1 |
#include "MitPhysics/Utils/interface/JetTools.h"
|
2 |
#include <algorithm>
|
3 |
#include <vector>
|
4 |
|
5 |
ClassImp(mithep::JetTools)
|
6 |
|
7 |
using namespace mithep;
|
8 |
|
9 |
|
10 |
JetTools::JetTools()
|
11 |
{
|
12 |
// Constructor
|
13 |
}
|
14 |
|
15 |
JetTools::~JetTools()
|
16 |
{
|
17 |
// Destructor.
|
18 |
}
|
19 |
|
20 |
//Remember to remove the signal from particles before inputting into the function
|
21 |
Double_t JetTools::NJettiness(const ParticleOArr *particles, const JetOArr *jets, double Q, double Y){
|
22 |
if(particles->GetEntries() <= 0) return 0.0;
|
23 |
|
24 |
Double_t fval = 0.0;
|
25 |
Double_t fvalpart;
|
26 |
|
27 |
for(int i=0;i<int(particles->GetEntries());i++){
|
28 |
fvalpart = (particles->At(i)->Pt()) * TMath::Exp(-TMath::Abs(particles->At(i)->Eta()-Y));
|
29 |
|
30 |
for(int j=0;j<int(jets->GetEntries());j++){
|
31 |
fvalpart = TMath::Min(fvalpart,(jets->At(j)->Pt()) *
|
32 |
(2 * TMath::CosH(TMath::Abs(jets->At(j)->Eta()-particles->At(i)->Eta()))
|
33 |
- 2 * TMath::Cos(MathUtils::DeltaPhi(jets->At(j)->Phi(),particles->At(i)->Phi()))));
|
34 |
}
|
35 |
fval = fval + fvalpart;
|
36 |
}
|
37 |
|
38 |
fval = fval / Q;
|
39 |
|
40 |
return fval;
|
41 |
}
|
42 |
|
43 |
Double_t JetTools::NJettiness(const PFCandidateOArr *pfCandidates, const JetOArr *jets, double Q, double Y){
|
44 |
if(pfCandidates->GetEntries() <= 0) return 0.0;
|
45 |
|
46 |
Double_t fval = 0.0;
|
47 |
Double_t fvalpart;
|
48 |
|
49 |
for(int i=0;i<int(pfCandidates->GetEntries());i++){
|
50 |
fvalpart = (pfCandidates->At(i)->Pt()) * TMath::Exp(-TMath::Abs(pfCandidates->At(i)->Eta()-Y));
|
51 |
|
52 |
for(int j=0;j<int(jets->GetEntries());j++){
|
53 |
fvalpart = TMath::Min(fvalpart,(jets->At(j)->Pt()) *
|
54 |
(2 * TMath::CosH(TMath::Abs(jets->At(j)->Eta()-pfCandidates->At(i)->Eta()))
|
55 |
- 2 * TMath::Cos(MathUtils::DeltaPhi(jets->At(j)->Phi(),pfCandidates->At(i)->Phi()))));
|
56 |
}
|
57 |
fval = fval + fvalpart;
|
58 |
}
|
59 |
|
60 |
fval = fval / Q;
|
61 |
|
62 |
return fval;
|
63 |
}
|
64 |
|
65 |
Double_t JetTools::NJettiness(const TrackOArr *tracks, const JetOArr *jets, double Q, double Y){
|
66 |
if(tracks->GetEntries() <= 0) return 0.0;
|
67 |
|
68 |
Double_t fval = 0.0;
|
69 |
Double_t fvalpart;
|
70 |
|
71 |
for(int i=0;i<int(tracks->GetEntries());i++){
|
72 |
fvalpart = (tracks->At(i)->Pt()) * TMath::Exp(-TMath::Abs(tracks->At(i)->Eta()-Y));
|
73 |
|
74 |
for(int j=0;j<int(jets->GetEntries());j++){
|
75 |
fvalpart = TMath::Min(fvalpart,(jets->At(j)->Pt()) *
|
76 |
(2 * TMath::CosH(TMath::Abs(jets->At(j)->Eta()-tracks->At(i)->Eta()))
|
77 |
- 2 * TMath::Cos(MathUtils::DeltaPhi(jets->At(j)->Phi(),tracks->At(i)->Phi()))));
|
78 |
}
|
79 |
fval = fval + fvalpart;
|
80 |
}
|
81 |
|
82 |
fval = fval / Q;
|
83 |
|
84 |
return fval;
|
85 |
}
|
86 |
|
87 |
Double_t JetTools::NJettiness(const JetOArr *jetsS, const JetOArr *jets, double Q, double Y){
|
88 |
if(jetsS->GetEntries() <= 0) return 0.0;
|
89 |
|
90 |
Double_t fval = 0.0;
|
91 |
Double_t fvalpart;
|
92 |
|
93 |
for(int i=0;i<int(jetsS->GetEntries());i++){
|
94 |
fvalpart = (jetsS->At(i)->Pt()) * TMath::Exp(-TMath::Abs(jetsS->At(i)->Eta()-Y));
|
95 |
|
96 |
for(int j=0;j<int(jets->GetEntries());j++){
|
97 |
fvalpart = TMath::Min(fvalpart,(jets->At(j)->Pt()) *
|
98 |
(2 * TMath::CosH(TMath::Abs(jets->At(j)->Eta()-jetsS->At(i)->Eta()))
|
99 |
- 2 * TMath::Cos(MathUtils::DeltaPhi(jets->At(j)->Phi(),jetsS->At(i)->Phi()))));
|
100 |
}
|
101 |
fval = fval + fvalpart;
|
102 |
}
|
103 |
|
104 |
fval = fval / Q;
|
105 |
|
106 |
return fval;
|
107 |
}
|
108 |
|
109 |
Double_t JetTools::NJettiness(const CaloTowerOArr *calos, const JetOArr *jets, double Q, double Y){
|
110 |
if(calos->GetEntries() <= 0) return 0.0;
|
111 |
|
112 |
Double_t fval = 0.0;
|
113 |
Double_t fvalpart;
|
114 |
|
115 |
for(int i=0;i<int(calos->GetEntries());i++){
|
116 |
fvalpart = (calos->At(i)->Pt()) * TMath::Exp(-TMath::Abs(calos->At(i)->Eta()-Y));
|
117 |
|
118 |
for(int j=0;j<int(jets->GetEntries());j++){
|
119 |
fvalpart = TMath::Min(fvalpart,(jets->At(j)->Pt()) *
|
120 |
(2 * TMath::CosH(TMath::Abs(jets->At(j)->Eta()-calos->At(i)->Eta()))
|
121 |
- 2 * TMath::Cos(MathUtils::DeltaPhi(jets->At(j)->Phi(),calos->At(i)->Phi()))));
|
122 |
}
|
123 |
fval = fval + fvalpart;
|
124 |
}
|
125 |
|
126 |
fval = fval / Q;
|
127 |
|
128 |
return fval;
|
129 |
}
|
130 |
|
131 |
//M_r
|
132 |
Double_t JetTools::M_r(const ParticleOArr *particles){
|
133 |
|
134 |
if(particles->GetEntries() < 2) return -999.;
|
135 |
|
136 |
Double_t E0 = particles->At(0)->E();
|
137 |
Double_t E1 = particles->At(1)->E();
|
138 |
Double_t Pz0 = particles->At(0)->Pz();
|
139 |
Double_t Pz1 = particles->At(1)->Pz();
|
140 |
|
141 |
Double_t den = TMath::Power(Pz0-Pz1, 2) - TMath::Power(E0-E1,2);
|
142 |
if(den <= 0) return -100.;
|
143 |
|
144 |
return 2.0*TMath::Sqrt(TMath::Power(E0*Pz1 - E1*Pz0, 2)/den);
|
145 |
}
|
146 |
|
147 |
//Beta_r
|
148 |
Double_t JetTools::Beta_r(const ParticleOArr *particles){
|
149 |
|
150 |
if(particles->GetEntries() < 2) return -999.;
|
151 |
|
152 |
Double_t E0 = particles->At(0)->E();
|
153 |
Double_t E1 = particles->At(1)->E();
|
154 |
Double_t Pz0 = particles->At(0)->Pz();
|
155 |
Double_t Pz1 = particles->At(1)->Pz();
|
156 |
|
157 |
return (E0-E1)/(Pz0-Pz1);
|
158 |
}
|
159 |
|
160 |
//M_r_t
|
161 |
Double_t JetTools::M_r_t(const ParticleOArr *particles, const Met *met){
|
162 |
|
163 |
if(particles->GetEntries() < 2) return -999.;
|
164 |
|
165 |
Double_t Pt0 = particles->At(0)->Pt();
|
166 |
Double_t Pt1 = particles->At(1)->Pt();
|
167 |
Double_t etmiss = met->Pt();
|
168 |
|
169 |
Double_t Px0 = particles->At(0)->Px();
|
170 |
Double_t Px1 = particles->At(1)->Px();
|
171 |
Double_t metx = met->Px();
|
172 |
Double_t Py0 = particles->At(0)->Py();
|
173 |
Double_t Py1 = particles->At(1)->Py();
|
174 |
Double_t mety = met->Py();
|
175 |
|
176 |
return TMath::Sqrt(0.5*etmiss*(Pt0 + Pt1) - 0.5*(metx*(Px0 + Px1) + mety*(Py0 + Py1)));
|
177 |
}
|
178 |
|
179 |
//Razor
|
180 |
Double_t JetTools::Razor(const ParticleOArr *particles, const Met *met){
|
181 |
if(particles->GetEntries() < 2) return -999.;
|
182 |
|
183 |
Double_t mr = M_r(particles);
|
184 |
Double_t mrt = M_r_t(particles,met);
|
185 |
|
186 |
if(mr != 0) return mrt/mr;
|
187 |
|
188 |
return -999.;
|
189 |
}
|
190 |
|
191 |
//Cosine Omega
|
192 |
Double_t JetTools::CosineOmega(const Particle *particles0, const Particle *particles1){
|
193 |
|
194 |
TLorentzVector v_L1(particles0->Px(),particles0->Py(),particles0->Pz(),particles0->E());
|
195 |
TLorentzVector v_L2(particles1->Px(),particles1->Py(),particles1->Pz(),particles1->E());
|
196 |
|
197 |
Double_t beta = (v_L1.P()-v_L2.P())/(v_L1.Pz()-v_L2.Pz());
|
198 |
|
199 |
TVector3 B;
|
200 |
B.SetXYZ(0.0,0.0,-1.0*beta);
|
201 |
|
202 |
v_L1.Boost(B);
|
203 |
v_L2.Boost(B);
|
204 |
|
205 |
Double_t cosomega = v_L1.Vect().Dot(v_L2.Vect())/(v_L1.P()*v_L2.P());
|
206 |
|
207 |
return cosomega;
|
208 |
}
|
209 |
|
210 |
//Transverse Higgs mass
|
211 |
Double_t JetTools::MtHiggs(const ParticleOArr * leptons,
|
212 |
const Met *met, double metFraction[2], int nsel){
|
213 |
if(leptons->Entries() < 2) return -999.0;
|
214 |
|
215 |
double mtHiggs = -999.0;
|
216 |
double enell = 0.0;
|
217 |
double enenn = 0.0;
|
218 |
double enex = 0.0;
|
219 |
double eney = 0.0;
|
220 |
double mll = 0.0;
|
221 |
double mnu = 0.0;
|
222 |
CompositeParticle *dilepton = new CompositeParticle();
|
223 |
dilepton->AddDaughter(leptons->At(0));
|
224 |
dilepton->AddDaughter(leptons->At(1));
|
225 |
|
226 |
if (nsel == 0){ // Use of Mt mass and mnu == mll
|
227 |
enell = TMath::Sqrt(dilepton->Pt()*dilepton->Pt() + dilepton->Mt()*dilepton->Mt());
|
228 |
enenn = TMath::Sqrt(met->Pt() *met->Pt() + dilepton->Mt()*dilepton->Mt());
|
229 |
enex = dilepton->Px() + met->Px();
|
230 |
eney = dilepton->Py() + met->Py();
|
231 |
mll = dilepton->Mass();
|
232 |
mnu = mll;
|
233 |
}
|
234 |
else if(nsel == 1){ // Use of Mt mass and mnu == 0
|
235 |
enell = TMath::Sqrt(dilepton->Pt()*dilepton->Pt() + dilepton->Mt()*dilepton->Mt());
|
236 |
enenn = TMath::Sqrt(met->Pt() *met->Pt() + 0.0*0.0);
|
237 |
enex = dilepton->Px() + met->Px();
|
238 |
eney = dilepton->Py() + met->Py();
|
239 |
mll = dilepton->Mass();
|
240 |
mnu = 0.0;
|
241 |
}
|
242 |
else if(nsel == 2){ // Use of M mass and mnu == mll
|
243 |
enell = TMath::Sqrt(dilepton->Pt()*dilepton->Pt() + dilepton->Mass()*dilepton->Mass());
|
244 |
enenn = TMath::Sqrt(met->Pt() *met->Pt() + dilepton->Mass()*dilepton->Mass());
|
245 |
enex = dilepton->Px() + met->Px();
|
246 |
eney = dilepton->Py() + met->Py();
|
247 |
mll = dilepton->Mass();
|
248 |
mnu = mll;
|
249 |
}
|
250 |
else if(nsel == 3){ // Use of M mass and mnu == 0
|
251 |
enell = TMath::Sqrt(dilepton->Pt()*dilepton->Pt() + dilepton->Mass()*dilepton->Mass());
|
252 |
enenn = TMath::Sqrt(met->Pt() *met->Pt() + 0.0*0.0);
|
253 |
enex = dilepton->Px() + met->Px();
|
254 |
eney = dilepton->Py() + met->Py();
|
255 |
mll = dilepton->Mass();
|
256 |
mnu = 0.0;
|
257 |
}
|
258 |
else if(nsel == 4){ // Use of Mt mass and replacing mnu using the met optimal
|
259 |
enell = TMath::Sqrt(dilepton->Pt()*dilepton->Pt() + dilepton->Mt()*dilepton->Mt());
|
260 |
enenn = TMath::Sqrt(met->Pt() *met->Pt() + 0.0*0.0);
|
261 |
enex = dilepton->Px() + met->Px();
|
262 |
eney = dilepton->Py() + met->Py();
|
263 |
mll = dilepton->Mass();
|
264 |
double metAuxPx[2] = {met->Px() * metFraction[0],
|
265 |
met->Px() * (1.0 - metFraction[0])};
|
266 |
double metAuxPy[2] = {met->Py() * metFraction[1],
|
267 |
met->Py() * (1.0 - metFraction[1])};
|
268 |
double ene = TMath::Sqrt(metAuxPx[0]*metAuxPx[0]+metAuxPy[0]*metAuxPy[0]) +
|
269 |
TMath::Sqrt(metAuxPx[1]*metAuxPx[1]+metAuxPy[1]*metAuxPy[1]);
|
270 |
double px = metAuxPx[0] + metAuxPx[1];
|
271 |
double py = metAuxPy[0] + metAuxPy[1];
|
272 |
mnu = TMath::Sqrt(ene*ene - px*px - py*py);
|
273 |
}
|
274 |
else if(nsel == 5){ // Using the optimal met value
|
275 |
double metAuxPx[2] = {met->Px() * metFraction[0],
|
276 |
met->Px() * (1.0 - metFraction[0])};
|
277 |
double metAuxPy[2] = {met->Py() * metFraction[1],
|
278 |
met->Py() * (1.0 - metFraction[1])};
|
279 |
double ene = leptons->At(0)->Pt() + leptons->At(1)->Pt() +
|
280 |
TMath::Sqrt(metAuxPx[0]*metAuxPx[0]+metAuxPy[0]*metAuxPy[0]) +
|
281 |
TMath::Sqrt(metAuxPx[1]*metAuxPx[1]+metAuxPy[1]*metAuxPy[1]);
|
282 |
double px = leptons->At(0)->Px() + leptons->At(1)->Px() +
|
283 |
metAuxPx[0] + metAuxPx[1];
|
284 |
double py = leptons->At(0)->Py() + leptons->At(1)->Py() +
|
285 |
metAuxPy[0] + metAuxPy[1];
|
286 |
mtHiggs = ene*ene - px*px - py*py;
|
287 |
}
|
288 |
else if(nsel == 6){ // Use the formula from hep-ph:1006.4998
|
289 |
mtHiggs = 2*leptons->At(0)->Pt()*leptons->At(0)->Pt() + 2*leptons->At(1)->Pt()*leptons->At(1)->Pt() + 3 * (
|
290 |
leptons->At(0)->Pt()*leptons->At(1)->Pt() + met->Pt()*(leptons->At(0)->Pt()+leptons->At(1)->Pt())
|
291 |
- met->Px()*dilepton->Px() - met->Py()*dilepton->Py()
|
292 |
- leptons->At(0)->Px()*leptons->At(1)->Px() - leptons->At(0)->Py()*leptons->At(1)->Py());
|
293 |
}
|
294 |
else if(nsel == 7){ // Use of M mass and mnu == 0
|
295 |
double deltaPhiDileptonMet = MathUtils::DeltaPhi(dilepton->Phi(),
|
296 |
met->Phi());
|
297 |
mtHiggs = 2.0*dilepton->Pt()*met->Pt()*(1.0 - cos(deltaPhiDileptonMet));
|
298 |
}
|
299 |
|
300 |
if(nsel >= 0 && nsel <= 4){
|
301 |
mtHiggs = mll*mll + mnu*mnu + 2.0*(enell*enenn - enex*enex - eney*eney);
|
302 |
}
|
303 |
|
304 |
if(mtHiggs <= 0) mtHiggs = 0.0;
|
305 |
else mtHiggs = TMath::Sqrt(mtHiggs);
|
306 |
|
307 |
delete dilepton;
|
308 |
|
309 |
return mtHiggs;
|
310 |
}
|
311 |
|
312 |
Double_t JetTools::Beta(const TrackCol *tracks, Jet *jet, const Vertex *vertex, Double_t delta_z, Double_t delta_cone){
|
313 |
|
314 |
if(tracks->GetEntries() <= 0) return 1.0;
|
315 |
|
316 |
double Pt_jets_X = 0. ;
|
317 |
double Pt_jets_Y = 0. ;
|
318 |
double Pt_jets_X_tot = 0. ;
|
319 |
double Pt_jets_Y_tot = 0. ;
|
320 |
|
321 |
for(int i=0;i<int(tracks->GetEntries());i++){
|
322 |
if(MathUtils::DeltaR(tracks->At(i)->Mom(),jet->Mom()) < delta_cone){
|
323 |
Pt_jets_X_tot += tracks->At(i)->Px();
|
324 |
Pt_jets_Y_tot += tracks->At(i)->Py();
|
325 |
double pDz = TMath::Abs(tracks->At(i)->DzCorrected(*vertex));
|
326 |
if(pDz < delta_z){
|
327 |
Pt_jets_X += tracks->At(i)->Px();
|
328 |
Pt_jets_Y += tracks->At(i)->Py();
|
329 |
}
|
330 |
}
|
331 |
}
|
332 |
|
333 |
if(sqrt(Pt_jets_X_tot*Pt_jets_X_tot + Pt_jets_Y_tot*Pt_jets_Y_tot) > 0)
|
334 |
return sqrt(Pt_jets_X*Pt_jets_X + Pt_jets_Y*Pt_jets_Y) / sqrt(Pt_jets_X_tot*Pt_jets_X_tot + Pt_jets_Y_tot*Pt_jets_Y_tot);
|
335 |
|
336 |
return 1.0;
|
337 |
}
|
338 |
|
339 |
|
340 |
Double_t JetTools::Beta(const PFJet *jet, const Vertex *vertex, Double_t delta_z){
|
341 |
double Pt_jets= 0. ;
|
342 |
double Pt_jetsTot = 0. ;
|
343 |
|
344 |
for(UInt_t i=0;i<jet->NPFCands();i++){
|
345 |
if(jet->PFCand(i)->BestTrk()){
|
346 |
Pt_jetsTot += jet->PFCand(i)->BestTrk()->Pt();
|
347 |
double pDz = TMath::Abs(jet->PFCand(i)->BestTrk()->DzCorrected(*vertex));
|
348 |
if(pDz < delta_z){
|
349 |
Pt_jets += jet->PFCand(i)->BestTrk()->Pt();
|
350 |
}
|
351 |
}
|
352 |
}
|
353 |
|
354 |
Double_t beta = 1.0;
|
355 |
if (Pt_jetsTot > 0)
|
356 |
beta = Pt_jets/Pt_jetsTot;
|
357 |
|
358 |
return beta;
|
359 |
}
|
360 |
|
361 |
Double_t JetTools::Beta2(const PFJet *jet, const Vertex *vertex, Double_t delta_z){
|
362 |
double Pt_jets= 0. ;
|
363 |
double Pt_jetsTot = 0. ;
|
364 |
|
365 |
for(UInt_t i=0;i<jet->NPFCands();i++){
|
366 |
if(jet->PFCand(i)->BestTrk()){
|
367 |
Pt_jetsTot += jet->PFCand(i)->BestTrk()->Pt()*jet->PFCand(i)->BestTrk()->Pt();
|
368 |
double pDz = TMath::Abs(jet->PFCand(i)->BestTrk()->DzCorrected(*vertex));
|
369 |
if(pDz < delta_z){
|
370 |
Pt_jets += jet->PFCand(i)->BestTrk()->Pt()*jet->PFCand(i)->BestTrk()->Pt();
|
371 |
}
|
372 |
}
|
373 |
}
|
374 |
|
375 |
Double_t beta = 1.0;
|
376 |
if (Pt_jetsTot > 0)
|
377 |
beta = Pt_jets/Pt_jetsTot;
|
378 |
return beta;
|
379 |
}
|
380 |
|
381 |
|
382 |
Bool_t JetTools::PassBetaVertexAssociationCut(const PFJet *jet, const Vertex *referenceVertex, const VertexCol *vertices, Double_t delta_z) {
|
383 |
|
384 |
Bool_t passBetaCut = kTRUE;
|
385 |
if(vertices->GetEntries() > 0) {
|
386 |
Double_t Beta = JetTools::Beta(jet, referenceVertex, 0.2);
|
387 |
Double_t Beta_other = 0.0;
|
388 |
for(UInt_t nv=0; nv<vertices->GetEntries(); nv++){
|
389 |
if (referenceVertex == vertices->At(nv)) continue;
|
390 |
Double_t BetaAux = JetTools::Beta(jet, vertices->At(nv), 0.2);
|
391 |
if(BetaAux > Beta_other) Beta_other = BetaAux;
|
392 |
}
|
393 |
if(Beta_other > Beta) passBetaCut = kFALSE;
|
394 |
}
|
395 |
|
396 |
return passBetaCut;
|
397 |
|
398 |
}
|
399 |
|
400 |
Bool_t JetTools::PassBeta2VertexAssociationCut(const PFJet *jet, const Vertex *referenceVertex, const VertexCol *vertices, Double_t delta_z) {
|
401 |
|
402 |
Bool_t passBetaCut = kTRUE;
|
403 |
if(vertices->GetEntries() > 0) {
|
404 |
Double_t Beta = JetTools::Beta2(jet, referenceVertex, 0.2);
|
405 |
Double_t Beta_other = 0.0;
|
406 |
for(UInt_t nv=0; nv<vertices->GetEntries(); nv++){
|
407 |
if (referenceVertex == vertices->At(nv)) continue;
|
408 |
Double_t BetaAux = JetTools::Beta2(jet, vertices->At(nv), 0.2);
|
409 |
if(BetaAux > Beta_other) Beta_other = BetaAux;
|
410 |
}
|
411 |
if(Beta_other > Beta) passBetaCut = kFALSE;
|
412 |
}
|
413 |
|
414 |
return passBetaCut;
|
415 |
|
416 |
}
|
417 |
|
418 |
|
419 |
Int_t JetTools::MaxBetaVertexIndex(const PFJet *jet, const VertexCol *vertices, Double_t delta_z=0.2){
|
420 |
|
421 |
Int_t vertexIndex = -1;
|
422 |
double beta = -0.1;
|
423 |
for (UInt_t v=0; v < vertices->GetEntries(); v++){
|
424 |
Double_t betaTmp = JetTools::Beta(jet, vertices->At(v), delta_z);
|
425 |
if (betaTmp > beta) {
|
426 |
beta = betaTmp;
|
427 |
vertexIndex = v;
|
428 |
}
|
429 |
}
|
430 |
return vertexIndex;
|
431 |
|
432 |
}
|
433 |
|
434 |
Int_t JetTools::MaxBeta2VertexIndex(const PFJet *jet, const VertexCol *vertices, Double_t delta_z=0.2){
|
435 |
|
436 |
Int_t vertexIndex = -1;
|
437 |
double beta = -0.1;
|
438 |
for (UInt_t v=0; v < vertices->GetEntries(); v++){
|
439 |
Double_t betaTmp = JetTools::Beta2(jet, vertices->At(v), delta_z);
|
440 |
if (betaTmp > beta) {
|
441 |
beta = betaTmp;
|
442 |
vertexIndex = v;
|
443 |
}
|
444 |
}
|
445 |
return vertexIndex;
|
446 |
|
447 |
}
|
448 |
|
449 |
|
450 |
Int_t JetTools::JetToPVAssociation(const PFJet *jet, const VertexCol *vertices, Double_t delta_z=0.2){
|
451 |
|
452 |
std::vector<float> verticesPt2(vertices->GetEntries());
|
453 |
for(UInt_t i=0;i<jet->NPFCands();i++){
|
454 |
if(jet->PFCand(i)->BestTrk()){
|
455 |
double minDZ = delta_z;
|
456 |
int trackVertexIndex = -1;
|
457 |
for (UInt_t v=0; v < vertices->GetEntries(); v++){
|
458 |
if (minDZ > TMath::Abs(jet->PFCand(i)->BestTrk()->DzCorrected(*vertices->At(v)))) {
|
459 |
minDZ = TMath::Abs(jet->PFCand(i)->BestTrk()->DzCorrected(*vertices->At(v)));
|
460 |
trackVertexIndex = v;
|
461 |
}
|
462 |
}
|
463 |
if (trackVertexIndex < 0) continue;
|
464 |
verticesPt2[trackVertexIndex]+= jet->PFCand(i)->BestTrk()->Pt()*jet->PFCand(i)->BestTrk()->Pt();
|
465 |
}
|
466 |
}
|
467 |
|
468 |
Int_t vertexIndex = 0;
|
469 |
float pt2Max = 0;
|
470 |
for (uint i=0; i < verticesPt2.size(); ++i){
|
471 |
if (pt2Max < verticesPt2[i]) {
|
472 |
pt2Max = verticesPt2[i];
|
473 |
vertexIndex = i;
|
474 |
}
|
475 |
}
|
476 |
return vertexIndex;
|
477 |
}
|