1 |
#include "MitPhysics/Utils/interface/ElectronIDMVA.h"
|
2 |
#include "MitPhysics/Utils/interface/ElectronTools.h"
|
3 |
#include "MitPhysics/Utils/interface/IsolationTools.h"
|
4 |
#include "MitAna/DataTree/interface/StableData.h"
|
5 |
#include <TFile.h>
|
6 |
#include <TRandom3.h>
|
7 |
#include "TMVA/Tools.h"
|
8 |
#include "TMVA/Reader.h"
|
9 |
|
10 |
|
11 |
ClassImp(mithep::ElectronIDMVA)
|
12 |
|
13 |
using namespace mithep;
|
14 |
|
15 |
//--------------------------------------------------------------------------------------------------
|
16 |
ElectronIDMVA::ElectronIDMVA() :
|
17 |
fMethodname("BDTG method"),
|
18 |
fIsInitialized(kFALSE),
|
19 |
fMVAType(ElectronIDMVA::kUninitialized),
|
20 |
fUseBinnedVersion(kTRUE),
|
21 |
fNMVABins(0),
|
22 |
fTheRhoType(RhoUtilities::DEFAULT)
|
23 |
{
|
24 |
// Constructor.
|
25 |
}
|
26 |
|
27 |
|
28 |
//--------------------------------------------------------------------------------------------------
|
29 |
ElectronIDMVA::~ElectronIDMVA()
|
30 |
{
|
31 |
for(UInt_t i=0; i<fTMVAReader.size(); ++i) {
|
32 |
if (fTMVAReader[i]) delete fTMVAReader[i];
|
33 |
}
|
34 |
}
|
35 |
|
36 |
//--------------------------------------------------------------------------------------------------
|
37 |
void ElectronIDMVA::Initialize( std::string methodName,
|
38 |
std::string weightsfile,
|
39 |
ElectronIDMVA::MVAType type,
|
40 |
RhoUtilities::RhoType theRhoType)
|
41 |
{
|
42 |
|
43 |
std::vector<std::string> tempWeightFileVector;
|
44 |
tempWeightFileVector.push_back(weightsfile);
|
45 |
Initialize(methodName,type,kFALSE,tempWeightFileVector,theRhoType);
|
46 |
}
|
47 |
|
48 |
//--------------------------------------------------------------------------------------------------
|
49 |
void ElectronIDMVA::Initialize( TString methodName,
|
50 |
TString Subdet0Pt10To20Weights ,
|
51 |
TString Subdet1Pt10To20Weights ,
|
52 |
TString Subdet2Pt10To20Weights,
|
53 |
TString Subdet0Pt20ToInfWeights,
|
54 |
TString Subdet1Pt20ToInfWeights,
|
55 |
TString Subdet2Pt20ToInfWeights,
|
56 |
ElectronIDMVA::MVAType type,
|
57 |
RhoUtilities::RhoType theRhoType) {
|
58 |
|
59 |
std::vector<std::string> tempWeightFileVector;
|
60 |
tempWeightFileVector.push_back(std::string(Subdet0Pt10To20Weights.Data()));
|
61 |
tempWeightFileVector.push_back(std::string(Subdet1Pt10To20Weights.Data()));
|
62 |
tempWeightFileVector.push_back(std::string(Subdet2Pt10To20Weights.Data()));
|
63 |
tempWeightFileVector.push_back(std::string(Subdet0Pt20ToInfWeights.Data()));
|
64 |
tempWeightFileVector.push_back(std::string(Subdet1Pt20ToInfWeights.Data()));
|
65 |
tempWeightFileVector.push_back(std::string(Subdet2Pt20ToInfWeights.Data()));
|
66 |
Initialize(std::string(methodName.Data()),type,kTRUE,tempWeightFileVector,theRhoType);
|
67 |
|
68 |
}
|
69 |
|
70 |
|
71 |
//--------------------------------------------------------------------------------------------------
|
72 |
void ElectronIDMVA::Initialize( std::string methodName,
|
73 |
ElectronIDMVA::MVAType type,
|
74 |
Bool_t useBinnedVersion,
|
75 |
std::vector<std::string> weightsfiles,
|
76 |
RhoUtilities::RhoType theRhoType
|
77 |
|
78 |
) {
|
79 |
|
80 |
//clean up first
|
81 |
for (uint i=0;i<fTMVAReader.size(); ++i) {
|
82 |
if (fTMVAReader[i]) delete fTMVAReader[i];
|
83 |
}
|
84 |
fTMVAReader.clear();
|
85 |
|
86 |
//initialize
|
87 |
fIsInitialized = kTRUE;
|
88 |
fMethodname = methodName;
|
89 |
fMVAType = type;
|
90 |
fUseBinnedVersion = useBinnedVersion;
|
91 |
fTheRhoType = theRhoType;
|
92 |
|
93 |
//Define expected number of bins
|
94 |
UInt_t ExpectedNBins = 0;
|
95 |
if (!fUseBinnedVersion) {
|
96 |
ExpectedNBins = 1;
|
97 |
} else if (type == kBaseline
|
98 |
||type == kNoIPInfo
|
99 |
||type == kWithIPInfo
|
100 |
||type == kIDIsoCombined) {
|
101 |
ExpectedNBins = 6;
|
102 |
} else if (type == kIDEGamma2012TrigV0 ||
|
103 |
type == kIDEGamma2012NonTrigV0 ||
|
104 |
type == kIDEGamma2012NonTrigV1 ||
|
105 |
type == kIDHWW2012TrigV0 ||
|
106 |
type == kIDIsoCombinedHWW2012TrigV4
|
107 |
|
108 |
) {
|
109 |
ExpectedNBins = 6;
|
110 |
} else if (type == kIsoRingsV0) {
|
111 |
ExpectedNBins = 4;
|
112 |
}
|
113 |
fNMVABins = ExpectedNBins;
|
114 |
|
115 |
//Check number of weight files given
|
116 |
if (fNMVABins != weightsfiles.size() ) {
|
117 |
std::cout << "Error: Expected Number of bins = " << fNMVABins << " does not equal to weightsfiles.size() = "
|
118 |
<< weightsfiles.size() << std::endl;
|
119 |
assert(fNMVABins == weightsfiles.size());
|
120 |
}
|
121 |
|
122 |
|
123 |
for(UInt_t i=0; i<fNMVABins; ++i) {
|
124 |
TMVA::Reader *tmpTMVAReader = new TMVA::Reader( "!Color:!Silent:Error" );
|
125 |
tmpTMVAReader->SetVerbose(kTRUE);
|
126 |
|
127 |
if (type == kBaseline) {
|
128 |
tmpTMVAReader->AddVariable( "SigmaIEtaIEta", &fMVAVar_EleSigmaIEtaIEta );
|
129 |
tmpTMVAReader->AddVariable( "DEtaIn", &fMVAVar_EleDEtaIn );
|
130 |
tmpTMVAReader->AddVariable( "DPhiIn", &fMVAVar_EleDPhiIn );
|
131 |
tmpTMVAReader->AddVariable( "FBrem", &fMVAVar_EleFBrem );
|
132 |
tmpTMVAReader->AddVariable( "SigmaIPhiIPhi", &fMVAVar_EleSigmaIPhiIPhi );
|
133 |
tmpTMVAReader->AddVariable( "NBrem", &fMVAVar_EleNBrem );
|
134 |
tmpTMVAReader->AddVariable( "OneOverEMinusOneOverP", &fMVAVar_EleOneOverEMinusOneOverP );
|
135 |
}
|
136 |
if (type == kNoIPInfo) {
|
137 |
tmpTMVAReader->AddVariable( "SigmaIEtaIEta", &fMVAVar_EleSigmaIEtaIEta );
|
138 |
tmpTMVAReader->AddVariable( "DEtaIn", &fMVAVar_EleDEtaIn );
|
139 |
tmpTMVAReader->AddVariable( "DPhiIn", &fMVAVar_EleDPhiIn );
|
140 |
tmpTMVAReader->AddVariable( "FBrem", &fMVAVar_EleFBrem );
|
141 |
tmpTMVAReader->AddVariable( "EOverP", &fMVAVar_EleEOverP );
|
142 |
tmpTMVAReader->AddVariable( "ESeedClusterOverPout", &fMVAVar_EleESeedClusterOverPout );
|
143 |
tmpTMVAReader->AddVariable( "SigmaIPhiIPhi", &fMVAVar_EleSigmaIPhiIPhi );
|
144 |
tmpTMVAReader->AddVariable( "NBrem", &fMVAVar_EleNBrem );
|
145 |
tmpTMVAReader->AddVariable( "OneOverEMinusOneOverP", &fMVAVar_EleOneOverEMinusOneOverP );
|
146 |
tmpTMVAReader->AddVariable( "ESeedClusterOverPIn", &fMVAVar_EleESeedClusterOverPIn );
|
147 |
}
|
148 |
if (type == kWithIPInfo) {
|
149 |
tmpTMVAReader->AddVariable( "SigmaIEtaIEta", &fMVAVar_EleSigmaIEtaIEta );
|
150 |
tmpTMVAReader->AddVariable( "DEtaIn", &fMVAVar_EleDEtaIn );
|
151 |
tmpTMVAReader->AddVariable( "DPhiIn", &fMVAVar_EleDPhiIn );
|
152 |
tmpTMVAReader->AddVariable( "D0", &fMVAVar_EleD0 );
|
153 |
tmpTMVAReader->AddVariable( "FBrem", &fMVAVar_EleFBrem );
|
154 |
tmpTMVAReader->AddVariable( "EOverP", &fMVAVar_EleEOverP );
|
155 |
tmpTMVAReader->AddVariable( "ESeedClusterOverPout", &fMVAVar_EleESeedClusterOverPout );
|
156 |
tmpTMVAReader->AddVariable( "SigmaIPhiIPhi", &fMVAVar_EleSigmaIPhiIPhi );
|
157 |
tmpTMVAReader->AddVariable( "NBrem", &fMVAVar_EleNBrem );
|
158 |
tmpTMVAReader->AddVariable( "OneOverEMinusOneOverP", &fMVAVar_EleOneOverEMinusOneOverP );
|
159 |
tmpTMVAReader->AddVariable( "ESeedClusterOverPIn", &fMVAVar_EleESeedClusterOverPIn );
|
160 |
tmpTMVAReader->AddVariable( "IP3d", &fMVAVar_EleIP3d );
|
161 |
tmpTMVAReader->AddVariable( "IP3dSig", &fMVAVar_EleIP3dSig );
|
162 |
}
|
163 |
if (type == kIDIsoCombined) {
|
164 |
tmpTMVAReader->AddVariable( "SigmaIEtaIEta", &fMVAVar_EleSigmaIEtaIEta );
|
165 |
tmpTMVAReader->AddVariable( "DEtaIn", &fMVAVar_EleDEtaIn );
|
166 |
tmpTMVAReader->AddVariable( "DPhiIn", &fMVAVar_EleDPhiIn );
|
167 |
tmpTMVAReader->AddVariable( "D0", &fMVAVar_EleD0 );
|
168 |
tmpTMVAReader->AddVariable( "FBrem", &fMVAVar_EleFBrem );
|
169 |
tmpTMVAReader->AddVariable( "EOverP", &fMVAVar_EleEOverP );
|
170 |
tmpTMVAReader->AddVariable( "ESeedClusterOverPout", &fMVAVar_EleESeedClusterOverPout );
|
171 |
tmpTMVAReader->AddVariable( "SigmaIPhiIPhi", &fMVAVar_EleSigmaIPhiIPhi );
|
172 |
tmpTMVAReader->AddVariable( "OneOverEMinusOneOverP", &fMVAVar_EleOneOverEMinusOneOverP );
|
173 |
tmpTMVAReader->AddVariable( "ESeedClusterOverPIn", &fMVAVar_EleESeedClusterOverPIn );
|
174 |
tmpTMVAReader->AddVariable( "IP3d", &fMVAVar_EleIP3d );
|
175 |
tmpTMVAReader->AddVariable( "IP3dSig", &fMVAVar_EleIP3dSig );
|
176 |
|
177 |
tmpTMVAReader->AddVariable( "GsfTrackChi2OverNdof", &fMVAVar_EleGsfTrackChi2OverNdof );
|
178 |
tmpTMVAReader->AddVariable( "dEtaCalo", &fMVAVar_EledEtaCalo );
|
179 |
tmpTMVAReader->AddVariable( "dPhiCalo", &fMVAVar_EledPhiCalo );
|
180 |
tmpTMVAReader->AddVariable( "R9", &fMVAVar_EleR9 );
|
181 |
tmpTMVAReader->AddVariable( "SCEtaWidth", &fMVAVar_EleSCEtaWidth );
|
182 |
tmpTMVAReader->AddVariable( "SCPhiWidth", &fMVAVar_EleSCPhiWidth );
|
183 |
tmpTMVAReader->AddVariable( "CovIEtaIPhi", &fMVAVar_EleCovIEtaIPhi );
|
184 |
if (i == 2 || i == 5) {
|
185 |
tmpTMVAReader->AddVariable( "PreShowerOverRaw", &fMVAVar_ElePreShowerOverRaw );
|
186 |
}
|
187 |
tmpTMVAReader->AddVariable( "ChargedIso03", &fMVAVar_EleChargedIso03OverPt );
|
188 |
tmpTMVAReader->AddVariable( "NeutralHadronIso03", &fMVAVar_EleNeutralHadronIso03OverPt );
|
189 |
tmpTMVAReader->AddVariable( "GammaIso03", &fMVAVar_EleGammaIso03OverPt );
|
190 |
tmpTMVAReader->AddVariable( "ChargedIso04", &fMVAVar_EleChargedIso04OverPt );
|
191 |
tmpTMVAReader->AddVariable( "NeutralHadronIso04", &fMVAVar_EleNeutralHadronIso04OverPt );
|
192 |
tmpTMVAReader->AddVariable( "GammaIso04", &fMVAVar_EleGammaIso04OverPt );
|
193 |
|
194 |
}
|
195 |
|
196 |
if (type == kIDEGamma2012TrigV0 || type == kIDHWW2012TrigV0) {
|
197 |
// Pure tracking variables
|
198 |
tmpTMVAReader->AddVariable("fbrem", &fMVAVar_EleFBrem);
|
199 |
tmpTMVAReader->AddVariable("kfchi2", &fMVAVar_EleKFTrkChiSqr);
|
200 |
tmpTMVAReader->AddVariable("kfhits", &fMVAVar_EleKFTrkNLayers); //Don't have this in (BAMBU <= 025)
|
201 |
if(type == kIDEGamma2012TrigV0)
|
202 |
tmpTMVAReader->AddVariable("kfhitsall", &fMVAVar_EleKFTrkNHits);
|
203 |
tmpTMVAReader->AddVariable("gsfchi2", &fMVAVar_EleGsfTrackChi2OverNdof);
|
204 |
tmpTMVAReader->AddVariable("deta", &fMVAVar_EleDEtaIn);
|
205 |
tmpTMVAReader->AddVariable("dphi", &fMVAVar_EleDPhiIn);
|
206 |
tmpTMVAReader->AddVariable("detacalo", &fMVAVar_EledEtaCalo);
|
207 |
tmpTMVAReader->AddVariable("see", &fMVAVar_EleSigmaIEtaIEta);
|
208 |
tmpTMVAReader->AddVariable("spp", &fMVAVar_EleSigmaIPhiIPhi);
|
209 |
tmpTMVAReader->AddVariable("etawidth", &fMVAVar_EleSCEtaWidth);
|
210 |
tmpTMVAReader->AddVariable("phiwidth", &fMVAVar_EleSCPhiWidth);
|
211 |
tmpTMVAReader->AddVariable("e1x5e5x5", &fMVAVar_EleE1x5OverE5x5);
|
212 |
tmpTMVAReader->AddVariable("R9", &fMVAVar_EleR9);
|
213 |
tmpTMVAReader->AddVariable("HoE", &fMVAVar_EleHoverE);
|
214 |
tmpTMVAReader->AddVariable("EoP", &fMVAVar_EleEOverP);
|
215 |
tmpTMVAReader->AddVariable("IoEmIoP", &fMVAVar_EleOneOverEMinusOneOverP);
|
216 |
tmpTMVAReader->AddVariable("eleEoPout", &fMVAVar_EleEEleClusterOverPout); //Don't have this in (BAMBU <= 025)
|
217 |
if(type == kIDEGamma2012TrigV0)
|
218 |
tmpTMVAReader->AddVariable("EoPout", &fMVAVar_EleESeedClusterOverPout);
|
219 |
if (i == 2 || i == 5) {
|
220 |
tmpTMVAReader->AddVariable( "PreShowerOverRaw", &fMVAVar_ElePreShowerOverRaw );
|
221 |
}
|
222 |
tmpTMVAReader->AddVariable( "d0", &fMVAVar_EleD0);
|
223 |
tmpTMVAReader->AddVariable( "ip3d", &fMVAVar_EleIP3d);
|
224 |
|
225 |
tmpTMVAReader->AddSpectator("eta", &fMVAVar_EleEta);
|
226 |
tmpTMVAReader->AddSpectator("pt", &fMVAVar_ElePt);
|
227 |
}
|
228 |
|
229 |
if (type == kIDEGamma2012NonTrigV0 ) {
|
230 |
// Pure tracking variables
|
231 |
tmpTMVAReader->AddVariable("fbrem", &fMVAVar_EleFBrem);
|
232 |
tmpTMVAReader->AddVariable("kfchi2", &fMVAVar_EleKFTrkChiSqr);
|
233 |
tmpTMVAReader->AddVariable("kfhitsall", &fMVAVar_EleKFTrkNHits);
|
234 |
tmpTMVAReader->AddVariable("gsfchi2", &fMVAVar_EleGsfTrackChi2OverNdof);
|
235 |
tmpTMVAReader->AddVariable("deta", &fMVAVar_EleDEtaIn);
|
236 |
tmpTMVAReader->AddVariable("dphi", &fMVAVar_EleDPhiIn);
|
237 |
tmpTMVAReader->AddVariable("detacalo", &fMVAVar_EledEtaCalo);
|
238 |
tmpTMVAReader->AddVariable("see", &fMVAVar_EleSigmaIEtaIEta);
|
239 |
tmpTMVAReader->AddVariable("spp", &fMVAVar_EleSigmaIPhiIPhi);
|
240 |
tmpTMVAReader->AddVariable("etawidth", &fMVAVar_EleSCEtaWidth);
|
241 |
tmpTMVAReader->AddVariable("phiwidth", &fMVAVar_EleSCPhiWidth);
|
242 |
tmpTMVAReader->AddVariable("e1x5e5x5", &fMVAVar_EleE1x5OverE5x5);
|
243 |
tmpTMVAReader->AddVariable("R9", &fMVAVar_EleR9);
|
244 |
tmpTMVAReader->AddVariable("HoE", &fMVAVar_EleHoverE);
|
245 |
tmpTMVAReader->AddVariable("EoP", &fMVAVar_EleEOverP);
|
246 |
tmpTMVAReader->AddVariable("IoEmIoP", &fMVAVar_EleOneOverEMinusOneOverP);
|
247 |
tmpTMVAReader->AddVariable("EoPout", &fMVAVar_EleESeedClusterOverPout);
|
248 |
if (i==2 || i==5) {
|
249 |
tmpTMVAReader->AddVariable("PreShowerOverRaw",&fMVAVar_ElePreShowerOverRaw);
|
250 |
}
|
251 |
tmpTMVAReader->AddSpectator("eta", &fMVAVar_EleEta);
|
252 |
tmpTMVAReader->AddSpectator("pt", &fMVAVar_ElePt);
|
253 |
}
|
254 |
|
255 |
if (type == kIDEGamma2012NonTrigV1 ) {
|
256 |
// Pure tracking variables
|
257 |
tmpTMVAReader->AddVariable("fbrem", &fMVAVar_EleFBrem);
|
258 |
tmpTMVAReader->AddVariable("kfchi2", &fMVAVar_EleKFTrkChiSqr);
|
259 |
tmpTMVAReader->AddVariable("kfhits", &fMVAVar_EleKFTrkNLayers);
|
260 |
tmpTMVAReader->AddVariable("gsfchi2", &fMVAVar_EleGsfTrackChi2OverNdof);
|
261 |
tmpTMVAReader->AddVariable("deta", &fMVAVar_EleDEtaIn);
|
262 |
tmpTMVAReader->AddVariable("dphi", &fMVAVar_EleDPhiIn);
|
263 |
tmpTMVAReader->AddVariable("detacalo", &fMVAVar_EledEtaCalo);
|
264 |
tmpTMVAReader->AddVariable("see", &fMVAVar_EleSigmaIEtaIEta);
|
265 |
tmpTMVAReader->AddVariable("spp", &fMVAVar_EleSigmaIPhiIPhi);
|
266 |
tmpTMVAReader->AddVariable("etawidth", &fMVAVar_EleSCEtaWidth);
|
267 |
tmpTMVAReader->AddVariable("phiwidth", &fMVAVar_EleSCPhiWidth);
|
268 |
tmpTMVAReader->AddVariable("e1x5e5x5", &fMVAVar_EleE1x5OverE5x5);
|
269 |
tmpTMVAReader->AddVariable("R9", &fMVAVar_EleR9);
|
270 |
tmpTMVAReader->AddVariable("HoE", &fMVAVar_EleHoverE);
|
271 |
tmpTMVAReader->AddVariable("EoP", &fMVAVar_EleEOverP);
|
272 |
tmpTMVAReader->AddVariable("IoEmIoP", &fMVAVar_EleOneOverEMinusOneOverP);
|
273 |
tmpTMVAReader->AddVariable("eleEoPout", &fMVAVar_EleEEleClusterOverPout);
|
274 |
if (i==2 || i==5) {
|
275 |
tmpTMVAReader->AddVariable("PreShowerOverRaw",&fMVAVar_ElePreShowerOverRaw);
|
276 |
}
|
277 |
tmpTMVAReader->AddSpectator("eta", &fMVAVar_EleEta);
|
278 |
tmpTMVAReader->AddSpectator("pt", &fMVAVar_ElePt);
|
279 |
}
|
280 |
|
281 |
if (type == kIsoRingsV0) {
|
282 |
tmpTMVAReader->AddVariable( "ChargedIso_DR0p0To0p1", &fMVAVar_ChargedIso_DR0p0To0p1 );
|
283 |
tmpTMVAReader->AddVariable( "ChargedIso_DR0p1To0p2", &fMVAVar_ChargedIso_DR0p1To0p2 );
|
284 |
tmpTMVAReader->AddVariable( "ChargedIso_DR0p2To0p3", &fMVAVar_ChargedIso_DR0p2To0p3 );
|
285 |
tmpTMVAReader->AddVariable( "ChargedIso_DR0p3To0p4", &fMVAVar_ChargedIso_DR0p3To0p4 );
|
286 |
tmpTMVAReader->AddVariable( "ChargedIso_DR0p4To0p5", &fMVAVar_ChargedIso_DR0p4To0p5 );
|
287 |
tmpTMVAReader->AddVariable( "GammaIso_DR0p0To0p1", &fMVAVar_GammaIso_DR0p0To0p1 );
|
288 |
tmpTMVAReader->AddVariable( "GammaIso_DR0p1To0p2", &fMVAVar_GammaIso_DR0p1To0p2 );
|
289 |
tmpTMVAReader->AddVariable( "GammaIso_DR0p2To0p3", &fMVAVar_GammaIso_DR0p2To0p3 );
|
290 |
tmpTMVAReader->AddVariable( "GammaIso_DR0p3To0p4", &fMVAVar_GammaIso_DR0p3To0p4 );
|
291 |
tmpTMVAReader->AddVariable( "GammaIso_DR0p4To0p5", &fMVAVar_GammaIso_DR0p4To0p5 );
|
292 |
tmpTMVAReader->AddVariable( "NeutralHadronIso_DR0p0To0p1", &fMVAVar_NeutralHadronIso_DR0p0To0p1 );
|
293 |
tmpTMVAReader->AddVariable( "NeutralHadronIso_DR0p1To0p2", &fMVAVar_NeutralHadronIso_DR0p1To0p2 );
|
294 |
tmpTMVAReader->AddVariable( "NeutralHadronIso_DR0p2To0p3", &fMVAVar_NeutralHadronIso_DR0p2To0p3 );
|
295 |
tmpTMVAReader->AddVariable( "NeutralHadronIso_DR0p3To0p4", &fMVAVar_NeutralHadronIso_DR0p3To0p4 );
|
296 |
tmpTMVAReader->AddVariable( "NeutralHadronIso_DR0p4To0p5", &fMVAVar_NeutralHadronIso_DR0p4To0p5 );
|
297 |
tmpTMVAReader->AddSpectator( "eta", &fMVAVar_EleEta );
|
298 |
tmpTMVAReader->AddSpectator( "pt" , &fMVAVar_ElePt );
|
299 |
}
|
300 |
|
301 |
if (type == kIDIsoCombinedHWW2012TrigV4) {
|
302 |
|
303 |
// Pure tracking variables
|
304 |
tmpTMVAReader->AddVariable("fbrem", &fMVAVar_EleFBrem);
|
305 |
tmpTMVAReader->AddVariable("kfchi2", &fMVAVar_EleKFTrkChiSqr);
|
306 |
tmpTMVAReader->AddVariable("kflayers", &fMVAVar_EleKFTrkNLayers);
|
307 |
tmpTMVAReader->AddVariable("gsfchi2", &fMVAVar_EleGsfTrackChi2OverNdof);
|
308 |
|
309 |
// Geometrical matchings
|
310 |
tmpTMVAReader->AddVariable("deta", &fMVAVar_EleDEtaIn);
|
311 |
tmpTMVAReader->AddVariable("dphi", &fMVAVar_EleDPhiIn);
|
312 |
tmpTMVAReader->AddVariable("detacalo", &fMVAVar_EledEtaCalo);
|
313 |
|
314 |
// Pure ECAL -> shower shapes
|
315 |
tmpTMVAReader->AddVariable("see", &fMVAVar_EleSigmaIEtaIEta);
|
316 |
tmpTMVAReader->AddVariable("spp", &fMVAVar_EleSigmaIPhiIPhi);
|
317 |
tmpTMVAReader->AddVariable("etawidth", &fMVAVar_EleSCEtaWidth);
|
318 |
tmpTMVAReader->AddVariable("phiwidth", &fMVAVar_EleSCPhiWidth);
|
319 |
tmpTMVAReader->AddVariable("OneMinusSeedE1x5OverE5x5", &fMVAVar_EleOneMinusE1x5OverE5x5);
|
320 |
tmpTMVAReader->AddVariable("R9", &fMVAVar_EleR9);
|
321 |
|
322 |
// Energy matching
|
323 |
tmpTMVAReader->AddVariable("HoE", &fMVAVar_EleHoverE);
|
324 |
tmpTMVAReader->AddVariable("EoP", &fMVAVar_EleEOverP);
|
325 |
tmpTMVAReader->AddVariable("IoEmIoP", &fMVAVar_EleOneOverEMinusOneOverP);
|
326 |
tmpTMVAReader->AddVariable("EEleoPout", &fMVAVar_EleEEleClusterOverPout);
|
327 |
if(i == 2 || i == 5) {
|
328 |
tmpTMVAReader->AddVariable("PreShowerOverRaw",&fMVAVar_ElePreShowerOverRaw);
|
329 |
}
|
330 |
|
331 |
// IP
|
332 |
tmpTMVAReader->AddVariable("d0", &fMVAVar_EleD0);
|
333 |
tmpTMVAReader->AddVariable("ip3d", &fMVAVar_EleIP3d);
|
334 |
|
335 |
//isolation variables
|
336 |
tmpTMVAReader->AddVariable( "ChargedIso_DR0p0To0p1", &fMVAVar_ChargedIso_DR0p0To0p1 );
|
337 |
tmpTMVAReader->AddVariable( "ChargedIso_DR0p1To0p2", &fMVAVar_ChargedIso_DR0p1To0p2 );
|
338 |
tmpTMVAReader->AddVariable( "ChargedIso_DR0p2To0p3", &fMVAVar_ChargedIso_DR0p2To0p3 );
|
339 |
tmpTMVAReader->AddVariable( "ChargedIso_DR0p3To0p4", &fMVAVar_ChargedIso_DR0p3To0p4 );
|
340 |
tmpTMVAReader->AddVariable( "ChargedIso_DR0p4To0p5", &fMVAVar_ChargedIso_DR0p4To0p5 );
|
341 |
tmpTMVAReader->AddVariable( "GammaIso_DR0p0To0p1", &fMVAVar_GammaIso_DR0p0To0p1 );
|
342 |
tmpTMVAReader->AddVariable( "GammaIso_DR0p1To0p2", &fMVAVar_GammaIso_DR0p1To0p2 );
|
343 |
tmpTMVAReader->AddVariable( "GammaIso_DR0p2To0p3", &fMVAVar_GammaIso_DR0p2To0p3 );
|
344 |
tmpTMVAReader->AddVariable( "GammaIso_DR0p3To0p4", &fMVAVar_GammaIso_DR0p3To0p4 );
|
345 |
tmpTMVAReader->AddVariable( "GammaIso_DR0p4To0p5", &fMVAVar_GammaIso_DR0p4To0p5 );
|
346 |
tmpTMVAReader->AddVariable( "NeutralHadronIso_DR0p0To0p1", &fMVAVar_NeutralHadronIso_DR0p0To0p1 );
|
347 |
tmpTMVAReader->AddVariable( "NeutralHadronIso_DR0p1To0p2", &fMVAVar_NeutralHadronIso_DR0p1To0p2 );
|
348 |
tmpTMVAReader->AddVariable( "NeutralHadronIso_DR0p2To0p3", &fMVAVar_NeutralHadronIso_DR0p2To0p3 );
|
349 |
tmpTMVAReader->AddVariable( "NeutralHadronIso_DR0p3To0p4", &fMVAVar_NeutralHadronIso_DR0p3To0p4 );
|
350 |
tmpTMVAReader->AddVariable( "NeutralHadronIso_DR0p4To0p5", &fMVAVar_NeutralHadronIso_DR0p4To0p5 );
|
351 |
tmpTMVAReader->AddVariable( "rho", &fMVAVar_Rho );
|
352 |
|
353 |
//spectators
|
354 |
tmpTMVAReader->AddSpectator("eta", &fMVAVar_EleEta);
|
355 |
tmpTMVAReader->AddSpectator("pt", &fMVAVar_ElePt);
|
356 |
|
357 |
}
|
358 |
|
359 |
|
360 |
tmpTMVAReader->BookMVA(fMethodname , weightsfiles[i] );
|
361 |
std::cout << "MVABin " << i << " : MethodName = " << fMethodname
|
362 |
<< " , type == " << type << " , "
|
363 |
<< "Load weights file : " << weightsfiles[i]
|
364 |
<< std::endl;
|
365 |
fTMVAReader.push_back(tmpTMVAReader);
|
366 |
|
367 |
}
|
368 |
std::cout << "Electron ID MVA Completed\n";
|
369 |
}
|
370 |
|
371 |
|
372 |
//--------------------------------------------------------------------------------------------------
|
373 |
UInt_t ElectronIDMVA::GetMVABin( double eta, double pt) const {
|
374 |
|
375 |
//Default is to return the first bin
|
376 |
uint bin = 0;
|
377 |
|
378 |
//return the first bin if not using binned version
|
379 |
if (!fUseBinnedVersion) return 0;
|
380 |
|
381 |
if (fMVAType == ElectronIDMVA::kBaseline
|
382 |
||fMVAType == ElectronIDMVA::kNoIPInfo
|
383 |
||fMVAType == ElectronIDMVA::kWithIPInfo
|
384 |
||fMVAType == ElectronIDMVA::kIDIsoCombined) {
|
385 |
if (pt < 20 && fabs(eta) < 1.0) bin = 0;
|
386 |
if (pt < 20 && fabs(eta) >= 1.0 && fabs(eta) < 1.479) bin = 1;
|
387 |
if (pt < 20 && fabs(eta) >= 1.479) bin = 2;
|
388 |
if (pt >= 20 && fabs(eta) < 1.0) bin = 3;
|
389 |
if (pt >= 20 && fabs(eta) >= 1.0 && fabs(eta) < 1.479) bin = 4;
|
390 |
if (pt >= 20 && fabs(eta) >= 1.479) bin = 5;
|
391 |
}
|
392 |
|
393 |
if (fMVAType == ElectronIDMVA::kIsoRingsV0) {
|
394 |
if (pt < 10 && fabs(eta) < 1.479) bin = 0;
|
395 |
if (pt < 10 && fabs(eta) >= 1.479) bin = 1;
|
396 |
if (pt >= 10 && fabs(eta) < 1.479) bin = 2;
|
397 |
if (pt >= 10 && fabs(eta) >= 1.479) bin = 3;
|
398 |
}
|
399 |
|
400 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV0 ||
|
401 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1) {
|
402 |
bin = 0;
|
403 |
if (pt < 10 && fabs(eta) < 0.8) bin = 0;
|
404 |
if (pt < 10 && fabs(eta) >= 0.8 && fabs(eta) < 1.479 ) bin = 1;
|
405 |
if (pt < 10 && fabs(eta) >= 1.479) bin = 2;
|
406 |
if (pt >= 10 && fabs(eta) < 0.8) bin = 3;
|
407 |
if (pt >= 10 && fabs(eta) >= 0.8 && fabs(eta) < 1.479 ) bin = 4;
|
408 |
if (pt >= 10 && fabs(eta) >= 1.479) bin = 5;
|
409 |
}
|
410 |
|
411 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012TrigV0 ||
|
412 |
fMVAType == ElectronIDMVA::kIDHWW2012TrigV0 ||
|
413 |
fMVAType == ElectronIDMVA::kIDIsoCombinedHWW2012TrigV4
|
414 |
) {
|
415 |
bin = 0;
|
416 |
if (pt < 20 && fabs(eta) < 0.8) bin = 0;
|
417 |
if (pt < 20 && fabs(eta) >= 0.8 && fabs(eta) < 1.479 ) bin = 1;
|
418 |
if (pt < 20 && fabs(eta) >= 1.479) bin = 2;
|
419 |
if (pt >= 20 && fabs(eta) < 0.8) bin = 3;
|
420 |
if (pt >= 20 && fabs(eta) >= 0.8 && fabs(eta) < 1.479 ) bin = 4;
|
421 |
if (pt >= 20 && fabs(eta) >= 1.479) bin = 5;
|
422 |
}
|
423 |
|
424 |
return bin;
|
425 |
}
|
426 |
|
427 |
|
428 |
|
429 |
//--------------------------------------------------------------------------------------------------
|
430 |
Double_t ElectronIDMVA::MVAValue(Double_t ElePt , Double_t EleEta,
|
431 |
Double_t EleSigmaIEtaIEta,
|
432 |
Double_t EleDEtaIn,
|
433 |
Double_t EleDPhiIn,
|
434 |
Double_t EleHoverE,
|
435 |
Double_t EleD0,
|
436 |
Double_t EleDZ,
|
437 |
Double_t EleFBrem,
|
438 |
Double_t EleEOverP,
|
439 |
Double_t EleESeedClusterOverPout,
|
440 |
Double_t EleSigmaIPhiIPhi,
|
441 |
Double_t EleNBrem,
|
442 |
Double_t EleOneOverEMinusOneOverP,
|
443 |
Double_t EleESeedClusterOverPIn,
|
444 |
Double_t EleIP3d,
|
445 |
Double_t EleIP3dSig
|
446 |
) {
|
447 |
|
448 |
if (!fIsInitialized) {
|
449 |
std::cout << "Error: ElectronIDMVA not properly initialized.\n";
|
450 |
return -9999;
|
451 |
}
|
452 |
|
453 |
//set all input variables
|
454 |
fMVAVar_EleSigmaIEtaIEta = EleSigmaIEtaIEta;
|
455 |
fMVAVar_EleDEtaIn = EleDEtaIn;
|
456 |
fMVAVar_EleDPhiIn = EleDPhiIn;
|
457 |
fMVAVar_EleHoverE = EleHoverE;
|
458 |
fMVAVar_EleD0 = EleD0;
|
459 |
fMVAVar_EleDZ = EleDZ;
|
460 |
fMVAVar_EleFBrem = EleFBrem;
|
461 |
fMVAVar_EleEOverP = EleEOverP;
|
462 |
fMVAVar_EleESeedClusterOverPout = EleESeedClusterOverPout;
|
463 |
fMVAVar_EleSigmaIPhiIPhi = EleSigmaIPhiIPhi;
|
464 |
fMVAVar_EleNBrem = EleNBrem;
|
465 |
fMVAVar_EleOneOverEMinusOneOverP = EleOneOverEMinusOneOverP;
|
466 |
fMVAVar_EleESeedClusterOverPIn = EleESeedClusterOverPIn;
|
467 |
fMVAVar_EleIP3d = EleIP3d;
|
468 |
fMVAVar_EleIP3dSig = EleIP3dSig;
|
469 |
|
470 |
Double_t mva = -9999;
|
471 |
TMVA::Reader *reader = 0;
|
472 |
reader = fTMVAReader[GetMVABin( EleEta, ElePt)];
|
473 |
|
474 |
mva = reader->EvaluateMVA( fMethodname );
|
475 |
|
476 |
return mva;
|
477 |
}
|
478 |
|
479 |
//--------------------------------------------------------------------------------------------------
|
480 |
Double_t ElectronIDMVA::MVAValue(Double_t ElePt , Double_t EleEta, Double_t PileupEnergyDensity,
|
481 |
Double_t EleSigmaIEtaIEta,
|
482 |
Double_t EleDEtaIn,
|
483 |
Double_t EleDPhiIn,
|
484 |
Double_t EleHoverE,
|
485 |
Double_t EleD0,
|
486 |
Double_t EleDZ,
|
487 |
Double_t EleFBrem,
|
488 |
Double_t EleEOverP,
|
489 |
Double_t EleESeedClusterOverPout,
|
490 |
Double_t EleSigmaIPhiIPhi,
|
491 |
Double_t EleNBrem,
|
492 |
Double_t EleOneOverEMinusOneOverP,
|
493 |
Double_t EleESeedClusterOverPIn,
|
494 |
Double_t EleIP3d,
|
495 |
Double_t EleIP3dSig,
|
496 |
Double_t EleGsfTrackChi2OverNdof,
|
497 |
Double_t EledEtaCalo,
|
498 |
Double_t EledPhiCalo,
|
499 |
Double_t EleR9,
|
500 |
Double_t EleSCEtaWidth,
|
501 |
Double_t EleSCPhiWidth,
|
502 |
Double_t EleCovIEtaIPhi,
|
503 |
Double_t ElePreShowerOverRaw,
|
504 |
Double_t EleChargedIso03,
|
505 |
Double_t EleNeutralHadronIso03,
|
506 |
Double_t EleGammaIso03,
|
507 |
Double_t EleChargedIso04,
|
508 |
Double_t EleNeutralHadronIso04,
|
509 |
Double_t EleGammaIso04,
|
510 |
Bool_t printDebug
|
511 |
) {
|
512 |
|
513 |
if (!fIsInitialized) {
|
514 |
std::cout << "Error: ElectronIDMVA not properly initialized.\n";
|
515 |
return -9999;
|
516 |
}
|
517 |
|
518 |
Double_t Rho = 0;
|
519 |
if (!(TMath::IsNaN(PileupEnergyDensity) || isinf(PileupEnergyDensity))) Rho = PileupEnergyDensity;
|
520 |
|
521 |
//set all input variables
|
522 |
fMVAVar_EleSigmaIEtaIEta = EleSigmaIEtaIEta;
|
523 |
fMVAVar_EleDEtaIn = EleDEtaIn;
|
524 |
fMVAVar_EleDPhiIn = EleDPhiIn;
|
525 |
fMVAVar_EleHoverE = EleHoverE;
|
526 |
fMVAVar_EleD0 = EleD0;
|
527 |
fMVAVar_EleDZ = EleDZ;
|
528 |
fMVAVar_EleFBrem = EleFBrem;
|
529 |
fMVAVar_EleEOverP = EleEOverP;
|
530 |
fMVAVar_EleESeedClusterOverPout = EleESeedClusterOverPout;
|
531 |
fMVAVar_EleSigmaIPhiIPhi = EleSigmaIPhiIPhi;
|
532 |
fMVAVar_EleNBrem = EleNBrem;
|
533 |
fMVAVar_EleOneOverEMinusOneOverP = EleOneOverEMinusOneOverP;
|
534 |
fMVAVar_EleESeedClusterOverPIn = EleESeedClusterOverPIn;
|
535 |
fMVAVar_EleIP3d = EleIP3d;
|
536 |
fMVAVar_EleIP3dSig = EleIP3dSig;
|
537 |
fMVAVar_EleGsfTrackChi2OverNdof = EleGsfTrackChi2OverNdof;
|
538 |
fMVAVar_EledEtaCalo = EledEtaCalo;
|
539 |
fMVAVar_EledPhiCalo = EledPhiCalo;
|
540 |
fMVAVar_EleR9 = EleR9;
|
541 |
fMVAVar_EleSCEtaWidth = EleSCEtaWidth;
|
542 |
fMVAVar_EleSCPhiWidth = EleSCPhiWidth;
|
543 |
fMVAVar_EleCovIEtaIPhi = EleCovIEtaIPhi;
|
544 |
fMVAVar_ElePreShowerOverRaw = ElePreShowerOverRaw;
|
545 |
fMVAVar_EleChargedIso03OverPt
|
546 |
= (EleChargedIso03
|
547 |
- Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleChargedIso03, EleEta)) / ElePt;
|
548 |
fMVAVar_EleNeutralHadronIso03OverPt
|
549 |
= (EleNeutralHadronIso03
|
550 |
- Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleNeutralHadronIso03, EleEta)
|
551 |
+ Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleNeutralHadronIso007,EleEta)) / ElePt;
|
552 |
fMVAVar_EleGammaIso03OverPt
|
553 |
= (EleGammaIso03
|
554 |
- Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleGammaIso03, EleEta)
|
555 |
+ Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleGammaIsoVetoEtaStrip03,EleEta))/ElePt;
|
556 |
fMVAVar_EleChargedIso04OverPt
|
557 |
= (EleChargedIso04
|
558 |
- Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleChargedIso04, EleEta))/ElePt;
|
559 |
fMVAVar_EleNeutralHadronIso04OverPt
|
560 |
= (EleNeutralHadronIso04
|
561 |
- Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleNeutralHadronIso04, EleEta)
|
562 |
+ Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleNeutralHadronIso007,EleEta))/ElePt;
|
563 |
fMVAVar_EleGammaIso04OverPt
|
564 |
= (EleGammaIso04
|
565 |
- Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleGammaIso04, EleEta)
|
566 |
+ Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleGammaIsoVetoEtaStrip04,EleEta))/ElePt;
|
567 |
|
568 |
|
569 |
|
570 |
|
571 |
Double_t mva = -9999;
|
572 |
TMVA::Reader *reader = 0;
|
573 |
reader = fTMVAReader[GetMVABin( EleEta, ElePt)];
|
574 |
mva = reader->EvaluateMVA( fMethodname );
|
575 |
|
576 |
if (printDebug == kTRUE) {
|
577 |
std::cout << "Debug Electron MVA: "
|
578 |
<< ElePt << " " << EleEta << " " << " --> MVABin " << GetMVABin( EleEta, ElePt) << " : "
|
579 |
<< fMVAVar_EleSigmaIEtaIEta << " "
|
580 |
<< fMVAVar_EleDEtaIn << " "
|
581 |
<< fMVAVar_EleDPhiIn << " "
|
582 |
<< fMVAVar_EleHoverE << " "
|
583 |
<< fMVAVar_EleD0 << " "
|
584 |
<< fMVAVar_EleDZ << " "
|
585 |
<< fMVAVar_EleFBrem << " "
|
586 |
<< fMVAVar_EleEOverP << " "
|
587 |
<< fMVAVar_EleESeedClusterOverPout << " "
|
588 |
<< fMVAVar_EleSigmaIPhiIPhi << " "
|
589 |
<< fMVAVar_EleNBrem << " "
|
590 |
<< fMVAVar_EleOneOverEMinusOneOverP << " "
|
591 |
<< fMVAVar_EleESeedClusterOverPIn << " "
|
592 |
<< fMVAVar_EleIP3d << " "
|
593 |
<< fMVAVar_EleIP3dSig << " "
|
594 |
<< fMVAVar_EleGsfTrackChi2OverNdof << " "
|
595 |
<< fMVAVar_EledEtaCalo << " "
|
596 |
<< fMVAVar_EledPhiCalo << " "
|
597 |
<< fMVAVar_EleR9 << " "
|
598 |
<< fMVAVar_EleSCEtaWidth << " "
|
599 |
<< fMVAVar_EleSCPhiWidth << " "
|
600 |
<< fMVAVar_EleCovIEtaIPhi << " "
|
601 |
<< fMVAVar_ElePreShowerOverRaw << " "
|
602 |
<< fMVAVar_EleChargedIso03OverPt << " "
|
603 |
<< fMVAVar_EleNeutralHadronIso03OverPt << " "
|
604 |
<< fMVAVar_EleGammaIso03OverPt << " "
|
605 |
<< fMVAVar_EleChargedIso04OverPt << " "
|
606 |
<< fMVAVar_EleNeutralHadronIso04OverPt << " "
|
607 |
<< fMVAVar_EleGammaIso04OverPt << " "
|
608 |
<< " === : === "
|
609 |
<< mva
|
610 |
<< std::endl;
|
611 |
}
|
612 |
|
613 |
return mva;
|
614 |
}
|
615 |
|
616 |
Double_t ElectronIDMVA::MVAValue_IsoRings( Double_t ElePt,
|
617 |
Double_t EleSCEta,
|
618 |
Double_t ChargedIso_DR0p0To0p1,
|
619 |
Double_t ChargedIso_DR0p1To0p2,
|
620 |
Double_t ChargedIso_DR0p2To0p3,
|
621 |
Double_t ChargedIso_DR0p3To0p4,
|
622 |
Double_t ChargedIso_DR0p4To0p5,
|
623 |
Double_t GammaIso_DR0p0To0p1,
|
624 |
Double_t GammaIso_DR0p1To0p2,
|
625 |
Double_t GammaIso_DR0p2To0p3,
|
626 |
Double_t GammaIso_DR0p3To0p4,
|
627 |
Double_t GammaIso_DR0p4To0p5,
|
628 |
Double_t NeutralHadronIso_DR0p0To0p1,
|
629 |
Double_t NeutralHadronIso_DR0p1To0p2,
|
630 |
Double_t NeutralHadronIso_DR0p2To0p3,
|
631 |
Double_t NeutralHadronIso_DR0p3To0p4,
|
632 |
Double_t NeutralHadronIso_DR0p4To0p5,
|
633 |
Bool_t printDebug) {
|
634 |
|
635 |
if (fMVAType != ElectronIDMVA::kIsoRingsV0) {
|
636 |
std::cout << "Error: This function is only supported for MVAType == kIsoRingsV0.\n" << std::endl;
|
637 |
assert(kFALSE);
|
638 |
}
|
639 |
|
640 |
fMVAVar_ElePt = ElePt;
|
641 |
fMVAVar_EleEta = EleSCEta;
|
642 |
fMVAVar_ChargedIso_DR0p0To0p1 = ChargedIso_DR0p0To0p1;
|
643 |
fMVAVar_ChargedIso_DR0p1To0p2 = ChargedIso_DR0p1To0p2;
|
644 |
fMVAVar_ChargedIso_DR0p2To0p3 = ChargedIso_DR0p2To0p3;
|
645 |
fMVAVar_ChargedIso_DR0p3To0p4 = ChargedIso_DR0p3To0p4;
|
646 |
fMVAVar_ChargedIso_DR0p4To0p5 = ChargedIso_DR0p4To0p5;
|
647 |
fMVAVar_GammaIso_DR0p0To0p1 = GammaIso_DR0p0To0p1;
|
648 |
fMVAVar_GammaIso_DR0p1To0p2 = GammaIso_DR0p1To0p2;
|
649 |
fMVAVar_GammaIso_DR0p2To0p3 = GammaIso_DR0p2To0p3;
|
650 |
fMVAVar_GammaIso_DR0p3To0p4 = GammaIso_DR0p3To0p4;
|
651 |
fMVAVar_GammaIso_DR0p4To0p5 = GammaIso_DR0p4To0p5;
|
652 |
fMVAVar_NeutralHadronIso_DR0p0To0p1 = NeutralHadronIso_DR0p0To0p1;
|
653 |
fMVAVar_NeutralHadronIso_DR0p1To0p2 = NeutralHadronIso_DR0p1To0p2;
|
654 |
fMVAVar_NeutralHadronIso_DR0p2To0p3 = NeutralHadronIso_DR0p2To0p3;
|
655 |
fMVAVar_NeutralHadronIso_DR0p3To0p4 = NeutralHadronIso_DR0p3To0p4;
|
656 |
fMVAVar_NeutralHadronIso_DR0p4To0p5 = NeutralHadronIso_DR0p4To0p5;
|
657 |
|
658 |
Double_t mva = -9999;
|
659 |
TMVA::Reader *reader = 0;
|
660 |
|
661 |
if (printDebug == kTRUE) {
|
662 |
std::cout <<" -> BIN: " << fMVAVar_EleEta << " " << fMVAVar_ElePt << " : " << GetMVABin( fMVAVar_EleEta , fMVAVar_ElePt) << std::endl;
|
663 |
}
|
664 |
reader = fTMVAReader[GetMVABin( fMVAVar_EleEta , fMVAVar_ElePt)];
|
665 |
mva = reader->EvaluateMVA( fMethodname );
|
666 |
|
667 |
if (printDebug == kTRUE) {
|
668 |
|
669 |
std::cout << "Debug Electron MVA-ISO: ";
|
670 |
std::cout << fMVAVar_ChargedIso_DR0p0To0p1 << " "
|
671 |
<< fMVAVar_ChargedIso_DR0p1To0p2 << " "
|
672 |
<< fMVAVar_ChargedIso_DR0p2To0p3 << " "
|
673 |
<< fMVAVar_ChargedIso_DR0p3To0p4 << " "
|
674 |
<< fMVAVar_ChargedIso_DR0p4To0p5 << " "
|
675 |
<< fMVAVar_GammaIso_DR0p0To0p1 << " "
|
676 |
<< fMVAVar_GammaIso_DR0p1To0p2 << " "
|
677 |
<< fMVAVar_GammaIso_DR0p2To0p3 << " "
|
678 |
<< fMVAVar_GammaIso_DR0p3To0p4 << " "
|
679 |
<< fMVAVar_GammaIso_DR0p4To0p5 << " "
|
680 |
<< fMVAVar_NeutralHadronIso_DR0p0To0p1 << " "
|
681 |
<< fMVAVar_NeutralHadronIso_DR0p1To0p2 << " "
|
682 |
<< fMVAVar_NeutralHadronIso_DR0p2To0p3 << " "
|
683 |
<< fMVAVar_NeutralHadronIso_DR0p3To0p4 << " "
|
684 |
<< fMVAVar_NeutralHadronIso_DR0p4To0p5 << " "
|
685 |
<< std::endl;
|
686 |
std::cout << "MVA: " << mva << " "
|
687 |
<< std::endl;
|
688 |
}
|
689 |
return mva;
|
690 |
}
|
691 |
|
692 |
Double_t ElectronIDMVA::MVAValue_IDNonTrig( Double_t ElePt,
|
693 |
Double_t EleSCEta,
|
694 |
Double_t EleFBrem,
|
695 |
Double_t EleKFTrkChiSqr,
|
696 |
Double_t EleKFTrkNHits,
|
697 |
Double_t EleGsfTrackChi2OverNdof,
|
698 |
Double_t EleDEtaIn,
|
699 |
Double_t EleDPhiIn,
|
700 |
Double_t EledEtaCalo,
|
701 |
Double_t EleSigmaIEtaIEta,
|
702 |
Double_t EleSigmaIPhiIPhi,
|
703 |
Double_t EleSCEtaWidth,
|
704 |
Double_t EleSCPhiWidth,
|
705 |
Double_t EleE1x5OverE5x5,
|
706 |
Double_t EleR9,
|
707 |
Double_t EleHoverE,
|
708 |
Double_t EleEOverP,
|
709 |
Double_t EleOneOverEMinusOneOverP,
|
710 |
Double_t EleESeedClusterOverPout,
|
711 |
Double_t ElePreShowerOverRaw,
|
712 |
Bool_t printDebug) {
|
713 |
|
714 |
if (fMVAType != ElectronIDMVA::kIDEGamma2012NonTrigV0) {
|
715 |
std::cout << "Error: This function is only supported for MVAType == kIDEGamma2012NonTrigV0.\n" << std::endl;
|
716 |
assert(kFALSE);
|
717 |
}
|
718 |
|
719 |
fMVAVar_ElePt = ElePt;
|
720 |
fMVAVar_EleEta = EleSCEta;
|
721 |
fMVAVar_EleFBrem = EleFBrem;
|
722 |
fMVAVar_EleKFTrkChiSqr = EleKFTrkChiSqr;
|
723 |
fMVAVar_EleKFTrkNHits = EleKFTrkNHits;
|
724 |
fMVAVar_EleGsfTrackChi2OverNdof = EleGsfTrackChi2OverNdof;
|
725 |
fMVAVar_EleDEtaIn = EleDEtaIn;
|
726 |
fMVAVar_EleDPhiIn = EleDPhiIn;
|
727 |
fMVAVar_EledEtaCalo = EledEtaCalo;
|
728 |
fMVAVar_EleSigmaIEtaIEta = EleSigmaIEtaIEta;
|
729 |
fMVAVar_EleSigmaIPhiIPhi = EleSigmaIPhiIPhi;
|
730 |
fMVAVar_EleSCEtaWidth = EleSCEtaWidth;
|
731 |
fMVAVar_EleSCPhiWidth = EleSCPhiWidth;
|
732 |
fMVAVar_EleE1x5OverE5x5 = EleE1x5OverE5x5;
|
733 |
fMVAVar_EleR9 = EleR9;
|
734 |
fMVAVar_EleHoverE = EleHoverE;
|
735 |
fMVAVar_EleEOverP = EleEOverP;
|
736 |
fMVAVar_EleOneOverEMinusOneOverP = EleOneOverEMinusOneOverP;
|
737 |
fMVAVar_EleESeedClusterOverPout = EleESeedClusterOverPout;
|
738 |
fMVAVar_ElePreShowerOverRaw = ElePreShowerOverRaw;
|
739 |
|
740 |
Double_t mva = -9999;
|
741 |
TMVA::Reader *reader = 0;
|
742 |
|
743 |
if (printDebug == kTRUE) {
|
744 |
std::cout <<" -> BIN: " << fMVAVar_EleEta << " " << fMVAVar_ElePt << " : " << GetMVABin( fMVAVar_EleEta , fMVAVar_ElePt) << std::endl;
|
745 |
}
|
746 |
reader = fTMVAReader[GetMVABin( fMVAVar_EleEta , fMVAVar_ElePt)];
|
747 |
mva = reader->EvaluateMVA( fMethodname );
|
748 |
|
749 |
if (printDebug == kTRUE) {
|
750 |
std::cout << "Debug Electron MVA: ";
|
751 |
std::cout << " fbrem " << fMVAVar_EleFBrem
|
752 |
<< " kfchi2 " << fMVAVar_EleKFTrkChiSqr
|
753 |
<< " kfhits " << fMVAVar_EleKFTrkNLayers
|
754 |
<< " kfhitsall " << fMVAVar_EleKFTrkNHits
|
755 |
<< " gsfchi2 " << fMVAVar_EleGsfTrackChi2OverNdof
|
756 |
<< " deta " << fMVAVar_EleDEtaIn
|
757 |
<< " dphi " << fMVAVar_EleDPhiIn
|
758 |
<< " detacalo " << fMVAVar_EledEtaCalo
|
759 |
<< " see " << fMVAVar_EleSigmaIEtaIEta
|
760 |
<< " spp " << fMVAVar_EleSigmaIPhiIPhi
|
761 |
<< " etawidth " << fMVAVar_EleSCEtaWidth
|
762 |
<< " phiwidth " << fMVAVar_EleSCPhiWidth
|
763 |
<< " e1x5e5x5 " << fMVAVar_EleE1x5OverE5x5
|
764 |
<< " R9 " << fMVAVar_EleR9
|
765 |
<< " HoE " << fMVAVar_EleHoverE
|
766 |
<< " EoP " << fMVAVar_EleEOverP
|
767 |
<< " IoEmIoP " << fMVAVar_EleOneOverEMinusOneOverP
|
768 |
<< " eleEoPout " << fMVAVar_EleESeedClusterOverPout
|
769 |
<< " EoPout " << fMVAVar_EleESeedClusterOverPout
|
770 |
<< " d0 " << fMVAVar_EleD0
|
771 |
<< " ip3d " << fMVAVar_EleIP3d
|
772 |
<< " eta " << fMVAVar_EleEta
|
773 |
<< " pt " << fMVAVar_ElePt << std::endl;
|
774 |
std::cout << "MVA: " << mva << " "
|
775 |
<< std::endl;
|
776 |
}
|
777 |
return mva;
|
778 |
}
|
779 |
|
780 |
//--------------------------------------------------------------------------------------------------
|
781 |
Double_t ElectronIDMVA::MVAValue(const Electron *ele, const Vertex *vertex,
|
782 |
const PFCandidateCol *PFCands,
|
783 |
const PileupEnergyDensityCol *PileupEnergyDensity,
|
784 |
Double_t intRadius,
|
785 |
Bool_t printDebug) {
|
786 |
|
787 |
if (!fIsInitialized) {
|
788 |
std::cout << "Error: ElectronIDMVA not properly initialized.\n";
|
789 |
return -9999;
|
790 |
}
|
791 |
|
792 |
Double_t Rho = 0;
|
793 |
switch(fTheRhoType) {
|
794 |
case RhoUtilities::MIT_RHO_VORONOI_HIGH_ETA:
|
795 |
Rho = PileupEnergyDensity->At(0)->Rho();
|
796 |
break;
|
797 |
case RhoUtilities::MIT_RHO_VORONOI_LOW_ETA:
|
798 |
Rho = PileupEnergyDensity->At(0)->RhoLowEta();
|
799 |
break;
|
800 |
case RhoUtilities::MIT_RHO_RANDOM_HIGH_ETA:
|
801 |
Rho = PileupEnergyDensity->At(0)->RhoRandom();
|
802 |
break;
|
803 |
case RhoUtilities::MIT_RHO_RANDOM_LOW_ETA:
|
804 |
Rho = PileupEnergyDensity->At(0)->RhoRandomLowEta();
|
805 |
break;
|
806 |
case RhoUtilities::CMS_RHO_RHOKT6PFJETS:
|
807 |
Rho = PileupEnergyDensity->At(0)->RhoKt6PFJets();
|
808 |
break;
|
809 |
default:
|
810 |
// use the old default
|
811 |
Rho = PileupEnergyDensity->At(0)->Rho();
|
812 |
break;
|
813 |
}
|
814 |
|
815 |
//set all input variables
|
816 |
fMVAVar_EleSigmaIEtaIEta = ele->CoviEtaiEta() ;
|
817 |
fMVAVar_EleDEtaIn = ele->DeltaEtaSuperClusterTrackAtVtx();
|
818 |
fMVAVar_EleDPhiIn = ele->DeltaPhiSuperClusterTrackAtVtx();
|
819 |
fMVAVar_EleHoverE = ele->HadronicOverEm();
|
820 |
fMVAVar_EleD0 = ele->BestTrk()->D0Corrected(*vertex);
|
821 |
fMVAVar_EleDZ = ele->BestTrk()->DzCorrected(*vertex);
|
822 |
fMVAVar_EleFBrem = ele->FBrem();
|
823 |
fMVAVar_EleEOverP = ele->ESuperClusterOverP();
|
824 |
fMVAVar_EleESeedClusterOverPout = ele->ESeedClusterOverPout();
|
825 |
if (!TMath::IsNaN(ele->SCluster()->Seed()->CoviPhiiPhi())) fMVAVar_EleSigmaIPhiIPhi = TMath::Sqrt(ele->SCluster()->Seed()->CoviPhiiPhi());
|
826 |
else fMVAVar_EleSigmaIPhiIPhi = ele->CoviEtaiEta();
|
827 |
fMVAVar_EleNBrem = ele->NumberOfClusters() - 1;
|
828 |
fMVAVar_EleOneOverEMinusOneOverP = (1.0/(ele->EcalEnergy())) - 1.0 / ele->BestTrk()->P();
|
829 |
fMVAVar_EleESeedClusterOverPIn = ele->ESeedClusterOverPIn();
|
830 |
fMVAVar_EleIP3d = ele->Ip3dPV();
|
831 |
fMVAVar_EleIP3dSig = ele->Ip3dPVSignificance();
|
832 |
fMVAVar_EleGsfTrackChi2OverNdof = ele->BestTrk()->Chi2() / ele->BestTrk()->Ndof();
|
833 |
fMVAVar_EledEtaCalo = ele->DeltaEtaSeedClusterTrackAtCalo();
|
834 |
fMVAVar_EledPhiCalo = ele->DeltaPhiSeedClusterTrackAtCalo();
|
835 |
fMVAVar_EleR9 = ele->SCluster()->R9();
|
836 |
fMVAVar_EleSCEtaWidth = ele->SCluster()->EtaWidth();
|
837 |
fMVAVar_EleSCPhiWidth = ele->SCluster()->PhiWidth();
|
838 |
fMVAVar_EleCovIEtaIPhi = ele->SCluster()->Seed()->CoviEtaiPhi();
|
839 |
fMVAVar_ElePreShowerOverRaw = ele->SCluster()->PreshowerEnergy() / ele->SCluster()->RawEnergy();
|
840 |
fMVAVar_EleChargedIso03OverPt
|
841 |
= (IsolationTools::PFElectronIsolation(ele, PFCands, vertex, 0.1, 99999, 0.3, intRadius)
|
842 |
- Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleChargedIso03, ele->SCluster()->Eta())) / ele->Pt();
|
843 |
fMVAVar_EleNeutralHadronIso03OverPt
|
844 |
= (IsolationTools::PFElectronIsolation(ele, PFCands, vertex, 0.1, 0.5, 0.3, intRadius, PFCandidate::eNeutralHadron)
|
845 |
- Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleNeutralHadronIso03, ele->SCluster()->Eta())
|
846 |
+ Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleNeutralHadronIso007,ele->SCluster()->Eta())) / ele->Pt();
|
847 |
fMVAVar_EleGammaIso03OverPt
|
848 |
= (IsolationTools::PFElectronIsolation(ele, PFCands, vertex, 0.1, 0.5, 0.3, intRadius, PFCandidate::eGamma)
|
849 |
- Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleGammaIso03, ele->SCluster()->Eta())
|
850 |
+ Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleGammaIsoVetoEtaStrip03,ele->SCluster()->Eta())) / ele->Pt();
|
851 |
fMVAVar_EleChargedIso04OverPt
|
852 |
= (IsolationTools::PFElectronIsolation(ele, PFCands, vertex, 0.1, 99999, 0.4, intRadius)
|
853 |
- Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleChargedIso04, ele->SCluster()->Eta())) / ele->Pt();
|
854 |
fMVAVar_EleNeutralHadronIso04OverPt
|
855 |
= (IsolationTools::PFElectronIsolation(ele, PFCands, vertex, 0.1, 0.5, 0.4, intRadius, PFCandidate::eNeutralHadron)
|
856 |
- Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleNeutralHadronIso04, ele->SCluster()->Eta())
|
857 |
+ Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleNeutralHadronIso007,ele->SCluster()->Eta())) / ele->Pt() ;
|
858 |
fMVAVar_EleGammaIso04OverPt
|
859 |
= (IsolationTools::PFElectronIsolation(ele, PFCands, vertex, 0.1, 0.5, 0.4, intRadius, PFCandidate::eGamma)
|
860 |
- Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleGammaIso04, ele->SCluster()->Eta())
|
861 |
+ Rho * ElectronTools::ElectronEffectiveArea(ElectronTools::kEleGammaIsoVetoEtaStrip04,ele->SCluster()->Eta())) / ele->Pt();
|
862 |
|
863 |
//Additional vars
|
864 |
fMVAVar_EleEEleClusterOverPout = ele->EEleClusterOverPout();
|
865 |
if (ele->TrackerTrk()) {
|
866 |
fMVAVar_EleKFTrkChiSqr = ele->TrackerTrk()->RChi2();
|
867 |
fMVAVar_EleKFTrkNHits = ele->TrackerTrk()->NHits();
|
868 |
} else {
|
869 |
fMVAVar_EleKFTrkChiSqr = -1;
|
870 |
fMVAVar_EleKFTrkNHits = 0;
|
871 |
}
|
872 |
fMVAVar_EleE1x5OverE5x5 = ele->SCluster()->Seed()->E1x5() / ele->SCluster()->Seed()->E5x5();
|
873 |
|
874 |
|
875 |
Double_t mva = -9999;
|
876 |
TMVA::Reader *reader = 0;
|
877 |
reader = fTMVAReader[GetMVABin( ele->SCluster()->Eta(), ele->Pt())];
|
878 |
mva = reader->EvaluateMVA( fMethodname );
|
879 |
|
880 |
if (printDebug == kTRUE) {
|
881 |
std::cout << "Debug Electron MVA: "
|
882 |
<< ele->Pt() << " " << ele->Eta() << " " << ele->Phi() << " : "
|
883 |
<< ele->Pt() << " " << ele->SCluster()->AbsEta() << " --> MVABin " << GetMVABin( ele->SCluster()->Eta(), ele->Pt()) << " : "
|
884 |
<< fMVAVar_EleSigmaIEtaIEta << " "
|
885 |
<< fMVAVar_EleDEtaIn << " "
|
886 |
<< fMVAVar_EleDPhiIn << " "
|
887 |
<< fMVAVar_EleHoverE << " "
|
888 |
<< fMVAVar_EleD0 << " "
|
889 |
<< fMVAVar_EleDZ << " "
|
890 |
<< fMVAVar_EleFBrem << " "
|
891 |
<< fMVAVar_EleEOverP << " "
|
892 |
<< fMVAVar_EleESeedClusterOverPout << " "
|
893 |
<< fMVAVar_EleSigmaIPhiIPhi << " "
|
894 |
<< fMVAVar_EleNBrem << " "
|
895 |
<< fMVAVar_EleOneOverEMinusOneOverP << " "
|
896 |
<< fMVAVar_EleESeedClusterOverPIn << " "
|
897 |
<< fMVAVar_EleIP3d << " "
|
898 |
<< fMVAVar_EleIP3dSig << " "
|
899 |
<< fMVAVar_EleGsfTrackChi2OverNdof << " "
|
900 |
<< fMVAVar_EledEtaCalo << " "
|
901 |
<< fMVAVar_EledPhiCalo << " "
|
902 |
<< fMVAVar_EleR9 << " "
|
903 |
<< fMVAVar_EleSCEtaWidth << " "
|
904 |
<< fMVAVar_EleSCPhiWidth << " "
|
905 |
<< fMVAVar_EleCovIEtaIPhi << " "
|
906 |
<< fMVAVar_ElePreShowerOverRaw << " "
|
907 |
<< fMVAVar_EleKFTrkChiSqr << " "
|
908 |
<< fMVAVar_EleKFTrkNHits << " "
|
909 |
<< fMVAVar_EleE1x5OverE5x5 << " "
|
910 |
<< " ::: "
|
911 |
|
912 |
<< " === : === "
|
913 |
<< mva << " "
|
914 |
<< std::endl;
|
915 |
|
916 |
}
|
917 |
|
918 |
return mva;
|
919 |
}
|
920 |
|
921 |
//--------------------------------------------------------------------------------------------------
|
922 |
Double_t ElectronIDMVA::MVAValue(const Electron *ele, const Vertex *vertex,
|
923 |
Bool_t printDebug) {
|
924 |
|
925 |
if (!fIsInitialized) {
|
926 |
std::cout << "Error: ElectronIDMVA not properly initialized.\n";
|
927 |
return -9999;
|
928 |
}
|
929 |
|
930 |
//set all input variables
|
931 |
fMVAVar_ElePt = ele->Pt();
|
932 |
fMVAVar_EleEta = ele->SCluster()->Eta();
|
933 |
fMVAVar_EleSigmaIEtaIEta = ele->CoviEtaiEta() ;
|
934 |
|
935 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012TrigV0 ||
|
936 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV0 ||
|
937 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1 ||
|
938 |
fMVAType == ElectronIDMVA::kIDHWW2012TrigV0
|
939 |
) {
|
940 |
fMVAVar_EleDEtaIn = TMath::Min(fabs(double(ele->DeltaEtaSuperClusterTrackAtVtx())),0.06); ;
|
941 |
fMVAVar_EleDPhiIn = TMath::Min(fabs(double(ele->DeltaPhiSuperClusterTrackAtVtx())),0.6);
|
942 |
fMVAVar_EleFBrem = TMath::Max(double(ele->FBrem()),-1.0);
|
943 |
fMVAVar_EleEOverP = TMath::Min(double(ele->ESuperClusterOverP()), 20.0);
|
944 |
fMVAVar_EleESeedClusterOverPout = TMath::Min(double(ele->ESeedClusterOverPout()),20.0);
|
945 |
fMVAVar_EleEEleClusterOverPout = TMath::Min(double(ele->EEleClusterOverPout()),20.0);
|
946 |
fMVAVar_EleOneOverEMinusOneOverP = (1.0/(ele->EcalEnergy())) - 1.0 / ele->P();
|
947 |
fMVAVar_EleGsfTrackChi2OverNdof = TMath::Min(double( ele->BestTrk()->Chi2() / ele->BestTrk()->Ndof()),200.0);
|
948 |
fMVAVar_EledEtaCalo = TMath::Min(fabs(double(ele->DeltaEtaSeedClusterTrackAtCalo())),0.2);
|
949 |
fMVAVar_EleR9 = TMath::Min(double(ele->SCluster()->R9()), 5.0);
|
950 |
}
|
951 |
else if (fMVAType == ElectronIDMVA::kIDIsoCombinedHWW2012TrigV4) {
|
952 |
fMVAVar_EleDEtaIn = TMath::Min(fabs(double(ele->DeltaEtaSuperClusterTrackAtVtx())),0.06); ;
|
953 |
fMVAVar_EleDPhiIn = ele->DeltaPhiSuperClusterTrackAtVtx();
|
954 |
fMVAVar_EleFBrem = TMath::Max(double(ele->FBrem()),-1.0);
|
955 |
fMVAVar_EleEOverP = TMath::Min(double(ele->ESuperClusterOverP()), 20.0);
|
956 |
fMVAVar_EleESeedClusterOverPout = TMath::Min(double(ele->ESeedClusterOverPout()),20.0);
|
957 |
fMVAVar_EleEEleClusterOverPout = TMath::Min(double(ele->EEleClusterOverPout()),20.0);
|
958 |
fMVAVar_EleOneOverEMinusOneOverP = (1.0/(ele->EcalEnergy())) - 1.0 / ele->PIn();
|
959 |
fMVAVar_EleGsfTrackChi2OverNdof = TMath::Min(double( ele->BestTrk()->Chi2() / ele->BestTrk()->Ndof()),200.0);
|
960 |
fMVAVar_EledEtaCalo = ele->DeltaEtaSeedClusterTrackAtCalo();
|
961 |
fMVAVar_EleR9 = TMath::Min(double(ele->SCluster()->R9()), 5.0);
|
962 |
}
|
963 |
else {
|
964 |
fMVAVar_EleDEtaIn = ele->DeltaEtaSuperClusterTrackAtVtx();
|
965 |
fMVAVar_EleDPhiIn = ele->DeltaPhiSuperClusterTrackAtVtx();
|
966 |
fMVAVar_EleFBrem = ele->FBrem();
|
967 |
fMVAVar_EleEOverP = ele->ESuperClusterOverP();
|
968 |
fMVAVar_EleESeedClusterOverPout = ele->ESeedClusterOverPout();
|
969 |
fMVAVar_EleOneOverEMinusOneOverP = (1.0/(ele->EcalEnergy())) - 1.0 / ele->BestTrk()->P();
|
970 |
fMVAVar_EleGsfTrackChi2OverNdof = ele->BestTrk()->Chi2() / ele->BestTrk()->Ndof();
|
971 |
fMVAVar_EledEtaCalo = ele->DeltaEtaSeedClusterTrackAtCalo();
|
972 |
fMVAVar_EleR9 = ele->SCluster()->R9();
|
973 |
}
|
974 |
|
975 |
fMVAVar_EleHoverE = ele->HadronicOverEm();
|
976 |
fMVAVar_EleD0 = ele->BestTrk()->D0Corrected(*vertex);
|
977 |
fMVAVar_EleDZ = ele->BestTrk()->DzCorrected(*vertex);
|
978 |
if (!TMath::IsNaN(ele->SCluster()->Seed()->CoviPhiiPhi())) fMVAVar_EleSigmaIPhiIPhi = TMath::Sqrt(ele->SCluster()->Seed()->CoviPhiiPhi());
|
979 |
else {
|
980 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1 ) {
|
981 |
fMVAVar_EleSigmaIPhiIPhi = 0;
|
982 |
} else {
|
983 |
fMVAVar_EleSigmaIPhiIPhi = ele->CoviEtaiEta();
|
984 |
}
|
985 |
}
|
986 |
|
987 |
fMVAVar_EleNBrem = ele->NumberOfClusters() - 1;
|
988 |
fMVAVar_EleESeedClusterOverPIn = ele->ESeedClusterOverPIn();
|
989 |
fMVAVar_EleIP3d = ele->Ip3dPV();
|
990 |
fMVAVar_EleIP3dSig = ele->Ip3dPVSignificance();
|
991 |
fMVAVar_EledPhiCalo = ele->DeltaPhiSeedClusterTrackAtCalo();
|
992 |
fMVAVar_EleSCEtaWidth = ele->SCluster()->EtaWidth();
|
993 |
fMVAVar_EleSCPhiWidth = ele->SCluster()->PhiWidth();
|
994 |
fMVAVar_EleCovIEtaIPhi = ele->SCluster()->Seed()->CoviEtaiPhi();
|
995 |
fMVAVar_ElePreShowerOverRaw = ele->SCluster()->PreshowerEnergy() / ele->SCluster()->RawEnergy();
|
996 |
|
997 |
//Additional vars
|
998 |
if (ele->TrackerTrk()) {
|
999 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012TrigV0 ||
|
1000 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV0 ||
|
1001 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1 ||
|
1002 |
fMVAType == ElectronIDMVA::kIDHWW2012TrigV0 ||
|
1003 |
fMVAType == ElectronIDMVA::kIDIsoCombinedHWW2012TrigV4
|
1004 |
) {
|
1005 |
fMVAVar_EleKFTrkChiSqr = TMath::Min(double(ele->TrackerTrk()->RChi2()),10.0);
|
1006 |
} else {
|
1007 |
fMVAVar_EleKFTrkChiSqr = ele->TrackerTrk()->RChi2();
|
1008 |
}
|
1009 |
fMVAVar_EleKFTrkNHits = ele->TrackerTrk()->NHits();
|
1010 |
fMVAVar_EleKFTrkNLayers = ele->CTFTrkNLayersWithMeasurement();
|
1011 |
} else {
|
1012 |
fMVAVar_EleKFTrkChiSqr = 0;
|
1013 |
fMVAVar_EleKFTrkNHits = -1;
|
1014 |
fMVAVar_EleKFTrkNLayers = -1;
|
1015 |
}
|
1016 |
|
1017 |
if( ele->SCluster()->Seed()->E5x5() > 0.0 ) {
|
1018 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012TrigV0 ||
|
1019 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV0 ||
|
1020 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1 ||
|
1021 |
fMVAType == ElectronIDMVA::kIDHWW2012TrigV0 ||
|
1022 |
fMVAType == ElectronIDMVA::kIDIsoCombinedHWW2012TrigV4
|
1023 |
) {
|
1024 |
fMVAVar_EleE1x5OverE5x5 = TMath::Min(TMath::Max(1 - double(ele->SCluster()->Seed()->E1x5()/ele->SCluster()->Seed()->E5x5()) , -1.0),2.0);
|
1025 |
fMVAVar_EleOneMinusE1x5OverE5x5 = TMath::Min(TMath::Max(1 - double(ele->SCluster()->Seed()->E1x5()/ele->SCluster()->Seed()->E5x5()) , -1.0),2.0);
|
1026 |
} else {
|
1027 |
fMVAVar_EleE1x5OverE5x5 = ele->SCluster()->Seed()->E1x5()/ele->SCluster()->Seed()->E5x5();
|
1028 |
}
|
1029 |
} else {
|
1030 |
fMVAVar_EleE1x5OverE5x5 = -1.0;
|
1031 |
}
|
1032 |
|
1033 |
//Do Binding of MVA input variables
|
1034 |
if ( fMVAType == ElectronIDMVA::kIDEGamma2012TrigV0
|
1035 |
|| fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV0
|
1036 |
|| fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1
|
1037 |
|| fMVAType == ElectronIDMVA::kIsoRingsV0
|
1038 |
|| fMVAType == ElectronIDMVA::kIDHWW2012TrigV0
|
1039 |
) {
|
1040 |
bindVariables();
|
1041 |
}
|
1042 |
|
1043 |
|
1044 |
//***********************************************************************
|
1045 |
// Si [Oct 26 , 2012]
|
1046 |
// Code Below was used for the 2011 HWW analysis
|
1047 |
// But we deprecate it now
|
1048 |
//***********************************************************************
|
1049 |
// fMVAVar_ElePt = ele->Pt();
|
1050 |
// fMVAVar_EleEta = ele->Eta();
|
1051 |
|
1052 |
// //set all input variables
|
1053 |
// fMVAVar_EleSigmaIEtaIEta = ele->CoviEtaiEta() ;
|
1054 |
// fMVAVar_EleDEtaIn = ele->DeltaEtaSuperClusterTrackAtVtx();
|
1055 |
// fMVAVar_EleDPhiIn = ele->DeltaPhiSuperClusterTrackAtVtx();
|
1056 |
// fMVAVar_EleHoverE = ele->HadronicOverEm();
|
1057 |
// fMVAVar_EleD0 = ele->BestTrk()->D0Corrected(*vertex);
|
1058 |
// fMVAVar_EleDZ = ele->BestTrk()->DzCorrected(*vertex);
|
1059 |
// fMVAVar_EleFBrem = ele->FBrem();
|
1060 |
// fMVAVar_EleEOverP = ele->ESuperClusterOverP();
|
1061 |
// fMVAVar_EleESeedClusterOverPout = ele->ESeedClusterOverPout();
|
1062 |
// if (!TMath::IsNaN(ele->SCluster()->Seed()->CoviPhiiPhi())) fMVAVar_EleSigmaIPhiIPhi = TMath::Sqrt(ele->SCluster()->Seed()->CoviPhiiPhi());
|
1063 |
// else fMVAVar_EleSigmaIPhiIPhi = 0;
|
1064 |
// fMVAVar_EleNBrem = ele->NumberOfClusters() - 1;
|
1065 |
// fMVAVar_EleOneOverEMinusOneOverP = (1.0/(ele->EcalEnergy())) - 1.0 / ele->BestTrk()->P();
|
1066 |
// fMVAVar_EleESeedClusterOverPIn = ele->ESeedClusterOverPIn();
|
1067 |
// fMVAVar_EleIP3d = ele->Ip3dPV();
|
1068 |
// fMVAVar_EleIP3dSig = ele->Ip3dPVSignificance();
|
1069 |
|
1070 |
// fMVAVar_EleEEleClusterOverPout = ele->EEleClusterOverPout();
|
1071 |
// if (ele->TrackerTrk()) {
|
1072 |
// fMVAVar_EleKFTrkChiSqr = ele->TrackerTrk()->RChi2();
|
1073 |
// fMVAVar_EleKFTrkNHits = ele->TrackerTrk()->NHits();
|
1074 |
// fMVAVar_EleKFTrkNLayers = ele->CTFTrkNLayersWithMeasurement();
|
1075 |
// } else {
|
1076 |
// fMVAVar_EleKFTrkChiSqr = -1;
|
1077 |
// fMVAVar_EleKFTrkNHits = 0;
|
1078 |
// fMVAVar_EleKFTrkNLayers = 0;
|
1079 |
// }
|
1080 |
// fMVAVar_EleGsfTrackChi2OverNdof = ele->BestTrk()->Chi2() / ele->BestTrk()->Ndof();
|
1081 |
// fMVAVar_EledEtaCalo = ele->DeltaEtaSeedClusterTrackAtCalo();
|
1082 |
// fMVAVar_EleSCEtaWidth = ele->SCluster()->EtaWidth();
|
1083 |
// fMVAVar_EleSCPhiWidth = ele->SCluster()->PhiWidth();
|
1084 |
// fMVAVar_EleE1x5OverE5x5 = ele->SCluster()->Seed()->E1x5() / ele->SCluster()->Seed()->E5x5();
|
1085 |
// fMVAVar_EleR9 = ele->SCluster()->R9();
|
1086 |
// fMVAVar_EleHoverE = ele->HadronicOverEm();
|
1087 |
// fMVAVar_EleEOverP = ele->ESuperClusterOverP();
|
1088 |
// fMVAVar_EleOneOverEMinusOneOverP = (1.0/(ele->EcalEnergy())) - 1.0 / ele->BestTrk()->P();
|
1089 |
// fMVAVar_EleR9 = ele->SCluster()->R9();
|
1090 |
// fMVAVar_ElePreShowerOverRaw = ele->SCluster()->PreshowerEnergy() / ele->SCluster()->RawEnergy();
|
1091 |
|
1092 |
|
1093 |
Double_t mva = -9999;
|
1094 |
TMVA::Reader *reader = 0;
|
1095 |
reader = fTMVAReader[GetMVABin( ele->SCluster()->Eta(), ele->Pt())];
|
1096 |
mva = reader->EvaluateMVA( fMethodname );
|
1097 |
|
1098 |
if (printDebug == kTRUE) {
|
1099 |
std::cout << "Debug Electron MVA: "
|
1100 |
<< ele->Pt() << " " << ele->Eta() << " " << ele->Phi() << " : "
|
1101 |
<< ele->Pt() << " " << ele->SCluster()->AbsEta() << " --> MVABin " << GetMVABin( ele->SCluster()->Eta(), ele->Pt()) << " : "
|
1102 |
<< fMVAVar_EleSigmaIEtaIEta << " "
|
1103 |
<< fMVAVar_EleDEtaIn << " "
|
1104 |
<< fMVAVar_EleDPhiIn << " "
|
1105 |
<< fMVAVar_EleHoverE << " "
|
1106 |
<< fMVAVar_EleD0 << " "
|
1107 |
<< fMVAVar_EleDZ << " "
|
1108 |
<< fMVAVar_EleFBrem << " "
|
1109 |
<< fMVAVar_EleEOverP << " "
|
1110 |
<< fMVAVar_EleESeedClusterOverPout << " "
|
1111 |
<< fMVAVar_EleSigmaIPhiIPhi << " "
|
1112 |
<< fMVAVar_EleNBrem << " "
|
1113 |
<< fMVAVar_EleOneOverEMinusOneOverP << " "
|
1114 |
<< fMVAVar_EleESeedClusterOverPIn << " "
|
1115 |
<< fMVAVar_EleIP3d << " "
|
1116 |
<< fMVAVar_EleIP3dSig << " "
|
1117 |
<< fMVAVar_EleGsfTrackChi2OverNdof << " "
|
1118 |
<< fMVAVar_EledEtaCalo << " "
|
1119 |
<< fMVAVar_EledPhiCalo << " "
|
1120 |
<< fMVAVar_EleR9 << " "
|
1121 |
<< fMVAVar_EleSCEtaWidth << " "
|
1122 |
<< fMVAVar_EleSCPhiWidth << " "
|
1123 |
<< fMVAVar_EleCovIEtaIPhi << " "
|
1124 |
<< fMVAVar_ElePreShowerOverRaw << " "
|
1125 |
<< fMVAVar_EleKFTrkChiSqr << " "
|
1126 |
<< fMVAVar_EleKFTrkNHits << " "
|
1127 |
<< fMVAVar_EleE1x5OverE5x5 << " "
|
1128 |
<< " === : === "
|
1129 |
<< mva << " "
|
1130 |
<< std::endl;
|
1131 |
|
1132 |
}
|
1133 |
|
1134 |
|
1135 |
|
1136 |
return mva;
|
1137 |
}
|
1138 |
|
1139 |
|
1140 |
//--------------------------------------------------------------------------------------------------
|
1141 |
//MVA Includes Isolation with removal of other leptons
|
1142 |
//
|
1143 |
Double_t ElectronIDMVA::MVAValue(const Electron *ele, const Vertex *vertex,
|
1144 |
const PFCandidateCol *PFCands,
|
1145 |
const PileupEnergyDensityCol *PileupEnergyDensity,
|
1146 |
ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaTarget,
|
1147 |
const ElectronCol *goodElectrons,
|
1148 |
const MuonCol *goodMuons,
|
1149 |
Bool_t printDebug) {
|
1150 |
|
1151 |
if (!fIsInitialized) {
|
1152 |
std::cout << "Error: ElectronIDMVA not properly initialized.\n";
|
1153 |
return -9999;
|
1154 |
}
|
1155 |
|
1156 |
Double_t Rho = 0;
|
1157 |
switch(fTheRhoType) {
|
1158 |
case RhoUtilities::MIT_RHO_VORONOI_HIGH_ETA:
|
1159 |
Rho = PileupEnergyDensity->At(0)->Rho();
|
1160 |
break;
|
1161 |
case RhoUtilities::MIT_RHO_VORONOI_LOW_ETA:
|
1162 |
Rho = PileupEnergyDensity->At(0)->RhoLowEta();
|
1163 |
break;
|
1164 |
case RhoUtilities::MIT_RHO_RANDOM_HIGH_ETA:
|
1165 |
Rho = PileupEnergyDensity->At(0)->RhoRandom();
|
1166 |
break;
|
1167 |
case RhoUtilities::MIT_RHO_RANDOM_LOW_ETA:
|
1168 |
Rho = PileupEnergyDensity->At(0)->RhoRandomLowEta();
|
1169 |
break;
|
1170 |
case RhoUtilities::CMS_RHO_RHOKT6PFJETS:
|
1171 |
Rho = PileupEnergyDensity->At(0)->RhoKt6PFJets();
|
1172 |
break;
|
1173 |
default:
|
1174 |
// use the old default
|
1175 |
Rho = PileupEnergyDensity->At(0)->Rho();
|
1176 |
break;
|
1177 |
}
|
1178 |
|
1179 |
//set all input variables
|
1180 |
fMVAVar_ElePt = ele->Pt();
|
1181 |
fMVAVar_EleEta = ele->SCluster()->Eta();
|
1182 |
fMVAVar_EleSigmaIEtaIEta = ele->CoviEtaiEta() ;
|
1183 |
|
1184 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012TrigV0 ||
|
1185 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV0 ||
|
1186 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1 ||
|
1187 |
fMVAType == ElectronIDMVA::kIDHWW2012TrigV0) {
|
1188 |
fMVAVar_EleDEtaIn = TMath::Min(fabs(double(ele->DeltaEtaSuperClusterTrackAtVtx())),0.06); ;
|
1189 |
fMVAVar_EleDPhiIn = TMath::Min(fabs(double(ele->DeltaPhiSuperClusterTrackAtVtx())),0.6);
|
1190 |
fMVAVar_EleFBrem = TMath::Max(double(ele->FBrem()),-1.0);
|
1191 |
fMVAVar_EleEOverP = TMath::Min(double(ele->ESuperClusterOverP()), 20.0);
|
1192 |
fMVAVar_EleESeedClusterOverPout = TMath::Min(double(ele->ESeedClusterOverPout()),20.0);
|
1193 |
fMVAVar_EleEEleClusterOverPout = TMath::Min(double(ele->EEleClusterOverPout()),20.0);
|
1194 |
fMVAVar_EleOneOverEMinusOneOverP = (1.0/(ele->EcalEnergy())) - 1.0 / ele->P();
|
1195 |
fMVAVar_EleGsfTrackChi2OverNdof = TMath::Min(double( ele->BestTrk()->Chi2() / ele->BestTrk()->Ndof()),200.0);
|
1196 |
fMVAVar_EledEtaCalo = TMath::Min(fabs(double(ele->DeltaEtaSeedClusterTrackAtCalo())),0.2);
|
1197 |
fMVAVar_EleR9 = TMath::Min(double(ele->SCluster()->R9()), 5.0);
|
1198 |
} else {
|
1199 |
fMVAVar_EleDEtaIn = ele->DeltaEtaSuperClusterTrackAtVtx();
|
1200 |
fMVAVar_EleDPhiIn = ele->DeltaPhiSuperClusterTrackAtVtx();
|
1201 |
fMVAVar_EleFBrem = ele->FBrem();
|
1202 |
fMVAVar_EleEOverP = ele->ESuperClusterOverP();
|
1203 |
fMVAVar_EleESeedClusterOverPout = ele->ESeedClusterOverPout();
|
1204 |
fMVAVar_EleOneOverEMinusOneOverP = (1.0/(ele->EcalEnergy())) - 1.0 / ele->BestTrk()->P();
|
1205 |
fMVAVar_EleGsfTrackChi2OverNdof = ele->BestTrk()->Chi2() / ele->BestTrk()->Ndof();
|
1206 |
fMVAVar_EledEtaCalo = ele->DeltaEtaSeedClusterTrackAtCalo();
|
1207 |
fMVAVar_EleR9 = ele->SCluster()->R9();
|
1208 |
}
|
1209 |
|
1210 |
fMVAVar_EleHoverE = ele->HadronicOverEm();
|
1211 |
fMVAVar_EleD0 = ele->BestTrk()->D0Corrected(*vertex);
|
1212 |
fMVAVar_EleDZ = ele->BestTrk()->DzCorrected(*vertex);
|
1213 |
if (!TMath::IsNaN(ele->SCluster()->Seed()->CoviPhiiPhi())) fMVAVar_EleSigmaIPhiIPhi = TMath::Sqrt(ele->SCluster()->Seed()->CoviPhiiPhi());
|
1214 |
else {
|
1215 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1) {
|
1216 |
fMVAVar_EleSigmaIPhiIPhi = 0;
|
1217 |
} else {
|
1218 |
fMVAVar_EleSigmaIPhiIPhi = ele->CoviEtaiEta();
|
1219 |
}
|
1220 |
}
|
1221 |
|
1222 |
fMVAVar_EleNBrem = ele->NumberOfClusters() - 1;
|
1223 |
fMVAVar_EleESeedClusterOverPIn = ele->ESeedClusterOverPIn();
|
1224 |
fMVAVar_EleIP3d = ele->Ip3dPV();
|
1225 |
fMVAVar_EleIP3dSig = ele->Ip3dPVSignificance();
|
1226 |
fMVAVar_EledPhiCalo = ele->DeltaPhiSeedClusterTrackAtCalo();
|
1227 |
fMVAVar_EleSCEtaWidth = ele->SCluster()->EtaWidth();
|
1228 |
fMVAVar_EleSCPhiWidth = ele->SCluster()->PhiWidth();
|
1229 |
fMVAVar_EleCovIEtaIPhi = ele->SCluster()->Seed()->CoviEtaiPhi();
|
1230 |
fMVAVar_ElePreShowerOverRaw = ele->SCluster()->PreshowerEnergy() / ele->SCluster()->RawEnergy();
|
1231 |
|
1232 |
//Additional vars
|
1233 |
if (ele->TrackerTrk()) {
|
1234 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012TrigV0 ||
|
1235 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV0 ||
|
1236 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1 ||
|
1237 |
fMVAType == ElectronIDMVA::kIDHWW2012TrigV0 ) {
|
1238 |
fMVAVar_EleKFTrkChiSqr = TMath::Min(double(ele->TrackerTrk()->RChi2()),10.0);
|
1239 |
} else {
|
1240 |
fMVAVar_EleKFTrkChiSqr = ele->TrackerTrk()->RChi2();
|
1241 |
}
|
1242 |
fMVAVar_EleKFTrkNHits = ele->TrackerTrk()->NHits();
|
1243 |
fMVAVar_EleKFTrkNLayers = ele->CTFTrkNLayersWithMeasurement();
|
1244 |
} else {
|
1245 |
fMVAVar_EleKFTrkChiSqr = 0;
|
1246 |
fMVAVar_EleKFTrkNHits = -1;
|
1247 |
fMVAVar_EleKFTrkNLayers = -1;
|
1248 |
}
|
1249 |
|
1250 |
if( ele->SCluster()->Seed()->E5x5() > 0.0 ) {
|
1251 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012TrigV0 ||
|
1252 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV0 ||
|
1253 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1 ||
|
1254 |
fMVAType == ElectronIDMVA::kIDHWW2012TrigV0 ) {
|
1255 |
fMVAVar_EleE1x5OverE5x5 = TMath::Min(TMath::Max(1 - double(ele->SCluster()->Seed()->E1x5()/ele->SCluster()->Seed()->E5x5()) , -1.0),2.0);
|
1256 |
} else {
|
1257 |
fMVAVar_EleE1x5OverE5x5 = ele->SCluster()->Seed()->E1x5()/ele->SCluster()->Seed()->E5x5();
|
1258 |
}
|
1259 |
} else {
|
1260 |
fMVAVar_EleE1x5OverE5x5 = -1.0;
|
1261 |
}
|
1262 |
|
1263 |
|
1264 |
Double_t tmpChargedIso_DR0p0To0p1 = 0;
|
1265 |
Double_t tmpChargedIso_DR0p1To0p2 = 0;
|
1266 |
Double_t tmpChargedIso_DR0p2To0p3 = 0;
|
1267 |
Double_t tmpChargedIso_DR0p3To0p4 = 0;
|
1268 |
Double_t tmpChargedIso_DR0p4To0p5 = 0;
|
1269 |
Double_t tmpGammaIso_DR0p0To0p1 = 0;
|
1270 |
Double_t tmpGammaIso_DR0p1To0p2 = 0;
|
1271 |
Double_t tmpGammaIso_DR0p2To0p3 = 0;
|
1272 |
Double_t tmpGammaIso_DR0p3To0p4 = 0;
|
1273 |
Double_t tmpGammaIso_DR0p4To0p5 = 0;
|
1274 |
Double_t tmpNeutralHadronIso_DR0p0To0p1 = 0;
|
1275 |
Double_t tmpNeutralHadronIso_DR0p1To0p2 = 0;
|
1276 |
Double_t tmpNeutralHadronIso_DR0p2To0p3 = 0;
|
1277 |
Double_t tmpNeutralHadronIso_DR0p3To0p4 = 0;
|
1278 |
Double_t tmpNeutralHadronIso_DR0p4To0p5 = 0;
|
1279 |
|
1280 |
for (UInt_t p=0; p<PFCands->GetEntries();p++) {
|
1281 |
const PFCandidate *pf = PFCands->At(p);
|
1282 |
|
1283 |
//exclude the electron itself
|
1284 |
if(pf->GsfTrk() && ele->GsfTrk() &&
|
1285 |
pf->GsfTrk() == ele->GsfTrk()) continue;
|
1286 |
if(pf->TrackerTrk() && ele->TrackerTrk() &&
|
1287 |
pf->TrackerTrk() == ele->TrackerTrk()) continue;
|
1288 |
|
1289 |
//************************************************************
|
1290 |
// New Isolation Calculations
|
1291 |
//************************************************************
|
1292 |
Double_t dr = MathUtils::DeltaR(ele->Mom(), pf->Mom());
|
1293 |
|
1294 |
if (dr < 1.0) {
|
1295 |
Bool_t IsLeptonFootprint = kFALSE;
|
1296 |
//************************************************************
|
1297 |
// Lepton Footprint Removal
|
1298 |
//************************************************************
|
1299 |
if(goodElectrons) {
|
1300 |
for (UInt_t q=0; q < goodElectrons->GetEntries() ; ++q) {
|
1301 |
//if pf candidate matches an electron passing ID cuts, then veto it
|
1302 |
if(pf->GsfTrk() && goodElectrons->At(q)->GsfTrk() &&
|
1303 |
pf->GsfTrk() == goodElectrons->At(q)->GsfTrk()) IsLeptonFootprint = kTRUE;
|
1304 |
if(pf->TrackerTrk() && goodElectrons->At(q)->TrackerTrk() &&
|
1305 |
pf->TrackerTrk() == goodElectrons->At(q)->TrackerTrk()) IsLeptonFootprint = kTRUE;
|
1306 |
//if pf candidate lies in veto regions of electron passing ID cuts, then veto it
|
1307 |
if(pf->BestTrk() && fabs(goodElectrons->At(q)->SCluster()->Eta()) >= 1.479
|
1308 |
&& MathUtils::DeltaR(goodElectrons->At(q)->Mom(), pf->Mom()) < 0.015) IsLeptonFootprint = kTRUE;
|
1309 |
if(pf->PFType() == PFCandidate::eGamma && fabs(goodElectrons->At(q)->SCluster()->Eta()) >= 1.479 &&
|
1310 |
MathUtils::DeltaR(goodElectrons->At(q)->Mom(), pf->Mom()) < 0.08) IsLeptonFootprint = kTRUE;
|
1311 |
}
|
1312 |
}
|
1313 |
if(goodMuons) {
|
1314 |
for (UInt_t q=0; q < goodMuons->GetEntries() ; ++q) {
|
1315 |
//if pf candidate matches an muon passing ID cuts, then veto it
|
1316 |
if(pf->TrackerTrk() && goodMuons->At(q)->TrackerTrk() &&
|
1317 |
pf->TrackerTrk() == goodMuons->At(q)->TrackerTrk()) IsLeptonFootprint = kTRUE;
|
1318 |
//if pf candidate lies in veto regions of muon passing ID cuts, then veto it
|
1319 |
if(pf->BestTrk() && MathUtils::DeltaR(goodMuons->At(q)->Mom(), pf->Mom()) < 0.01) IsLeptonFootprint = kTRUE;
|
1320 |
}
|
1321 |
}
|
1322 |
|
1323 |
if (!IsLeptonFootprint) {
|
1324 |
Bool_t passVeto = kTRUE;
|
1325 |
//Charged
|
1326 |
if(pf->BestTrk()) {
|
1327 |
if (!(fabs(pf->BestTrk()->DzCorrected(*vertex) - ele->BestTrk()->DzCorrected(*vertex)) < 0.2)) passVeto = kFALSE;
|
1328 |
//************************************************************
|
1329 |
// Veto any PFmuon, or PFEle
|
1330 |
if (pf->PFType() == PFCandidate::eElectron || pf->PFType() == PFCandidate::eMuon) passVeto = kFALSE;
|
1331 |
//************************************************************
|
1332 |
//************************************************************
|
1333 |
// Footprint Veto
|
1334 |
if (fabs(ele->SCluster()->Eta()) >= 1.479 && dr < 0.015) passVeto = kFALSE;
|
1335 |
//************************************************************
|
1336 |
if (passVeto) {
|
1337 |
if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
|
1338 |
if (dr >= 0.1 && dr < 0.2) tmpChargedIso_DR0p1To0p2 += pf->Pt();
|
1339 |
if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
|
1340 |
if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
|
1341 |
if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
|
1342 |
} //pass veto
|
1343 |
|
1344 |
}
|
1345 |
//Gamma
|
1346 |
else if (pf->PFType() == PFCandidate::eGamma) {
|
1347 |
//************************************************************
|
1348 |
// Footprint Veto
|
1349 |
if (fabs(ele->SCluster()->Eta()) >= 1.479) {
|
1350 |
if (dr < 0.08) passVeto = kFALSE;
|
1351 |
}
|
1352 |
//************************************************************
|
1353 |
|
1354 |
if (passVeto) {
|
1355 |
if (dr < 0.1) tmpGammaIso_DR0p0To0p1 += pf->Pt();
|
1356 |
if (dr >= 0.1 && dr < 0.2) tmpGammaIso_DR0p1To0p2 += pf->Pt();
|
1357 |
if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
|
1358 |
if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
|
1359 |
if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
|
1360 |
}
|
1361 |
}
|
1362 |
//NeutralHadron
|
1363 |
else {
|
1364 |
if (dr < 0.1) tmpNeutralHadronIso_DR0p0To0p1 += pf->Pt();
|
1365 |
if (dr >= 0.1 && dr < 0.2) tmpNeutralHadronIso_DR0p1To0p2 += pf->Pt();
|
1366 |
if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
|
1367 |
if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
|
1368 |
if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
|
1369 |
}
|
1370 |
} //not lepton footprint
|
1371 |
} //in 1.0 dr cone
|
1372 |
} //loop over PF candidates
|
1373 |
|
1374 |
fMVAVar_ChargedIso_DR0p0To0p1 = TMath::Min((tmpChargedIso_DR0p0To0p1)/ele->Pt(), 2.5);
|
1375 |
fMVAVar_ChargedIso_DR0p1To0p2 = TMath::Min((tmpChargedIso_DR0p1To0p2)/ele->Pt(), 2.5);
|
1376 |
fMVAVar_ChargedIso_DR0p2To0p3 = TMath::Min((tmpChargedIso_DR0p2To0p3)/ele->Pt(), 2.5);
|
1377 |
fMVAVar_ChargedIso_DR0p3To0p4 = TMath::Min((tmpChargedIso_DR0p3To0p4)/ele->Pt(), 2.5);
|
1378 |
fMVAVar_ChargedIso_DR0p4To0p5 = TMath::Min((tmpChargedIso_DR0p4To0p5)/ele->Pt(), 2.5);
|
1379 |
fMVAVar_GammaIso_DR0p0To0p1 = TMath::Max(TMath::Min((tmpGammaIso_DR0p0To0p1 - Rho*ElectronTools::ElectronEffectiveArea(ElectronTools::kEleGammaIsoDR0p0To0p1, ele->SCluster()->Eta(), EffectiveAreaTarget))/ele->Pt(), 2.5), 0.0);
|
1380 |
fMVAVar_GammaIso_DR0p1To0p2 = TMath::Max(TMath::Min((tmpGammaIso_DR0p1To0p2 - Rho*ElectronTools::ElectronEffectiveArea(ElectronTools::kEleGammaIsoDR0p1To0p2, ele->SCluster()->Eta(), EffectiveAreaTarget))/ele->Pt(), 2.5), 0.0);
|
1381 |
fMVAVar_GammaIso_DR0p2To0p3 = TMath::Max(TMath::Min((tmpGammaIso_DR0p2To0p3 - Rho*ElectronTools::ElectronEffectiveArea(ElectronTools::kEleGammaIsoDR0p2To0p3, ele->SCluster()->Eta(), EffectiveAreaTarget))/ele->Pt(), 2.5), 0.0);
|
1382 |
fMVAVar_GammaIso_DR0p3To0p4 = TMath::Max(TMath::Min((tmpGammaIso_DR0p3To0p4 - Rho*ElectronTools::ElectronEffectiveArea(ElectronTools::kEleGammaIsoDR0p3To0p4, ele->SCluster()->Eta(), EffectiveAreaTarget))/ele->Pt(), 2.5), 0.0);
|
1383 |
fMVAVar_GammaIso_DR0p4To0p5 = TMath::Max(TMath::Min((tmpGammaIso_DR0p4To0p5 - Rho*ElectronTools::ElectronEffectiveArea(ElectronTools::kEleGammaIsoDR0p4To0p5, ele->SCluster()->Eta(), EffectiveAreaTarget))/ele->Pt(), 2.5), 0.0);
|
1384 |
fMVAVar_NeutralHadronIso_DR0p0To0p1 = TMath::Max(TMath::Min((tmpNeutralHadronIso_DR0p0To0p1 - Rho*ElectronTools::ElectronEffectiveArea(ElectronTools::kEleNeutralHadronIsoDR0p0To0p1, ele->SCluster()->Eta(), EffectiveAreaTarget))/ele->Pt(), 2.5), 0.0);
|
1385 |
fMVAVar_NeutralHadronIso_DR0p1To0p2 = TMath::Max(TMath::Min((tmpNeutralHadronIso_DR0p1To0p2 - Rho*ElectronTools::ElectronEffectiveArea(ElectronTools::kEleNeutralHadronIsoDR0p1To0p2, ele->SCluster()->Eta(), EffectiveAreaTarget))/ele->Pt(), 2.5), 0.0);
|
1386 |
fMVAVar_NeutralHadronIso_DR0p2To0p3 = TMath::Max(TMath::Min((tmpNeutralHadronIso_DR0p2To0p3 - Rho*ElectronTools::ElectronEffectiveArea(ElectronTools::kEleNeutralHadronIsoDR0p2To0p3, ele->SCluster()->Eta(), EffectiveAreaTarget))/ele->Pt(), 2.5), 0.0);
|
1387 |
fMVAVar_NeutralHadronIso_DR0p3To0p4 = TMath::Max(TMath::Min((tmpNeutralHadronIso_DR0p3To0p4 - Rho*ElectronTools::ElectronEffectiveArea(ElectronTools::kEleNeutralHadronIsoDR0p3To0p4, ele->SCluster()->Eta(), EffectiveAreaTarget))/ele->Pt(), 2.5), 0.0);
|
1388 |
fMVAVar_NeutralHadronIso_DR0p4To0p5 = TMath::Max(TMath::Min((tmpNeutralHadronIso_DR0p4To0p5 - Rho*ElectronTools::ElectronEffectiveArea(ElectronTools::kEleNeutralHadronIsoDR0p4To0p5, ele->SCluster()->Eta(), EffectiveAreaTarget))/ele->Pt(), 2.5), 0.0);
|
1389 |
|
1390 |
//Do Binding of MVA input variables
|
1391 |
if ( fMVAType == ElectronIDMVA::kIDEGamma2012TrigV0
|
1392 |
|| fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV0
|
1393 |
|| fMVAType == ElectronIDMVA::kIsoRingsV0
|
1394 |
|| fMVAType == ElectronIDMVA::kIDHWW2012TrigV0) {
|
1395 |
bindVariables();
|
1396 |
}
|
1397 |
|
1398 |
Double_t mva = -9999;
|
1399 |
TMVA::Reader *reader = 0;
|
1400 |
|
1401 |
reader = fTMVAReader[GetMVABin( fMVAVar_EleEta , fMVAVar_ElePt)];
|
1402 |
mva = reader->EvaluateMVA( fMethodname );
|
1403 |
|
1404 |
if (printDebug == kTRUE) {
|
1405 |
|
1406 |
std::cout << "Debug Electron MVA-ID: "
|
1407 |
<< fMVAVar_ElePt<< " " << fMVAVar_EleEta << " "
|
1408 |
<< " --> MVABin " << GetMVABin( fMVAVar_EleEta , fMVAVar_ElePt) << " : "
|
1409 |
<< " fbrem " << fMVAVar_EleFBrem
|
1410 |
<< " kfchi2 " << fMVAVar_EleKFTrkChiSqr
|
1411 |
<< " kfhits " << fMVAVar_EleKFTrkNLayers
|
1412 |
<< " kfhitsall " << fMVAVar_EleKFTrkNHits
|
1413 |
<< " gsfchi2 " << fMVAVar_EleGsfTrackChi2OverNdof
|
1414 |
<< " deta " << fMVAVar_EleDEtaIn
|
1415 |
<< " dphi " << fMVAVar_EleDPhiIn
|
1416 |
<< " detacalo " << fMVAVar_EledEtaCalo
|
1417 |
<< " see " << fMVAVar_EleSigmaIEtaIEta
|
1418 |
<< " spp " << fMVAVar_EleSigmaIPhiIPhi
|
1419 |
<< " etawidth " << fMVAVar_EleSCEtaWidth
|
1420 |
<< " phiwidth " << fMVAVar_EleSCPhiWidth
|
1421 |
<< " e1x5e5x5 " << fMVAVar_EleE1x5OverE5x5
|
1422 |
<< " R9 " << fMVAVar_EleR9
|
1423 |
<< " HoE " << fMVAVar_EleHoverE
|
1424 |
<< " EoP " << fMVAVar_EleEOverP
|
1425 |
<< " IoEmIoP " << fMVAVar_EleOneOverEMinusOneOverP
|
1426 |
<< " eleEoPout " << fMVAVar_EleEEleClusterOverPout
|
1427 |
<< " EoPout " << fMVAVar_EleESeedClusterOverPout
|
1428 |
<< " PreShowerOverRaw" << fMVAVar_ElePreShowerOverRaw
|
1429 |
<< " d0 " << fMVAVar_EleD0
|
1430 |
<< " ip3d " << fMVAVar_EleIP3d
|
1431 |
<< " eta " << fMVAVar_EleEta
|
1432 |
<< " pt " << fMVAVar_ElePt
|
1433 |
<< " === : === "
|
1434 |
<< mva << " "
|
1435 |
<< std::endl;
|
1436 |
std::cout << "Debug Electron MVA-ISO: "
|
1437 |
<< fMVAVar_ChargedIso_DR0p0To0p1 << " "
|
1438 |
<< fMVAVar_ChargedIso_DR0p1To0p2 << " "
|
1439 |
<< fMVAVar_ChargedIso_DR0p2To0p3 << " "
|
1440 |
<< fMVAVar_ChargedIso_DR0p3To0p4 << " "
|
1441 |
<< fMVAVar_ChargedIso_DR0p4To0p5 << " "
|
1442 |
<< fMVAVar_GammaIso_DR0p0To0p1 << " "
|
1443 |
<< fMVAVar_GammaIso_DR0p1To0p2 << " "
|
1444 |
<< fMVAVar_GammaIso_DR0p2To0p3 << " "
|
1445 |
<< fMVAVar_GammaIso_DR0p3To0p4 << " "
|
1446 |
<< fMVAVar_GammaIso_DR0p4To0p5 << " "
|
1447 |
<< fMVAVar_NeutralHadronIso_DR0p0To0p1 << " "
|
1448 |
<< fMVAVar_NeutralHadronIso_DR0p1To0p2 << " "
|
1449 |
<< fMVAVar_NeutralHadronIso_DR0p2To0p3 << " "
|
1450 |
<< fMVAVar_NeutralHadronIso_DR0p3To0p4 << " "
|
1451 |
<< fMVAVar_NeutralHadronIso_DR0p4To0p5 << " "
|
1452 |
<< std::endl;
|
1453 |
}
|
1454 |
|
1455 |
return mva;
|
1456 |
}
|
1457 |
|
1458 |
|
1459 |
//--------------------------------------------------------------------------------------------------
|
1460 |
//MVA Includes Isolation
|
1461 |
//
|
1462 |
Double_t ElectronIDMVA::MVAValue(const Electron *ele, const Vertex *vertex,
|
1463 |
const VertexCol *primaryVertices,
|
1464 |
const PFCandidateCol *PFCands,
|
1465 |
const PileupEnergyDensityCol *PileupEnergyDensity,
|
1466 |
ElectronTools::EElectronEffectiveAreaTarget EffectiveAreaTarget,
|
1467 |
Bool_t printDebug) {
|
1468 |
|
1469 |
if (!fIsInitialized) {
|
1470 |
std::cout << "Error: ElectronIDMVA not properly initialized.\n";
|
1471 |
return -9999;
|
1472 |
}
|
1473 |
|
1474 |
Double_t Rho = 0;
|
1475 |
switch(fTheRhoType) {
|
1476 |
case RhoUtilities::MIT_RHO_VORONOI_HIGH_ETA:
|
1477 |
Rho = PileupEnergyDensity->At(0)->Rho();
|
1478 |
break;
|
1479 |
case RhoUtilities::MIT_RHO_VORONOI_LOW_ETA:
|
1480 |
Rho = PileupEnergyDensity->At(0)->RhoLowEta();
|
1481 |
break;
|
1482 |
case RhoUtilities::MIT_RHO_RANDOM_HIGH_ETA:
|
1483 |
Rho = PileupEnergyDensity->At(0)->RhoRandom();
|
1484 |
break;
|
1485 |
case RhoUtilities::MIT_RHO_RANDOM_LOW_ETA:
|
1486 |
Rho = PileupEnergyDensity->At(0)->RhoRandomLowEta();
|
1487 |
break;
|
1488 |
case RhoUtilities::CMS_RHO_RHOKT6PFJETS:
|
1489 |
Rho = PileupEnergyDensity->At(0)->RhoKt6PFJets();
|
1490 |
break;
|
1491 |
default:
|
1492 |
// use the old default
|
1493 |
Rho = PileupEnergyDensity->At(0)->Rho();
|
1494 |
break;
|
1495 |
}
|
1496 |
|
1497 |
//set all input variables
|
1498 |
fMVAVar_ElePt = ele->Pt();
|
1499 |
fMVAVar_EleEta = ele->SCluster()->Eta();
|
1500 |
fMVAVar_EleSigmaIEtaIEta = ele->CoviEtaiEta() ;
|
1501 |
|
1502 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012TrigV0 ||
|
1503 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV0 ||
|
1504 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1 ||
|
1505 |
fMVAType == ElectronIDMVA::kIDHWW2012TrigV0
|
1506 |
) {
|
1507 |
fMVAVar_EleDEtaIn = TMath::Min(fabs(double(ele->DeltaEtaSuperClusterTrackAtVtx())),0.06); ;
|
1508 |
fMVAVar_EleDPhiIn = TMath::Min(fabs(double(ele->DeltaPhiSuperClusterTrackAtVtx())),0.6);
|
1509 |
fMVAVar_EleFBrem = TMath::Max(double(ele->FBrem()),-1.0);
|
1510 |
fMVAVar_EleEOverP = TMath::Min(double(ele->ESuperClusterOverP()), 20.0);
|
1511 |
fMVAVar_EleESeedClusterOverPout = TMath::Min(double(ele->ESeedClusterOverPout()),20.0);
|
1512 |
fMVAVar_EleEEleClusterOverPout = TMath::Min(double(ele->EEleClusterOverPout()),20.0);
|
1513 |
fMVAVar_EleOneOverEMinusOneOverP = (1.0/(ele->EcalEnergy())) - 1.0 / ele->P();
|
1514 |
fMVAVar_EleGsfTrackChi2OverNdof = TMath::Min(double( ele->BestTrk()->Chi2() / ele->BestTrk()->Ndof()),200.0);
|
1515 |
fMVAVar_EledEtaCalo = TMath::Min(fabs(double(ele->DeltaEtaSeedClusterTrackAtCalo())),0.2);
|
1516 |
fMVAVar_EleR9 = TMath::Min(double(ele->SCluster()->R9()), 5.0);
|
1517 |
}
|
1518 |
else if (fMVAType == ElectronIDMVA::kIDIsoCombinedHWW2012TrigV4) {
|
1519 |
fMVAVar_EleDEtaIn = TMath::Min(fabs(double(ele->DeltaEtaSuperClusterTrackAtVtx())),0.06); ;
|
1520 |
fMVAVar_EleDPhiIn = ele->DeltaPhiSuperClusterTrackAtVtx();
|
1521 |
fMVAVar_EleFBrem = TMath::Max(double(ele->FBrem()),-1.0);
|
1522 |
fMVAVar_EleEOverP = TMath::Min(double(ele->ESuperClusterOverP()), 20.0);
|
1523 |
fMVAVar_EleESeedClusterOverPout = TMath::Min(double(ele->ESeedClusterOverPout()),20.0);
|
1524 |
fMVAVar_EleEEleClusterOverPout = TMath::Min(double(ele->EEleClusterOverPout()),20.0);
|
1525 |
fMVAVar_EleOneOverEMinusOneOverP = (1.0/(ele->EcalEnergy())) - 1.0 / ele->PIn();
|
1526 |
fMVAVar_EleGsfTrackChi2OverNdof = TMath::Min(double( ele->BestTrk()->Chi2() / ele->BestTrk()->Ndof()),200.0);
|
1527 |
fMVAVar_EledEtaCalo = ele->DeltaEtaSeedClusterTrackAtCalo();
|
1528 |
fMVAVar_EleR9 = TMath::Min(double(ele->SCluster()->R9()), 5.0);
|
1529 |
}
|
1530 |
else {
|
1531 |
fMVAVar_EleDEtaIn = ele->DeltaEtaSuperClusterTrackAtVtx();
|
1532 |
fMVAVar_EleDPhiIn = ele->DeltaPhiSuperClusterTrackAtVtx();
|
1533 |
fMVAVar_EleFBrem = ele->FBrem();
|
1534 |
fMVAVar_EleEOverP = ele->ESuperClusterOverP();
|
1535 |
fMVAVar_EleESeedClusterOverPout = ele->ESeedClusterOverPout();
|
1536 |
fMVAVar_EleOneOverEMinusOneOverP = (1.0/(ele->EcalEnergy())) - 1.0 / ele->BestTrk()->P();
|
1537 |
fMVAVar_EleGsfTrackChi2OverNdof = ele->BestTrk()->Chi2() / ele->BestTrk()->Ndof();
|
1538 |
fMVAVar_EledEtaCalo = ele->DeltaEtaSeedClusterTrackAtCalo();
|
1539 |
fMVAVar_EleR9 = ele->SCluster()->R9();
|
1540 |
}
|
1541 |
|
1542 |
fMVAVar_EleHoverE = ele->HadronicOverEm();
|
1543 |
fMVAVar_EleD0 = ele->BestTrk()->D0Corrected(*vertex);
|
1544 |
fMVAVar_EleDZ = ele->BestTrk()->DzCorrected(*vertex);
|
1545 |
if (!TMath::IsNaN(ele->SCluster()->Seed()->CoviPhiiPhi())) fMVAVar_EleSigmaIPhiIPhi = TMath::Sqrt(ele->SCluster()->Seed()->CoviPhiiPhi());
|
1546 |
else {
|
1547 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1 ) {
|
1548 |
fMVAVar_EleSigmaIPhiIPhi = 0;
|
1549 |
} else {
|
1550 |
fMVAVar_EleSigmaIPhiIPhi = ele->CoviEtaiEta();
|
1551 |
}
|
1552 |
}
|
1553 |
|
1554 |
fMVAVar_EleNBrem = ele->NumberOfClusters() - 1;
|
1555 |
fMVAVar_EleESeedClusterOverPIn = ele->ESeedClusterOverPIn();
|
1556 |
fMVAVar_EleIP3d = ele->Ip3dPV();
|
1557 |
fMVAVar_EleIP3dSig = ele->Ip3dPVSignificance();
|
1558 |
fMVAVar_EledPhiCalo = ele->DeltaPhiSeedClusterTrackAtCalo();
|
1559 |
fMVAVar_EleSCEtaWidth = ele->SCluster()->EtaWidth();
|
1560 |
fMVAVar_EleSCPhiWidth = ele->SCluster()->PhiWidth();
|
1561 |
fMVAVar_EleCovIEtaIPhi = ele->SCluster()->Seed()->CoviEtaiPhi();
|
1562 |
fMVAVar_ElePreShowerOverRaw = ele->SCluster()->PreshowerEnergy() / ele->SCluster()->RawEnergy();
|
1563 |
|
1564 |
//Additional vars
|
1565 |
if (ele->TrackerTrk()) {
|
1566 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012TrigV0 ||
|
1567 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV0 ||
|
1568 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1 ||
|
1569 |
fMVAType == ElectronIDMVA::kIDHWW2012TrigV0 ||
|
1570 |
fMVAType == ElectronIDMVA::kIDIsoCombinedHWW2012TrigV4
|
1571 |
) {
|
1572 |
fMVAVar_EleKFTrkChiSqr = TMath::Min(double(ele->TrackerTrk()->RChi2()),10.0);
|
1573 |
} else {
|
1574 |
fMVAVar_EleKFTrkChiSqr = ele->TrackerTrk()->RChi2();
|
1575 |
}
|
1576 |
fMVAVar_EleKFTrkNHits = ele->TrackerTrk()->NHits();
|
1577 |
fMVAVar_EleKFTrkNLayers = ele->CTFTrkNLayersWithMeasurement();
|
1578 |
} else {
|
1579 |
fMVAVar_EleKFTrkChiSqr = 0;
|
1580 |
fMVAVar_EleKFTrkNHits = -1;
|
1581 |
fMVAVar_EleKFTrkNLayers = -1;
|
1582 |
}
|
1583 |
|
1584 |
if( ele->SCluster()->Seed()->E5x5() > 0.0 ) {
|
1585 |
if (fMVAType == ElectronIDMVA::kIDEGamma2012TrigV0 ||
|
1586 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV0 ||
|
1587 |
fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV1 ||
|
1588 |
fMVAType == ElectronIDMVA::kIDHWW2012TrigV0 ||
|
1589 |
fMVAType == ElectronIDMVA::kIDIsoCombinedHWW2012TrigV4
|
1590 |
) {
|
1591 |
fMVAVar_EleE1x5OverE5x5 = TMath::Min(TMath::Max(1 - double(ele->SCluster()->Seed()->E1x5()/ele->SCluster()->Seed()->E5x5()) , -1.0),2.0);
|
1592 |
fMVAVar_EleOneMinusE1x5OverE5x5 = TMath::Min(TMath::Max(1 - double(ele->SCluster()->Seed()->E1x5()/ele->SCluster()->Seed()->E5x5()) , -1.0),2.0);
|
1593 |
} else {
|
1594 |
fMVAVar_EleE1x5OverE5x5 = ele->SCluster()->Seed()->E1x5()/ele->SCluster()->Seed()->E5x5();
|
1595 |
}
|
1596 |
} else {
|
1597 |
fMVAVar_EleE1x5OverE5x5 = -1.0;
|
1598 |
}
|
1599 |
|
1600 |
|
1601 |
Double_t tmpChargedIso_DR0p0To0p1 = 0;
|
1602 |
Double_t tmpChargedIso_DR0p1To0p2 = 0;
|
1603 |
Double_t tmpChargedIso_DR0p2To0p3 = 0;
|
1604 |
Double_t tmpChargedIso_DR0p3To0p4 = 0;
|
1605 |
Double_t tmpChargedIso_DR0p4To0p5 = 0;
|
1606 |
Double_t tmpGammaIso_DR0p0To0p1 = 0;
|
1607 |
Double_t tmpGammaIso_DR0p1To0p2 = 0;
|
1608 |
Double_t tmpGammaIso_DR0p2To0p3 = 0;
|
1609 |
Double_t tmpGammaIso_DR0p3To0p4 = 0;
|
1610 |
Double_t tmpGammaIso_DR0p4To0p5 = 0;
|
1611 |
Double_t tmpNeutralHadronIso_DR0p0To0p1 = 0;
|
1612 |
Double_t tmpNeutralHadronIso_DR0p1To0p2 = 0;
|
1613 |
Double_t tmpNeutralHadronIso_DR0p2To0p3 = 0;
|
1614 |
Double_t tmpNeutralHadronIso_DR0p3To0p4 = 0;
|
1615 |
Double_t tmpNeutralHadronIso_DR0p4To0p5 = 0;
|
1616 |
|
1617 |
for (UInt_t p=0; p<PFCands->GetEntries();p++) {
|
1618 |
const PFCandidate *pf = PFCands->At(p);
|
1619 |
|
1620 |
//************************************************************
|
1621 |
// New Isolation Calculations
|
1622 |
//************************************************************
|
1623 |
Double_t dr = MathUtils::DeltaR(ele->Mom(), pf->Mom());
|
1624 |
|
1625 |
if (dr < 0.5) {
|
1626 |
|
1627 |
Bool_t passVeto = kTRUE;
|
1628 |
//Charged
|
1629 |
if(pf->BestTrk()) {
|
1630 |
|
1631 |
//*************************************************
|
1632 |
//Use only PFNoPU
|
1633 |
//*************************************************
|
1634 |
Bool_t isPFNoPU = kFALSE;
|
1635 |
if(pf->PFType() == PFCandidate::eHadron) {
|
1636 |
if(pf->HasTrackerTrk() &&
|
1637 |
primaryVertices->At(0)->HasTrack(pf->TrackerTrk()) &&
|
1638 |
primaryVertices->At(0)->TrackWeight(pf->TrackerTrk()) > 0) {
|
1639 |
isPFNoPU = kTRUE;
|
1640 |
} else {
|
1641 |
|
1642 |
Bool_t vertexFound = kFALSE;
|
1643 |
const Vertex *closestVtx = 0;
|
1644 |
Double_t dzmin = 10000;
|
1645 |
|
1646 |
// loop over vertices
|
1647 |
for(UInt_t j = 0; j < primaryVertices->GetEntries(); j++) {
|
1648 |
const Vertex *vtx = primaryVertices->At(j);
|
1649 |
assert(vtx);
|
1650 |
|
1651 |
if(pf->HasTrackerTrk() &&
|
1652 |
vtx->HasTrack(pf->TrackerTrk()) &&
|
1653 |
vtx->TrackWeight(pf->TrackerTrk()) > 0) {
|
1654 |
vertexFound = kTRUE;
|
1655 |
closestVtx = vtx;
|
1656 |
break;
|
1657 |
}
|
1658 |
Double_t dz = fabs(pf->SourceVertex().Z() - vtx->Z());
|
1659 |
if(dz < dzmin) {
|
1660 |
closestVtx = vtx;
|
1661 |
dzmin = dz;
|
1662 |
}
|
1663 |
}
|
1664 |
|
1665 |
Bool_t fCheckClosestZVertex = kTRUE; //we use option 1
|
1666 |
if(fCheckClosestZVertex) {
|
1667 |
// Fallback: if track is not associated with any vertex,
|
1668 |
// associate it with the vertex closest in z
|
1669 |
if(vertexFound || closestVtx != vertex) {
|
1670 |
isPFNoPU = kFALSE;
|
1671 |
} else {
|
1672 |
isPFNoPU = kTRUE;
|
1673 |
}
|
1674 |
} else {
|
1675 |
if(vertexFound && closestVtx != vertex) {
|
1676 |
isPFNoPU = kFALSE;
|
1677 |
} else {
|
1678 |
isPFNoPU = kTRUE;
|
1679 |
}
|
1680 |
}
|
1681 |
} //hadron & trk stuff
|
1682 |
} else { // hadron
|
1683 |
//
|
1684 |
isPFNoPU = kTRUE;
|
1685 |
}
|
1686 |
if (!isPFNoPU) continue;
|
1687 |
|
1688 |
//************************************************************
|
1689 |
// Veto any PFmuon, or PFEle
|
1690 |
if (pf->PFType() == PFCandidate::eElectron || pf->PFType() == PFCandidate::eMuon) passVeto = kFALSE;
|
1691 |
//************************************************************
|
1692 |
//************************************************************
|
1693 |
// Footprint Veto
|
1694 |
if (fabs(ele->SCluster()->Eta()) >= 1.479 && dr < 0.015) passVeto = kFALSE;
|
1695 |
//************************************************************
|
1696 |
if (passVeto) {
|
1697 |
if (dr < 0.1) tmpChargedIso_DR0p0To0p1 += pf->Pt();
|
1698 |
if (dr >= 0.1 && dr < 0.2) tmpChargedIso_DR0p1To0p2 += pf->Pt();
|
1699 |
if (dr >= 0.2 && dr < 0.3) tmpChargedIso_DR0p2To0p3 += pf->Pt();
|
1700 |
if (dr >= 0.3 && dr < 0.4) tmpChargedIso_DR0p3To0p4 += pf->Pt();
|
1701 |
if (dr >= 0.4 && dr < 0.5) tmpChargedIso_DR0p4To0p5 += pf->Pt();
|
1702 |
} //pass veto
|
1703 |
|
1704 |
}
|
1705 |
//Gamma
|
1706 |
else if (pf->PFType() == PFCandidate::eGamma) {
|
1707 |
//************************************************************
|
1708 |
// Footprint Veto
|
1709 |
if (fabs(ele->SCluster()->Eta()) > 1.479) {
|
1710 |
if (dr < 0.08) passVeto = kFALSE;
|
1711 |
}
|
1712 |
//************************************************************
|
1713 |
|
1714 |
if (passVeto) {
|
1715 |
if (dr < 0.1) tmpGammaIso_DR0p0To0p1 += pf->Pt();
|
1716 |
if (dr >= 0.1 && dr < 0.2) tmpGammaIso_DR0p1To0p2 += pf->Pt();
|
1717 |
if (dr >= 0.2 && dr < 0.3) tmpGammaIso_DR0p2To0p3 += pf->Pt();
|
1718 |
if (dr >= 0.3 && dr < 0.4) tmpGammaIso_DR0p3To0p4 += pf->Pt();
|
1719 |
if (dr >= 0.4 && dr < 0.5) tmpGammaIso_DR0p4To0p5 += pf->Pt();
|
1720 |
}
|
1721 |
}
|
1722 |
//NeutralHadron
|
1723 |
else {
|
1724 |
if (dr < 0.1) tmpNeutralHadronIso_DR0p0To0p1 += pf->Pt();
|
1725 |
if (dr >= 0.1 && dr < 0.2) tmpNeutralHadronIso_DR0p1To0p2 += pf->Pt();
|
1726 |
if (dr >= 0.2 && dr < 0.3) tmpNeutralHadronIso_DR0p2To0p3 += pf->Pt();
|
1727 |
if (dr >= 0.3 && dr < 0.4) tmpNeutralHadronIso_DR0p3To0p4 += pf->Pt();
|
1728 |
if (dr >= 0.4 && dr < 0.5) tmpNeutralHadronIso_DR0p4To0p5 += pf->Pt();
|
1729 |
}
|
1730 |
} //in 1.0 dr cone
|
1731 |
} //loop over PF candidates
|
1732 |
|
1733 |
fMVAVar_ChargedIso_DR0p0To0p1 = tmpChargedIso_DR0p0To0p1/ele->Pt();
|
1734 |
fMVAVar_ChargedIso_DR0p1To0p2 = tmpChargedIso_DR0p1To0p2/ele->Pt();
|
1735 |
fMVAVar_ChargedIso_DR0p2To0p3 = tmpChargedIso_DR0p2To0p3/ele->Pt();
|
1736 |
fMVAVar_ChargedIso_DR0p3To0p4 = tmpChargedIso_DR0p3To0p4/ele->Pt();
|
1737 |
fMVAVar_ChargedIso_DR0p4To0p5 = tmpChargedIso_DR0p4To0p5/ele->Pt();
|
1738 |
fMVAVar_GammaIso_DR0p0To0p1 = tmpGammaIso_DR0p0To0p1/ele->Pt();
|
1739 |
fMVAVar_GammaIso_DR0p1To0p2 = tmpGammaIso_DR0p1To0p2/ele->Pt();
|
1740 |
fMVAVar_GammaIso_DR0p2To0p3 = tmpGammaIso_DR0p2To0p3/ele->Pt();
|
1741 |
fMVAVar_GammaIso_DR0p3To0p4 = tmpGammaIso_DR0p3To0p4/ele->Pt();
|
1742 |
fMVAVar_GammaIso_DR0p4To0p5 = tmpGammaIso_DR0p4To0p5/ele->Pt();
|
1743 |
fMVAVar_NeutralHadronIso_DR0p0To0p1 = tmpNeutralHadronIso_DR0p0To0p1/ele->Pt();
|
1744 |
fMVAVar_NeutralHadronIso_DR0p1To0p2 = tmpNeutralHadronIso_DR0p1To0p2/ele->Pt();
|
1745 |
fMVAVar_NeutralHadronIso_DR0p2To0p3 = tmpNeutralHadronIso_DR0p2To0p3/ele->Pt();
|
1746 |
fMVAVar_NeutralHadronIso_DR0p3To0p4 = tmpNeutralHadronIso_DR0p3To0p4/ele->Pt();
|
1747 |
fMVAVar_NeutralHadronIso_DR0p4To0p5 = tmpNeutralHadronIso_DR0p4To0p5/ele->Pt();
|
1748 |
fMVAVar_Rho = Rho;
|
1749 |
|
1750 |
//Do Binding of MVA input variables
|
1751 |
if ( fMVAType == ElectronIDMVA::kIDEGamma2012TrigV0
|
1752 |
|| fMVAType == ElectronIDMVA::kIDEGamma2012NonTrigV0
|
1753 |
|| fMVAType == ElectronIDMVA::kIsoRingsV0
|
1754 |
|| fMVAType == ElectronIDMVA::kIDHWW2012TrigV0
|
1755 |
) {
|
1756 |
bindVariables();
|
1757 |
}
|
1758 |
|
1759 |
Double_t mva = -9999;
|
1760 |
TMVA::Reader *reader = 0;
|
1761 |
|
1762 |
reader = fTMVAReader[GetMVABin( fMVAVar_EleEta , fMVAVar_ElePt)];
|
1763 |
mva = reader->EvaluateMVA( fMethodname );
|
1764 |
|
1765 |
if (printDebug == kTRUE) {
|
1766 |
|
1767 |
std::cout << "Debug Electron MVA-ID: "
|
1768 |
<< fMVAVar_ElePt<< " " << fMVAVar_EleEta << " "
|
1769 |
<< " --> MVABin " << GetMVABin( fMVAVar_EleEta , fMVAVar_ElePt) << " : "
|
1770 |
<< " fbrem " << fMVAVar_EleFBrem
|
1771 |
<< " kfchi2 " << fMVAVar_EleKFTrkChiSqr
|
1772 |
<< " kfhits " << fMVAVar_EleKFTrkNLayers
|
1773 |
<< " kfhitsall " << fMVAVar_EleKFTrkNHits
|
1774 |
<< " gsfchi2 " << fMVAVar_EleGsfTrackChi2OverNdof
|
1775 |
<< " deta " << fMVAVar_EleDEtaIn
|
1776 |
<< " dphi " << fMVAVar_EleDPhiIn
|
1777 |
<< " detacalo " << fMVAVar_EledEtaCalo
|
1778 |
<< " see " << fMVAVar_EleSigmaIEtaIEta
|
1779 |
<< " spp " << fMVAVar_EleSigmaIPhiIPhi
|
1780 |
<< " etawidth " << fMVAVar_EleSCEtaWidth
|
1781 |
<< " phiwidth " << fMVAVar_EleSCPhiWidth
|
1782 |
<< " e1x5e5x5 " << fMVAVar_EleOneMinusE1x5OverE5x5
|
1783 |
<< " R9 " << fMVAVar_EleR9
|
1784 |
<< " HoE " << fMVAVar_EleHoverE
|
1785 |
<< " EoP " << fMVAVar_EleEOverP
|
1786 |
<< " IoEmIoP " << fMVAVar_EleOneOverEMinusOneOverP
|
1787 |
<< " eleEoPout " << fMVAVar_EleEEleClusterOverPout
|
1788 |
<< " EoPout " << fMVAVar_EleESeedClusterOverPout
|
1789 |
<< " PreShowerOverRaw" << fMVAVar_ElePreShowerOverRaw
|
1790 |
<< " d0 " << fMVAVar_EleD0
|
1791 |
<< " ip3d " << fMVAVar_EleIP3d
|
1792 |
<< " eta " << fMVAVar_EleEta
|
1793 |
<< " pt " << fMVAVar_ElePt
|
1794 |
<< " === : === "
|
1795 |
<< mva << " "
|
1796 |
<< std::endl;
|
1797 |
std::cout << "Debug Electron MVA-ISO: "
|
1798 |
<< fMVAVar_ChargedIso_DR0p0To0p1 << " "
|
1799 |
<< fMVAVar_ChargedIso_DR0p1To0p2 << " "
|
1800 |
<< fMVAVar_ChargedIso_DR0p2To0p3 << " "
|
1801 |
<< fMVAVar_ChargedIso_DR0p3To0p4 << " "
|
1802 |
<< fMVAVar_ChargedIso_DR0p4To0p5 << " "
|
1803 |
<< fMVAVar_GammaIso_DR0p0To0p1 << " "
|
1804 |
<< fMVAVar_GammaIso_DR0p1To0p2 << " "
|
1805 |
<< fMVAVar_GammaIso_DR0p2To0p3 << " "
|
1806 |
<< fMVAVar_GammaIso_DR0p3To0p4 << " "
|
1807 |
<< fMVAVar_GammaIso_DR0p4To0p5 << " "
|
1808 |
<< fMVAVar_NeutralHadronIso_DR0p0To0p1 << " "
|
1809 |
<< fMVAVar_NeutralHadronIso_DR0p1To0p2 << " "
|
1810 |
<< fMVAVar_NeutralHadronIso_DR0p2To0p3 << " "
|
1811 |
<< fMVAVar_NeutralHadronIso_DR0p3To0p4 << " "
|
1812 |
<< fMVAVar_NeutralHadronIso_DR0p4To0p5 << " "
|
1813 |
<< fMVAVar_Rho << " "
|
1814 |
<< std::endl;
|
1815 |
}
|
1816 |
|
1817 |
return mva;
|
1818 |
}
|
1819 |
|
1820 |
|
1821 |
void ElectronIDMVA::bindVariables() {
|
1822 |
|
1823 |
// this binding is needed for variables that sometime diverge.
|
1824 |
|
1825 |
if(fMVAVar_EleFBrem < -1.)
|
1826 |
fMVAVar_EleFBrem = -1.;
|
1827 |
|
1828 |
fMVAVar_EleDEtaIn = fabs(fMVAVar_EleDEtaIn);
|
1829 |
if(fMVAVar_EleDEtaIn > 0.06)
|
1830 |
fMVAVar_EleDEtaIn = 0.06;
|
1831 |
|
1832 |
|
1833 |
fMVAVar_EleDPhiIn = fabs(fMVAVar_EleDPhiIn);
|
1834 |
if(fMVAVar_EleDPhiIn > 0.6)
|
1835 |
fMVAVar_EleDPhiIn = 0.6;
|
1836 |
|
1837 |
|
1838 |
if(fMVAVar_EleESeedClusterOverPout > 20.)
|
1839 |
fMVAVar_EleESeedClusterOverPout = 20.;
|
1840 |
|
1841 |
if(fMVAVar_EleEOverP > 20.)
|
1842 |
fMVAVar_EleEOverP = 20.;
|
1843 |
|
1844 |
if(fMVAVar_EleEEleClusterOverPout > 20.)
|
1845 |
fMVAVar_EleEEleClusterOverPout = 20.;
|
1846 |
|
1847 |
|
1848 |
fMVAVar_EledEtaCalo = fabs(fMVAVar_EledEtaCalo);
|
1849 |
if(fMVAVar_EledEtaCalo > 0.2)
|
1850 |
fMVAVar_EledEtaCalo = 0.2;
|
1851 |
|
1852 |
|
1853 |
if(fMVAVar_EleE1x5OverE5x5 < -1.)
|
1854 |
fMVAVar_EleE1x5OverE5x5 = -1;
|
1855 |
|
1856 |
if(fMVAVar_EleE1x5OverE5x5 > 2.)
|
1857 |
fMVAVar_EleE1x5OverE5x5 = 2.;
|
1858 |
|
1859 |
|
1860 |
|
1861 |
if(fMVAVar_EleR9 > 5)
|
1862 |
fMVAVar_EleR9 = 5;
|
1863 |
|
1864 |
if(fMVAVar_EleGsfTrackChi2OverNdof > 200.)
|
1865 |
fMVAVar_EleGsfTrackChi2OverNdof = 200;
|
1866 |
|
1867 |
|
1868 |
if(fMVAVar_EleKFTrkChiSqr > 10.)
|
1869 |
fMVAVar_EleKFTrkChiSqr = 10.;
|
1870 |
|
1871 |
// Needed for a bug in CMSSW_420, fixed in more recent CMSSW versions
|
1872 |
if(std::isnan(fMVAVar_EleSigmaIPhiIPhi))
|
1873 |
fMVAVar_EleSigmaIPhiIPhi = 0.;
|
1874 |
|
1875 |
|
1876 |
return;
|
1877 |
}
|