electron * lepton,
2346 +                            const Array<PFCandidate> * fPFCandidates)
2347 + //--------------------------------------------------------------------------------------------------
2348 + {
2349 +
2350 +  //
2351 +  // final iso
2352 +  //
2353 +  Double_t fChargedIso  = 0.0;
2354 +  Double_t fGammaIso  = 0.0;
2355 +  Double_t fNeutralHadronIso  = 0.0;
2356 +  Double_t fpfPU  = 0.0;
2357 +
2358 +  //
2359 +  // Loop over PF Candidates
2360 +  //
2361 +  for(int k=0; k<fPFCandidates->GetEntries(); ++k) {
2362 +
2363 +    const PFCandidate *pf = (PFCandidate*)((*fPFCandidates)[k]);
2364 +
2365 +    Double_t deta = (photon->Eta() - pf->Eta());
2366 +    Double_t dphi = MathUtils::DeltaPhi(Double_t(photon->Phi()),Double_t(pf->Phi()));
2367 +    Double_t dr = MathUtils::DeltaR(photon->Phi(),photon->Eta(), pf->Phi(), pf->Eta());
2368 +    if (dr > 0.3) continue;
2369 +
2370 +    if( !(PFnoPUflag[k]) && pf->Charge() != 0 ) {
2371 +      if( pf->Pt() >= 0.2 && dr > 0.01 )
2372 +        fpfPU += pf->Pt();
2373 +      continue;
2374 +    }
2375 +    
2376 +    //
2377 +    // skip this photon
2378 +    //
2379 +    if( abs(pf->PFType()) == PFCandidate::eGamma &&
2380 +        pf->Et() == photon->Et() ) continue;
2381 +    
2382 +      
2383 +    //
2384 +    // Charged Iso
2385 +    //
2386 +    if (pf->Charge() != 0 ) {
2387 +      if( dr > 0.01 && pf->Pt() >= 0.2 &&
2388 +          !(pf->TrackerTrk() == lepton->TrackerTrk()) )
2389 +        fChargedIso += pf->Pt();
2390 +    }
2391 +    
2392 +    //
2393 +    // Gamma Iso
2394 +    //
2395 +    else if (abs(pf->PFType()) == PFCandidate::eGamma) {
2396 +      if( pf->Pt() > 0.5 && dr > 0.01)
2397 +        fGammaIso += pf->Pt();
2398 +    }
2399 +    
2400 +    //
2401 +    // Other Neutrals
2402 +    //
2403 +    else {
2404 +      if( pf->Pt() > 0.5 && dr > 0.01)
2405 +        fNeutralHadronIso += pf->Pt();
2406 +    }
2407 +    
2408 +  }
2409 +  
2410 +  if( ctrl.debug ) {
2411 +    cout << "photon dbetaIso :: " << endl;
2412 +    cout << "\tfChargedIso: " << fChargedIso
2413 +         << "\tfGammaIso: " << fGammaIso
2414 +         << "\tfNeutralHadronIso: " << fNeutralHadronIso
2415 +         << "\tfpfPU: " << fpfPU
2416 +         << endl;
2417 +  }
2418 +  double pfIso = fChargedIso + fGammaIso + fNeutralHadronIso + fpfPU;
2419 +  return pfIso/photon->Pt();
2420 + }
2421 +
2422 +
2423 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines