ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/MitPhysics/Utils/src/JetTools.cc
Revision: 1.5
Committed: Mon Jan 17 17:32:49 2011 UTC (14 years, 3 months ago) by ceballos
Content type: text/plain
Branch: MAIN
Changes since 1.4: +29 -0 lines
Log Message:
adding cic and alpha variables

File Contents

# User Rev Content
1 ceballos 1.1 #include "MitPhysics/Utils/interface/JetTools.h"
2    
3     ClassImp(mithep::JetTools)
4    
5     using namespace mithep;
6    
7     JetTools::JetTools()
8     {
9     // Constructor
10     }
11    
12     JetTools::~JetTools()
13     {
14     // Destructor.
15     }
16    
17     //Remember to remove the signal from particles before inputting into the function
18 ceballos 1.2 Double_t JetTools::NJettiness(const ParticleOArr *particles, const JetOArr *jets, bool UseQ, Double_t Y){
19     if(particles->GetEntries() <= 0) return 0.0;
20    
21 ceballos 1.1 Double_t fval = 0.0;
22     Double_t fvalpart;
23    
24     for(int i=0;i<int(particles->GetEntries());i++){
25     fvalpart = (particles->At(i)->Pt()) * TMath::Exp(-TMath::Abs(particles->At(i)->Eta()-Y));
26    
27     for(int j=0;j<int(jets->GetEntries());j++){
28     fvalpart = TMath::Min(fvalpart,(jets->At(j)->Pt()) *
29     (2 * TMath::CosH(TMath::Abs(jets->At(j)->Eta()-particles->At(i)->Eta()))
30     - 2 * TMath::Cos(MathUtils::DeltaPhi(jets->At(j)->Phi(),particles->At(i)->Phi()))));
31     }
32     fval = fval + fvalpart;
33     }
34 ceballos 1.2
35     if(UseQ == kTRUE) fval = fval / particles->At(0)->Pt();
36    
37 ceballos 1.1 return fval;
38     }
39    
40 ceballos 1.2 Double_t JetTools::NJettiness(const TrackOArr *tracks, const JetOArr *jets, bool UseQ, Double_t Y){
41     if(tracks->GetEntries() <= 0) return 0.0;
42    
43 ceballos 1.1 Double_t fval = 0.0;
44     Double_t fvalpart;
45    
46     for(int i=0;i<int(tracks->GetEntries());i++){
47     fvalpart = (tracks->At(i)->Pt()) * TMath::Exp(-TMath::Abs(tracks->At(i)->Eta()-Y));
48    
49     for(int j=0;j<int(jets->GetEntries());j++){
50     fvalpart = TMath::Min(fvalpart,(jets->At(j)->Pt()) *
51     (2 * TMath::CosH(TMath::Abs(jets->At(j)->Eta()-tracks->At(i)->Eta()))
52     - 2 * TMath::Cos(MathUtils::DeltaPhi(jets->At(j)->Phi(),tracks->At(i)->Phi()))));
53     }
54     fval = fval + fvalpart;
55     }
56 ceballos 1.2
57     if(UseQ == kTRUE) fval = fval / tracks->At(0)->Pt();
58    
59 ceballos 1.1 return fval;
60     }
61    
62 ceballos 1.2 Double_t JetTools::NJettiness(const JetOArr *jetsS, const JetOArr *jets, bool UseQ, Double_t Y){
63     if(jetsS->GetEntries() <= 0) return 0.0;
64    
65 ceballos 1.1 Double_t fval = 0.0;
66     Double_t fvalpart;
67    
68     for(int i=0;i<int(jetsS->GetEntries());i++){
69     fvalpart = (jetsS->At(i)->Pt()) * TMath::Exp(-TMath::Abs(jetsS->At(i)->Eta()-Y));
70    
71     for(int j=0;j<int(jets->GetEntries());j++){
72     fvalpart = TMath::Min(fvalpart,(jets->At(j)->Pt()) *
73     (2 * TMath::CosH(TMath::Abs(jets->At(j)->Eta()-jetsS->At(i)->Eta()))
74     - 2 * TMath::Cos(MathUtils::DeltaPhi(jets->At(j)->Phi(),jetsS->At(i)->Phi()))));
75     }
76     fval = fval + fvalpart;
77     }
78 ceballos 1.2
79     if(UseQ == kTRUE) fval = fval / jetsS->At(0)->Pt();
80    
81     return fval;
82     }
83    
84     Double_t JetTools::NJettiness(const CaloTowerOArr *calos, const JetOArr *jets, bool UseQ, Double_t Y){
85     if(calos->GetEntries() <= 0) return 0.0;
86    
87     Double_t fval = 0.0;
88     Double_t fvalpart;
89    
90     for(int i=0;i<int(calos->GetEntries());i++){
91     fvalpart = (calos->At(i)->Pt()) * TMath::Exp(-TMath::Abs(calos->At(i)->Eta()-Y));
92    
93     for(int j=0;j<int(jets->GetEntries());j++){
94     fvalpart = TMath::Min(fvalpart,(jets->At(j)->Pt()) *
95     (2 * TMath::CosH(TMath::Abs(jets->At(j)->Eta()-calos->At(i)->Eta()))
96     - 2 * TMath::Cos(MathUtils::DeltaPhi(jets->At(j)->Phi(),calos->At(i)->Phi()))));
97     }
98     fval = fval + fvalpart;
99     }
100    
101     if(UseQ == kTRUE) fval = fval / calos->At(0)->Pt();
102    
103 ceballos 1.1 return fval;
104     }
105    
106     //M_r
107     Double_t JetTools::M_r(const ParticleOArr *particles){
108    
109     if(particles->GetEntries() < 2) return -999.;
110    
111     Double_t E0 = particles->At(0)->E();
112     Double_t E1 = particles->At(1)->E();
113     Double_t Pz0 = particles->At(0)->Pz();
114     Double_t Pz1 = particles->At(1)->Pz();
115    
116     Double_t den = TMath::Power(Pz0-Pz1, 2) - TMath::Power(E0-E1,2);
117     if(den <= 0) return -100.;
118    
119     return 2.0*TMath::Sqrt(TMath::Power(E0*Pz1 - E1*Pz0, 2)/den);
120     }
121    
122     //Beta_r
123     Double_t JetTools::Beta_r(const ParticleOArr *particles){
124    
125     if(particles->GetEntries() < 2) return -999.;
126    
127     Double_t E0 = particles->At(0)->E();
128     Double_t E1 = particles->At(1)->E();
129     Double_t Pz0 = particles->At(0)->Pz();
130     Double_t Pz1 = particles->At(1)->Pz();
131    
132     return (E0-E1)/(Pz0-Pz1);
133     }
134    
135     //M_r_t
136     Double_t JetTools::M_r_t(const ParticleOArr *particles, const Met *met){
137    
138     if(particles->GetEntries() < 2) return -999.;
139    
140     Double_t Pt0 = particles->At(0)->Pt();
141     Double_t Pt1 = particles->At(1)->Pt();
142     Double_t etmiss = met->Pt();
143    
144     Double_t Px0 = particles->At(0)->Px();
145     Double_t Px1 = particles->At(1)->Px();
146     Double_t metx = met->Px();
147     Double_t Py0 = particles->At(0)->Py();
148     Double_t Py1 = particles->At(1)->Py();
149     Double_t mety = met->Py();
150    
151     return TMath::Sqrt(0.5*etmiss*(Pt0 + Pt1) - 0.5*(metx*(Px0 + Px1) + mety*(Py0 + Py1)));
152     }
153    
154     //Razor
155     Double_t JetTools::Razor(const ParticleOArr *particles, const Met *met){
156     if(particles->GetEntries() < 2) return -999.;
157    
158     Double_t mr = M_r(particles);
159     Double_t mrt = M_r_t(particles,met);
160    
161     if(mr != 0) return mrt/mr;
162    
163     return -999.;
164     }
165    
166     //Cosine Omega
167 ceballos 1.3 Double_t JetTools::CosineOmega(const Particle *particles0, const Particle *particles1){
168 ceballos 1.1
169 ceballos 1.3 TLorentzVector v_L1(particles0->Px(),particles0->Py(),particles0->Pz(),particles0->E());
170     TLorentzVector v_L2(particles1->Px(),particles1->Py(),particles1->Pz(),particles1->E());
171 ceballos 1.1
172     Double_t beta = (v_L1.P()-v_L2.P())/(v_L1.Pz()-v_L2.Pz());
173    
174     TVector3 B;
175     B.SetXYZ(0.0,0.0,-1.0*beta);
176    
177     v_L1.Boost(B);
178     v_L2.Boost(B);
179    
180     Double_t cosomega = v_L1.Vect().Dot(v_L2.Vect())/(v_L1.P()*v_L2.P());
181    
182     return cosomega;
183     }
184    
185     //Transverse Higgs mass
186 ceballos 1.3 Double_t JetTools::MtHiggs(const ParticleOArr * leptons,
187 ceballos 1.4 const Met *met, double metFraction[2], int nsel){
188 ceballos 1.3 if(leptons->Entries() < 2) return -999.0;
189    
190 ceballos 1.1 double mtHiggs = -999.0;
191 ceballos 1.3 double enell = 0.0;
192     double enenn = 0.0;
193     double enex = 0.0;
194     double eney = 0.0;
195     double mll = 0.0;
196     double mnu = 0.0;
197     CompositeParticle *dilepton = new CompositeParticle();
198     dilepton->AddDaughter(leptons->At(0));
199     dilepton->AddDaughter(leptons->At(1));
200 ceballos 1.1
201     if (nsel == 0){ // Use of Mt mass and mnu == mll
202     enell = TMath::Sqrt(dilepton->Pt()*dilepton->Pt() + dilepton->Mt()*dilepton->Mt());
203     enenn = TMath::Sqrt(met->Pt() *met->Pt() + dilepton->Mt()*dilepton->Mt());
204     enex = dilepton->Px() + met->Px();
205     eney = dilepton->Py() + met->Py();
206     mll = dilepton->Mass();
207     mnu = mll;
208     }
209     else if(nsel == 1){ // Use of Mt mass and mnu == 0
210     enell = TMath::Sqrt(dilepton->Pt()*dilepton->Pt() + dilepton->Mt()*dilepton->Mt());
211     enenn = TMath::Sqrt(met->Pt() *met->Pt() + 0.0*0.0);
212     enex = dilepton->Px() + met->Px();
213     eney = dilepton->Py() + met->Py();
214     mll = dilepton->Mass();
215     mnu = 0.0;
216     }
217     else if(nsel == 2){ // Use of M mass and mnu == mll
218     enell = TMath::Sqrt(dilepton->Pt()*dilepton->Pt() + dilepton->Mass()*dilepton->Mass());
219     enenn = TMath::Sqrt(met->Pt() *met->Pt() + dilepton->Mass()*dilepton->Mass());
220     enex = dilepton->Px() + met->Px();
221     eney = dilepton->Py() + met->Py();
222     mll = dilepton->Mass();
223     mnu = mll;
224     }
225     else if(nsel == 3){ // Use of M mass and mnu == 0
226     enell = TMath::Sqrt(dilepton->Pt()*dilepton->Pt() + dilepton->Mass()*dilepton->Mass());
227     enenn = TMath::Sqrt(met->Pt() *met->Pt() + 0.0*0.0);
228     enex = dilepton->Px() + met->Px();
229     eney = dilepton->Py() + met->Py();
230     mll = dilepton->Mass();
231     mnu = 0.0;
232     }
233 ceballos 1.4 else if(nsel == 4){ // Use of Mt mass and replacing mnu using the met optimal
234     enell = TMath::Sqrt(dilepton->Pt()*dilepton->Pt() + dilepton->Mt()*dilepton->Mt());
235     enenn = TMath::Sqrt(met->Pt() *met->Pt() + 0.0*0.0);
236     enex = dilepton->Px() + met->Px();
237     eney = dilepton->Py() + met->Py();
238     mll = dilepton->Mass();
239     double metAuxPx[2] = {met->Px() * metFraction[0],
240     met->Px() * (1.0 - metFraction[0])};
241     double metAuxPy[2] = {met->Py() * metFraction[1],
242     met->Py() * (1.0 - metFraction[1])};
243     double ene = TMath::Sqrt(metAuxPx[0]*metAuxPx[0]+metAuxPy[0]*metAuxPy[0]) +
244     TMath::Sqrt(metAuxPx[1]*metAuxPx[1]+metAuxPy[1]*metAuxPy[1]);
245     double px = metAuxPx[0] + metAuxPx[1];
246     double py = metAuxPy[0] + metAuxPy[1];
247     mnu = TMath::Sqrt(ene*ene - px*px - py*py);
248     }
249     else if(nsel == 5){ // Using the optimal met value
250     double metAuxPx[2] = {met->Px() * metFraction[0],
251     met->Px() * (1.0 - metFraction[0])};
252     double metAuxPy[2] = {met->Py() * metFraction[1],
253     met->Py() * (1.0 - metFraction[1])};
254     double ene = leptons->At(0)->Pt() + leptons->At(1)->Pt() +
255     TMath::Sqrt(metAuxPx[0]*metAuxPx[0]+metAuxPy[0]*metAuxPy[0]) +
256     TMath::Sqrt(metAuxPx[1]*metAuxPx[1]+metAuxPy[1]*metAuxPy[1]);
257     double px = leptons->At(0)->Px() + leptons->At(1)->Px() +
258     metAuxPx[0] + metAuxPx[1];
259     double py = leptons->At(0)->Py() + leptons->At(1)->Py() +
260     metAuxPy[0] + metAuxPy[1];
261     mtHiggs = ene*ene - px*px - py*py;
262     }
263     else if(nsel == 6){ // Use the formula from hep-ph:1006.4998
264 ceballos 1.3 mtHiggs = 2*leptons->At(0)->Pt()*leptons->At(0)->Pt() + 2*leptons->At(1)->Pt()*leptons->At(1)->Pt() + 3 * (
265     leptons->At(0)->Pt()*leptons->At(1)->Pt() + met->Pt()*(leptons->At(0)->Pt()+leptons->At(1)->Pt())
266     - met->Px()*dilepton->Px() - met->Py()*dilepton->Py()
267     - leptons->At(0)->Px()*leptons->At(1)->Px() - leptons->At(0)->Py()*leptons->At(1)->Py());
268 ceballos 1.1 }
269    
270 ceballos 1.4 if(nsel >= 0 && nsel <= 4){
271 ceballos 1.3 mtHiggs = mll*mll + mnu*mnu + 2.0*(enell*enenn - enex*enex - eney*eney);
272     }
273 ceballos 1.1 if(mtHiggs <= 0) mtHiggs = 0.0;
274     else mtHiggs = TMath::Sqrt(mtHiggs);
275    
276 ceballos 1.3 delete dilepton;
277    
278 ceballos 1.1 return mtHiggs;
279     }
280 ceballos 1.5
281     void JetTools::Alpha(Double_t AlphaVar[2], const TrackCol *tracks, Jet *jet, const VertexCol *vertices, Double_t delta_z, Double_t delta_cone){
282     AlphaVar[0] = -1.0;
283     AlphaVar[1] = -1.0;
284     if(tracks->GetEntries() <= 0) return;
285    
286     double Pt_jets_X = 0. ;
287     double Pt_jets_Y = 0. ;
288     double Pt_jets_X_tot = 0. ;
289     double Pt_jets_Y_tot = 0. ;
290    
291     for(int i=0;i<int(tracks->GetEntries());i++){
292     if(MathUtils::DeltaR(tracks->At(i)->Mom(),jet->Mom()) < delta_cone){
293     Pt_jets_X_tot += tracks->At(i)->Px();
294     Pt_jets_Y_tot += tracks->At(i)->Py();
295     double pDz = TMath::Abs(tracks->At(i)->DzCorrected(*vertices->At(0)));
296     if(pDz < delta_z){
297     Pt_jets_X += tracks->At(i)->Px();
298     Pt_jets_Y += tracks->At(i)->Py();
299     }
300     }
301     }
302    
303     if(jet->Pt() > 0)
304     AlphaVar[0] = sqrt(Pt_jets_X*Pt_jets_X + Pt_jets_Y*Pt_jets_Y) / jet->Pt();
305     if(Pt_jets_X_tot > 0 || Pt_jets_Y_tot > 0)
306     AlphaVar[1] = sqrt(Pt_jets_X*Pt_jets_X + Pt_jets_Y*Pt_jets_Y) / sqrt(Pt_jets_X_tot*Pt_jets_X_tot + Pt_jets_Y_tot*Pt_jets_Y_tot);
307     }
308