1 |
< |
#include <cmath> |
2 |
< |
#include <cassert> |
3 |
< |
#include <fstream> |
4 |
< |
#include <iomanip> |
5 |
< |
|
6 |
< |
// ensure that this include points to the appropriate location for PhotonFix.h |
7 |
< |
#include "../interface/PhotonFix.h" |
8 |
< |
|
9 |
< |
PhotonFix::PhotonFix(double e, double eta, double phi, double r9) : |
10 |
< |
_e(e), _eta(eta), _phi(phi), _r9(r9) { |
11 |
< |
|
12 |
< |
setup(); |
13 |
< |
} |
14 |
< |
|
15 |
< |
void PhotonFix::setup(){ |
16 |
< |
// Check constants have been set up |
17 |
< |
assert(_initialised); |
18 |
< |
|
19 |
< |
// Determine if EB or EE |
20 |
< |
_be=(fabs(_eta)<1.48?0:1); |
21 |
< |
|
22 |
< |
// Determine if high or low R9 |
23 |
< |
if(_be==0) _hl=(_r9>=0.94?0:1); |
24 |
< |
else _hl=(_r9>=0.95?0:1); |
25 |
< |
|
26 |
< |
// Coordinates relative to cracks |
27 |
< |
double r2Min; |
28 |
< |
if(_be==0) { |
29 |
< |
|
30 |
< |
r2Min=1.0e6; |
31 |
< |
for(unsigned i(0);i<169;i++) { |
32 |
< |
for(unsigned j(0);j<360;j++) { |
33 |
< |
double de(_eta-_barrelCGap[i][j][0]); |
34 |
< |
double df(dPhi(_phi,_barrelCGap[i][j][1])); |
35 |
< |
double r2(de*de+df*df); |
36 |
< |
|
37 |
< |
if(r2<r2Min) { |
38 |
< |
r2Min=r2; |
39 |
< |
if(i>=84) { |
40 |
< |
_aC= de; |
41 |
< |
_bC=-df; |
42 |
< |
} else { |
43 |
< |
_aC=-de; |
44 |
< |
_bC= df; |
45 |
< |
} |
46 |
< |
} |
47 |
< |
} |
48 |
< |
} |
49 |
< |
|
50 |
< |
r2Min=1.0e6; |
51 |
< |
for(unsigned i(0);i<33;i++) { |
52 |
< |
for(unsigned j(0);j<180;j++) { |
53 |
< |
double de(_eta-_barrelSGap[i][j][0]); |
54 |
< |
double df(dPhi(_phi,_barrelSGap[i][j][1])); |
55 |
< |
double r2(de*de+df*df); |
56 |
< |
|
57 |
< |
if(r2<r2Min) { |
58 |
< |
r2Min=r2; |
59 |
< |
if(i>=16) { |
60 |
< |
_aS= de; |
61 |
< |
_bS=-df; |
62 |
< |
} else { |
63 |
< |
_aS=-de; |
64 |
< |
_bS= df; |
65 |
< |
} |
66 |
< |
} |
67 |
< |
} |
68 |
< |
} |
69 |
< |
|
70 |
< |
r2Min=1.0e6; |
71 |
< |
for(unsigned i(0);i<7;i++) { |
72 |
< |
for(unsigned j(0);j<18;j++) { |
73 |
< |
double de(_eta-_barrelMGap[i][j][0]); |
74 |
< |
double df(dPhi(_phi,_barrelMGap[i][j][1])); |
75 |
< |
double r2(de*de+df*df); |
76 |
< |
|
77 |
< |
if(r2<r2Min) { |
78 |
< |
r2Min=r2; |
79 |
< |
if(i>=3) { |
80 |
< |
_aM= de; |
81 |
< |
_bM=-df; |
82 |
< |
} else { |
83 |
< |
_aM=-de; |
84 |
< |
_bM= df; |
85 |
< |
} |
86 |
< |
} |
87 |
< |
} |
88 |
< |
} |
89 |
< |
|
90 |
< |
} else { |
91 |
< |
unsigned iz(_eta>=0.0?0:1); |
92 |
< |
double r[2]={xZ(),yZ()}; |
93 |
< |
|
94 |
< |
r2Min=1.0e6; |
95 |
< |
for(unsigned i(0);i<7080;i++) { |
96 |
< |
double dx(r[0]-_endcapCGap[iz][i][0]); |
97 |
< |
double dy(r[1]-_endcapCGap[iz][i][1]); |
98 |
< |
double r2(dx*dx+dy*dy); |
99 |
< |
|
100 |
< |
if(r2<r2Min) { |
101 |
< |
r2Min=r2; |
102 |
< |
if(r[0]>0.0) _aC= dx; |
103 |
< |
else _aC=-dx; |
104 |
< |
if(r[1]>0.0) _bC= dy; |
105 |
< |
else _bC=-dy; |
106 |
< |
} |
107 |
< |
} |
108 |
< |
|
109 |
< |
r2Min=1.0e6; |
110 |
< |
for(unsigned i(0);i<264;i++) { |
111 |
< |
double dx(r[0]-_endcapSGap[iz][i][0]); |
112 |
< |
double dy(r[1]-_endcapSGap[iz][i][1]); |
113 |
< |
double r2(dx*dx+dy*dy); |
114 |
< |
|
115 |
< |
if(r2<r2Min) { |
116 |
< |
r2Min=r2; |
117 |
< |
if(r[0]>0.0) _aS= dx; |
118 |
< |
else _aS=-dx; |
119 |
< |
if(r[1]>0.0) _bS= dy; |
120 |
< |
else _bS=-dy; |
121 |
< |
} |
122 |
< |
} |
123 |
< |
|
124 |
< |
r2Min=1.0e6; |
125 |
< |
for(unsigned i(0);i<1;i++) { |
126 |
< |
double dx(r[0]-_endcapMGap[iz][i][0]); |
127 |
< |
double dy(r[1]-_endcapMGap[iz][i][1]); |
128 |
< |
double r2(dx*dx+dy*dy); |
129 |
< |
|
130 |
< |
if(r2<r2Min) { |
131 |
< |
r2Min=r2; |
132 |
< |
if(iz==0) {_aM= dx;_bM= dy;} |
133 |
< |
else {_aM=-dx;_bM=-dy;} |
134 |
< |
} |
135 |
< |
} |
136 |
< |
} |
137 |
< |
} |
138 |
< |
|
139 |
< |
double PhotonFix::fixedEnergy() const { |
140 |
< |
double f(0.0); |
141 |
< |
|
142 |
< |
// Overall scale and energy(T) dependence |
143 |
< |
f =_meanScale[_be][_hl][0]; |
144 |
< |
f+=_meanScale[_be][_hl][1]*_e; |
145 |
< |
f+=_meanScale[_be][_hl][2]*_e/cosh(_eta); |
146 |
< |
f+=_meanScale[_be][_hl][3]*cosh(_eta)/_e; |
147 |
< |
|
148 |
< |
// Eta or x crystal, submodule and module dependence |
149 |
< |
f+=expCorrection(_aC,_meanAC[_be][_hl]); |
150 |
< |
f+=expCorrection(_aS,_meanAS[_be][_hl]); |
151 |
< |
f+=expCorrection(_aM,_meanAM[_be][_hl]); |
152 |
< |
|
153 |
< |
// Phi or y crystal, submodule and module dependence |
154 |
< |
f+=expCorrection(_bC,_meanBC[_be][_hl]); |
155 |
< |
f+=expCorrection(_bS,_meanBS[_be][_hl]); |
156 |
< |
f+=expCorrection(_bM,_meanBM[_be][_hl]); |
157 |
< |
|
158 |
< |
// R9 dependence |
159 |
< |
if(_hl==0) { |
160 |
< |
f+=_meanR9[_be][_hl][1]*(_r9-_meanR9[_be][_hl][0])*(_r9-_meanR9[_be][_hl][0]) |
161 |
< |
+_meanR9[_be][_hl][2]*(_r9-_meanR9[_be][_hl][0])*(_r9-_meanR9[_be][_hl][0])*(_r9-_meanR9[_be][_hl][0]); |
162 |
< |
} else { |
163 |
< |
f+=_meanR9[_be][_hl][0]*_r9+_meanR9[_be][_hl][1]*_r9*_r9+_meanR9[_be][_hl][2]*_r9*_r9*_r9; |
164 |
< |
} |
165 |
< |
|
166 |
< |
return _e*f; |
167 |
< |
} |
168 |
< |
|
169 |
< |
double PhotonFix::sigmaEnergy() const { |
170 |
< |
|
171 |
< |
// Overall resolution scale vs energy |
172 |
< |
double sigma; |
173 |
< |
if(_be==0) { |
174 |
< |
sigma =_sigmaScale[_be][_hl][0]*_sigmaScale[_be][_hl][0]; |
175 |
< |
sigma+=_sigmaScale[_be][_hl][1]*_sigmaScale[_be][_hl][1]*_e; |
176 |
< |
sigma+=_sigmaScale[_be][_hl][2]*_sigmaScale[_be][_hl][2]*_e*_e; |
177 |
< |
} else { |
178 |
< |
sigma =_sigmaScale[_be][_hl][0]*_sigmaScale[_be][_hl][0]*cosh(_eta)*cosh(_eta); |
179 |
< |
sigma+=_sigmaScale[_be][_hl][1]*_sigmaScale[_be][_hl][1]*_e; |
180 |
< |
sigma+=_sigmaScale[_be][_hl][2]*_sigmaScale[_be][_hl][2]*_e*_e; |
181 |
< |
} |
182 |
< |
sigma=sqrt(sigma); |
183 |
< |
|
184 |
< |
double f(1.0); |
185 |
< |
|
186 |
< |
// General eta or zeta dependence |
187 |
< |
if(_be==0) { |
188 |
< |
f+=_sigmaAT[_be][_hl][0]*_eta*_eta; |
189 |
< |
f+=expCorrection(_eta,_sigmaBT[_be][_hl]); |
190 |
< |
} else { |
191 |
< |
f+=_sigmaAT[_be][_hl][0]*xZ()*xZ(); |
192 |
< |
f+=_sigmaBT[_be][_hl][0]*yZ()*yZ(); |
193 |
< |
} |
194 |
< |
|
195 |
< |
// Eta or x crystal, submodule and module dependence |
196 |
< |
f+=expCorrection(_aC,_sigmaAC[_be][_hl]); |
197 |
< |
f+=expCorrection(_aS,_sigmaAS[_be][_hl]); |
198 |
< |
f+=expCorrection(_aM,_sigmaAM[_be][_hl]); |
199 |
< |
|
200 |
< |
// Phi or y crystal, submodule and module dependence |
201 |
< |
f+=expCorrection(_bC,_sigmaBC[_be][_hl]); |
202 |
< |
f+=expCorrection(_bS,_sigmaBS[_be][_hl]); |
203 |
< |
f+=expCorrection(_bM,_sigmaBM[_be][_hl]); |
204 |
< |
|
205 |
< |
// R9 dependence |
206 |
< |
if(_hl==0) { |
207 |
< |
f+=_sigmaR9[_be][_hl][1]*(_r9-_sigmaR9[_be][_hl][0])*(_r9-_sigmaR9[_be][_hl][0]) |
208 |
< |
+_sigmaR9[_be][_hl][2]*(_r9-_sigmaR9[_be][_hl][0])*(_r9-_sigmaR9[_be][_hl][0])*(_r9-_sigmaR9[_be][_hl][0]); |
209 |
< |
} else { |
210 |
< |
f+=_sigmaR9[_be][_hl][0]*_r9+_sigmaR9[_be][_hl][1]*_r9*_r9; |
211 |
< |
} |
212 |
< |
|
213 |
< |
return sigma*f; |
214 |
< |
} |
215 |
< |
|
216 |
< |
double PhotonFix::rawEnergy() const { |
217 |
< |
return _e; |
218 |
< |
} |
219 |
< |
|
220 |
< |
double PhotonFix::eta() const { |
221 |
< |
return _eta; |
222 |
< |
} |
223 |
< |
|
224 |
< |
double PhotonFix::phi() const { |
225 |
< |
return _phi; |
226 |
< |
} |
227 |
< |
|
228 |
< |
double PhotonFix::r9() const { |
229 |
< |
return _r9; |
230 |
< |
} |
231 |
< |
|
232 |
< |
double PhotonFix::etaC() const { |
233 |
< |
assert(_be==0); |
234 |
< |
return _aC; |
235 |
< |
} |
236 |
< |
|
237 |
< |
double PhotonFix::etaS() const { |
238 |
< |
assert(_be==0); |
239 |
< |
return _aS; |
240 |
< |
} |
241 |
< |
|
242 |
< |
double PhotonFix::etaM() const { |
243 |
< |
assert(_be==0); |
244 |
< |
return _aM; |
245 |
< |
} |
246 |
< |
|
247 |
< |
double PhotonFix::phiC() const { |
248 |
< |
assert(_be==0); |
249 |
< |
return _bC; |
250 |
< |
} |
251 |
< |
|
252 |
< |
double PhotonFix::phiS() const { |
253 |
< |
assert(_be==0); |
254 |
< |
return _bS; |
255 |
< |
} |
256 |
< |
|
257 |
< |
double PhotonFix::phiM() const { |
258 |
< |
assert(_be==0); |
259 |
< |
return _bM; |
260 |
< |
} |
261 |
< |
|
262 |
< |
double PhotonFix::xZ() const { |
263 |
< |
assert(_be==1); |
264 |
< |
return asinh(cos(_phi)/sinh(_eta)); |
265 |
< |
} |
266 |
< |
|
267 |
< |
double PhotonFix::xC() const { |
268 |
< |
assert(_be==1); |
269 |
< |
return _aC; |
270 |
< |
} |
271 |
< |
|
272 |
< |
double PhotonFix::xS() const { |
273 |
< |
assert(_be==1); |
274 |
< |
return _aS; |
275 |
< |
} |
276 |
< |
|
277 |
< |
double PhotonFix::xM() const { |
278 |
< |
assert(_be==1); |
279 |
< |
return _aM; |
280 |
< |
} |
281 |
< |
|
282 |
< |
double PhotonFix::yZ() const { |
283 |
< |
assert(_be==1); |
284 |
< |
return asinh(sin(_phi)/sinh(_eta)); |
285 |
< |
} |
286 |
< |
|
287 |
< |
double PhotonFix::yC() const { |
288 |
< |
assert(_be==1); |
289 |
< |
return _bC; |
290 |
< |
} |
291 |
< |
|
292 |
< |
double PhotonFix::yS() const { |
293 |
< |
assert(_be==1); |
294 |
< |
return _bS; |
295 |
< |
} |
296 |
< |
|
297 |
< |
double PhotonFix::yM() const { |
298 |
< |
assert(_be==1); |
299 |
< |
return _bM; |
300 |
< |
} |
301 |
< |
|
302 |
< |
double PhotonFix::GetaPhi(double f0, double f1){ |
303 |
< |
return aPhi(f0,f1); |
304 |
< |
} |
305 |
< |
|
306 |
< |
void PhotonFix::barrelCGap(unsigned i, unsigned j, unsigned k, double c){ |
307 |
< |
_barrelCGap[i][j][k] = c; |
308 |
< |
} |
309 |
< |
void PhotonFix::barrelSGap(unsigned i, unsigned j, unsigned k, double c){ |
310 |
< |
_barrelSGap[i][j][k] = c; |
311 |
< |
} |
312 |
< |
void PhotonFix::barrelMGap(unsigned i, unsigned j, unsigned k, double c){ |
313 |
< |
_barrelMGap[i][j][k] = c; |
314 |
< |
} |
315 |
< |
void PhotonFix::endcapCrystal(unsigned i, unsigned j, bool c){ |
316 |
< |
_endcapCrystal[i][j] = c; |
317 |
< |
} |
318 |
< |
void PhotonFix::endcapCGap(unsigned i, unsigned j, unsigned k, double c){ |
319 |
< |
_endcapCGap[i][j][k] = c; |
320 |
< |
} |
321 |
< |
void PhotonFix::endcapSGap(unsigned i, unsigned j, unsigned k, double c){ |
322 |
< |
_endcapSGap[i][j][k] = c; |
323 |
< |
} |
324 |
< |
void PhotonFix::endcapMGap(unsigned i, unsigned j, unsigned k, double c){ |
325 |
< |
_endcapMGap[i][j][k] = c; |
326 |
< |
} |
327 |
< |
|
328 |
< |
|
329 |
< |
void PhotonFix::print() const { |
330 |
< |
std::cout << "PhotonFix: e,eta,phi,r9 = " << _e << ", " << _eta << ", " << _phi << ", " << _r9 << ", gaps " |
331 |
< |
<< _aC << ", " << _aS << ", " << _aM << ", " |
332 |
< |
<< _bC << ", " << _bS << ", " << _bM << std::endl; |
333 |
< |
} |
334 |
< |
|
335 |
< |
void PhotonFix::setParameters(unsigned be, unsigned hl, const double *p) { |
336 |
< |
for(unsigned i(0);i<4;i++) { |
337 |
< |
_meanScale[be][hl][i] =p[i+ 0*4]; |
338 |
< |
_meanAC[be][hl][i] =p[i+ 1*4]; |
339 |
< |
_meanAS[be][hl][i] =p[i+ 2*4]; |
340 |
< |
_meanAM[be][hl][i] =p[i+ 3*4]; |
341 |
< |
_meanBC[be][hl][i] =p[i+ 4*4]; |
342 |
< |
_meanBS[be][hl][i] =p[i+ 5*4]; |
343 |
< |
_meanBM[be][hl][i] =p[i+ 6*4]; |
344 |
< |
_meanR9[be][hl][i] =p[i+ 7*4]; |
345 |
< |
|
346 |
< |
_sigmaScale[be][hl][i]=p[i+ 8*4]; |
347 |
< |
_sigmaAT[be][hl][i] =p[i+ 9*4]; |
348 |
< |
_sigmaAC[be][hl][i] =p[i+10*4]; |
349 |
< |
_sigmaAS[be][hl][i] =p[i+11*4]; |
350 |
< |
_sigmaAM[be][hl][i] =p[i+12*4]; |
351 |
< |
_sigmaBT[be][hl][i] =p[i+13*4]; |
352 |
< |
_sigmaBC[be][hl][i] =p[i+14*4]; |
353 |
< |
_sigmaBS[be][hl][i] =p[i+15*4]; |
354 |
< |
_sigmaBM[be][hl][i] =p[i+16*4]; |
355 |
< |
_sigmaR9[be][hl][i] =p[i+17*4]; |
356 |
< |
} |
357 |
< |
} |
358 |
< |
|
359 |
< |
void PhotonFix::getParameters(unsigned be, unsigned hl, double *p) { |
360 |
< |
for(unsigned i(0);i<4;i++) { |
361 |
< |
p[i+ 0*4]=_meanScale[be][hl][i]; |
362 |
< |
p[i+ 1*4]=_meanAC[be][hl][i]; |
363 |
< |
p[i+ 2*4]=_meanAS[be][hl][i]; |
364 |
< |
p[i+ 3*4]=_meanAM[be][hl][i]; |
365 |
< |
p[i+ 4*4]=_meanBC[be][hl][i]; |
366 |
< |
p[i+ 5*4]=_meanBS[be][hl][i]; |
367 |
< |
p[i+ 6*4]=_meanBM[be][hl][i]; |
368 |
< |
p[i+ 7*4]=_meanR9[be][hl][i]; |
369 |
< |
|
370 |
< |
p[i+ 8*4]=_sigmaScale[be][hl][i]; |
371 |
< |
p[i+ 9*4]=_sigmaAT[be][hl][i]; |
372 |
< |
p[i+10*4]=_sigmaAC[be][hl][i]; |
373 |
< |
p[i+11*4]=_sigmaAS[be][hl][i]; |
374 |
< |
p[i+12*4]=_sigmaAM[be][hl][i]; |
375 |
< |
p[i+13*4]=_sigmaBT[be][hl][i]; |
376 |
< |
p[i+14*4]=_sigmaBC[be][hl][i]; |
377 |
< |
p[i+15*4]=_sigmaBS[be][hl][i]; |
378 |
< |
p[i+16*4]=_sigmaBM[be][hl][i]; |
379 |
< |
p[i+17*4]=_sigmaR9[be][hl][i]; |
380 |
< |
} |
381 |
< |
} |
382 |
< |
|
383 |
< |
void PhotonFix::dumpParameters(std::ostream &o) { |
384 |
< |
for(unsigned be(0);be<2;be++) { |
385 |
< |
for(unsigned hl(0);hl<2;hl++) { |
386 |
< |
for(unsigned i(0);i<4;i++) { |
387 |
< |
o << " _meanScale[" << be << "][" << hl << "][" << i << "]=" << _meanScale[be][hl][i] << ";" << std::endl; |
388 |
< |
} |
389 |
< |
for(unsigned i(0);i<4;i++) { |
390 |
< |
o << " _meanAC[" << be << "][" << hl << "][" << i << "]=" << _meanAC[be][hl][i] << ";" << std::endl; |
391 |
< |
} |
392 |
< |
for(unsigned i(0);i<4;i++) { |
393 |
< |
o << " _meanAS[" << be << "][" << hl << "][" << i << "]=" << _meanAS[be][hl][i] << ";" << std::endl; |
394 |
< |
} |
395 |
< |
for(unsigned i(0);i<4;i++) { |
396 |
< |
o << " _meanAM[" << be << "][" << hl << "][" << i << "]=" << _meanAM[be][hl][i] << ";" << std::endl; |
397 |
< |
} |
398 |
< |
for(unsigned i(0);i<4;i++) { |
399 |
< |
o << " _meanBC[" << be << "][" << hl << "][" << i << "]=" << _meanBC[be][hl][i] << ";" << std::endl; |
400 |
< |
} |
401 |
< |
for(unsigned i(0);i<4;i++) { |
402 |
< |
o << " _meanBS[" << be << "][" << hl << "][" << i << "]=" << _meanBS[be][hl][i] << ";" << std::endl; |
403 |
< |
} |
404 |
< |
for(unsigned i(0);i<4;i++) { |
405 |
< |
o << " _meanBM[" << be << "][" << hl << "][" << i << "]=" << _meanBM[be][hl][i] << ";" << std::endl; |
406 |
< |
} |
407 |
< |
for(unsigned i(0);i<4;i++) { |
408 |
< |
o << " _meanR9[" << be << "][" << hl << "][" << i << "]=" << _meanR9[be][hl][i] << ";" << std::endl; |
409 |
< |
} |
410 |
< |
o << std::endl; |
411 |
< |
|
412 |
< |
for(unsigned i(0);i<4;i++) { |
413 |
< |
o << " _sigmaScale[" << be << "][" << hl << "][" << i << "]=" << _sigmaScale[be][hl][i] << ";" << std::endl; |
414 |
< |
} |
415 |
< |
for(unsigned i(0);i<4;i++) { |
416 |
< |
o << " _sigmaAT[" << be << "][" << hl << "][" << i << "]=" << _sigmaAT[be][hl][i] << ";" << std::endl; |
417 |
< |
} |
418 |
< |
for(unsigned i(0);i<4;i++) { |
419 |
< |
o << " _sigmaAC[" << be << "][" << hl << "][" << i << "]=" << _sigmaAC[be][hl][i] << ";" << std::endl; |
420 |
< |
} |
421 |
< |
for(unsigned i(0);i<4;i++) { |
422 |
< |
o << " _sigmaAS[" << be << "][" << hl << "][" << i << "]=" << _sigmaAS[be][hl][i] << ";" << std::endl; |
423 |
< |
} |
424 |
< |
for(unsigned i(0);i<4;i++) { |
425 |
< |
o << " _sigmaAM[" << be << "][" << hl << "][" << i << "]=" << _sigmaAM[be][hl][i] << ";" << std::endl; |
426 |
< |
} |
427 |
< |
for(unsigned i(0);i<4;i++) { |
428 |
< |
o << " _sigmaBT[" << be << "][" << hl << "][" << i << "]=" << _sigmaBT[be][hl][i] << ";" << std::endl; |
429 |
< |
} |
430 |
< |
for(unsigned i(0);i<4;i++) { |
431 |
< |
o << " _sigmaBC[" << be << "][" << hl << "][" << i << "]=" << _sigmaBC[be][hl][i] << ";" << std::endl; |
432 |
< |
} |
433 |
< |
for(unsigned i(0);i<4;i++) { |
434 |
< |
o << " _sigmaBS[" << be << "][" << hl << "][" << i << "]=" << _sigmaBS[be][hl][i] << ";" << std::endl; |
435 |
< |
} |
436 |
< |
for(unsigned i(0);i<4;i++) { |
437 |
< |
o << " _sigmaBM[" << be << "][" << hl << "][" << i << "]=" << _sigmaBM[be][hl][i] << ";" << std::endl; |
438 |
< |
} |
439 |
< |
for(unsigned i(0);i<4;i++) { |
440 |
< |
o << " _sigmaR9[" << be << "][" << hl << "][" << i << "]=" << _sigmaR9[be][hl][i] << ";" << std::endl; |
441 |
< |
} |
442 |
< |
o << std::endl; |
443 |
< |
} |
444 |
< |
} |
445 |
< |
} |
446 |
< |
|
447 |
< |
void PhotonFix::printParameters(std::ostream &o) { |
448 |
< |
o << "PhotonFix::printParameters()" << std::endl; |
449 |
< |
|
450 |
< |
for(unsigned be(0);be<2;be++) { |
451 |
< |
for(unsigned hl(0);hl<2;hl++) { |
452 |
< |
o << " Parameters for " << (be==0?"barrel":"endcap") |
453 |
< |
<< ", " << (hl==0?"high":"low") << " R9" << std::endl; |
454 |
< |
|
455 |
< |
o << " Mean scaling "; |
456 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanScale[be][hl][i]; |
457 |
< |
o << std::endl; |
458 |
< |
o << " Mean " << (be==0?"Eta ":"ZetaX") << " crystal "; |
459 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanAC[be][hl][i]; |
460 |
< |
o << std::endl; |
461 |
< |
o << " Mean " << (be==0?"Eta ":"ZetaX") << " submodule"; |
462 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanAS[be][hl][i]; |
463 |
< |
o << std::endl; |
464 |
< |
o << " Mean " << (be==0?"Eta ":"ZetaX") << " module "; |
465 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanAM[be][hl][i]; |
466 |
< |
o << std::endl; |
467 |
< |
o << " Mean " << (be==0?"Phi ":"ZetaY") << " crystal "; |
468 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanBC[be][hl][i]; |
469 |
< |
o << std::endl; |
470 |
< |
o << " Mean " << (be==0?"Phi ":"ZetaY") << " submodule"; |
471 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanBS[be][hl][i]; |
472 |
< |
o << std::endl; |
473 |
< |
o << " Mean " << (be==0?"Phi ":"ZetaY") << " module "; |
474 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanBM[be][hl][i]; |
475 |
< |
o << std::endl; |
476 |
< |
o << " Mean R9 "; |
477 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanR9[be][hl][i]; |
478 |
< |
o << std::endl; |
479 |
< |
|
480 |
< |
o << " Sigma scaling "; |
481 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaScale[be][hl][i]; |
482 |
< |
o << std::endl; |
483 |
< |
o << " Sigma " << (be==0?"Eta ":"ZetaX") << " total "; |
484 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaAT[be][hl][i]; |
485 |
< |
o << std::endl; |
486 |
< |
o << " Sigma " << (be==0?"Eta ":"ZetaX") << " crystal "; |
487 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaAC[be][hl][i]; |
488 |
< |
o << std::endl; |
489 |
< |
o << " Sigma " << (be==0?"Eta ":"ZetaX") << " submodule"; |
490 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaAS[be][hl][i]; |
491 |
< |
o << std::endl; |
492 |
< |
o << " Sigma " << (be==0?"Eta ":"ZetaX") << " module "; |
493 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaAM[be][hl][i]; |
494 |
< |
o << std::endl; |
495 |
< |
o << " Sigma " << (be==0?"Eta ":"ZetaY") << " total "; |
496 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaBT[be][hl][i]; |
497 |
< |
o << std::endl; |
498 |
< |
o << " Sigma " << (be==0?"Eta ":"ZetaY") << " crystal "; |
499 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaBC[be][hl][i]; |
500 |
< |
o << std::endl; |
501 |
< |
o << " Sigma " << (be==0?"Phi ":"ZetaY") << " submodule"; |
502 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaBS[be][hl][i]; |
503 |
< |
o << std::endl; |
504 |
< |
o << " Sigma " << (be==0?"Phi ":"ZetaY") << " module "; |
505 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaBM[be][hl][i]; |
506 |
< |
o << std::endl; |
507 |
< |
o << " Sigma R9 "; |
508 |
< |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaR9[be][hl][i]; |
509 |
< |
o << std::endl; |
510 |
< |
} |
511 |
< |
} |
512 |
< |
} |
513 |
< |
|
514 |
< |
double PhotonFix::asinh(double s) { |
515 |
< |
if(s>=0.0) return log(sqrt(s*s+1.0)+s); |
516 |
< |
else return -log(sqrt(s*s+1.0)-s); |
517 |
< |
} |
518 |
< |
|
519 |
< |
void PhotonFix::dumpGaps(std::ostream &o) { |
520 |
< |
o << std::setprecision(15); |
521 |
< |
|
522 |
< |
for(unsigned i(0);i<169;i++) { |
523 |
< |
for(unsigned j(0);j<360;j++) { |
524 |
< |
for(unsigned k(0);k<2;k++) { |
525 |
< |
o << _barrelCGap[i][j][k] << std::endl; |
526 |
< |
} |
527 |
< |
} |
528 |
< |
} |
529 |
< |
|
530 |
< |
for(unsigned i(0);i<33;i++) { |
531 |
< |
for(unsigned j(0);j<180;j++) { |
532 |
< |
for(unsigned k(0);k<2;k++) { |
533 |
< |
o << _barrelSGap[i][j][k] << std::endl; |
534 |
< |
} |
535 |
< |
} |
536 |
< |
} |
537 |
< |
|
538 |
< |
for(unsigned i(0);i<7;i++) { |
539 |
< |
for(unsigned j(0);j<18;j++) { |
540 |
< |
for(unsigned k(0);k<2;k++) { |
541 |
< |
o << _barrelMGap[i][j][k] << std::endl; |
542 |
< |
} |
543 |
< |
} |
544 |
< |
} |
545 |
< |
|
546 |
< |
for(unsigned i(0);i<100;i++) { |
547 |
< |
for(unsigned j(0);j<100;j++) { |
548 |
< |
if(_endcapCrystal[i][j]) o << 0 << std::endl; |
549 |
< |
else o << 1 << std::endl; |
550 |
< |
} |
551 |
< |
} |
552 |
< |
|
553 |
< |
for(unsigned i(0);i<2;i++) { |
554 |
< |
for(unsigned j(0);j<7080;j++) { |
555 |
< |
for(unsigned k(0);k<2;k++) { |
556 |
< |
o << _endcapCGap[i][j][k] << std::endl; |
557 |
< |
} |
558 |
< |
} |
559 |
< |
} |
560 |
< |
|
561 |
< |
for(unsigned i(0);i<2;i++) { |
562 |
< |
for(unsigned j(0);j<264;j++) { |
563 |
< |
for(unsigned k(0);k<2;k++) { |
564 |
< |
o << _endcapSGap[i][j][k] << std::endl; |
565 |
< |
} |
566 |
< |
} |
567 |
< |
} |
568 |
< |
|
569 |
< |
for(unsigned i(0);i<2;i++) { |
570 |
< |
for(unsigned j(0);j<1;j++) { |
571 |
< |
for(unsigned k(0);k<2;k++) { |
572 |
< |
o << _endcapMGap[i][j][k] << std::endl; |
573 |
< |
} |
574 |
< |
} |
575 |
< |
} |
576 |
< |
} |
577 |
< |
|
578 |
< |
double PhotonFix::dPhi(double f0, double f1) { |
579 |
< |
double df(f0-f1); |
580 |
< |
if(df> _onePi) df-=_twoPi; |
581 |
< |
if(df<-_onePi) df+=_twoPi; |
582 |
< |
return df; |
583 |
< |
} |
584 |
< |
|
585 |
< |
double PhotonFix::aPhi(double f0, double f1) { |
586 |
< |
double af(0.5*(f0+f1)); |
587 |
< |
if(fabs(dPhi(af,f0))>0.5*_onePi) { |
588 |
< |
if(af>=0.0) af-=_onePi; |
589 |
< |
else af+=_onePi; |
590 |
< |
} |
591 |
< |
|
592 |
< |
assert(fabs(dPhi(af,f0))<0.5*_onePi); |
593 |
< |
assert(fabs(dPhi(af,f1))<0.5*_onePi); |
594 |
< |
|
595 |
< |
return af; |
596 |
< |
} |
597 |
< |
|
598 |
< |
double PhotonFix::expCorrection(double a, const double *p) { |
599 |
< |
if(p[1]==0.0 || p[2]==0.0 || p[3]==0.0) return 0.0; |
600 |
< |
|
601 |
< |
double b(a-p[0]); |
602 |
< |
if(b>=0.0) return p[1]*exp(-fabs(p[2])*b); |
603 |
< |
else return p[1]*exp( fabs(p[3])*b); |
604 |
< |
} |
605 |
< |
|
606 |
< |
double PhotonFix::gausCorrection(double a, const double *p) { |
607 |
< |
if(p[1]==0.0 || p[2]==0.0 || p[3]==0.0) return 0.0; |
608 |
< |
|
609 |
< |
double b(a-p[0]); |
610 |
< |
if(b>=0.0) return p[1]*exp(-0.5*p[2]*p[2]*b*b); |
611 |
< |
else return p[1]*exp(-0.5*p[3]*p[3]*b*b); |
612 |
< |
} |
613 |
< |
bool PhotonFix::initialised() { |
614 |
< |
return _initialised; |
615 |
< |
} |
616 |
< |
bool PhotonFix::initialise(const std::string &s, const std::string &infile) { |
617 |
< |
if(_initialised) return false; |
618 |
< |
|
619 |
< |
|
620 |
< |
initialiseParameters(s); |
621 |
< |
initialiseGeometry(s,infile); |
622 |
< |
return true; |
623 |
< |
} |
624 |
< |
|
625 |
< |
bool PhotonFix::initialiseParameters(const std::string &s) { |
626 |
< |
_initialised=false; |
627 |
< |
|
628 |
< |
if(s=="Nominal") { |
629 |
< |
for(unsigned be(0);be<2;be++) { |
630 |
< |
for(unsigned hl(0);hl<2;hl++) { |
631 |
< |
for(unsigned i(0);i<4;i++) { |
632 |
< |
_meanScale[be][hl][i]=0; |
633 |
< |
_meanAC[be][hl][i]=0; |
634 |
< |
_meanAS[be][hl][i]=0; |
635 |
< |
_meanAM[be][hl][i]=0; |
636 |
< |
_meanBC[be][hl][i]=0; |
637 |
< |
_meanBS[be][hl][i]=0; |
638 |
< |
_meanBM[be][hl][i]=0; |
639 |
< |
_meanR9[be][hl][i]=0; |
640 |
< |
|
641 |
< |
_sigmaScale[be][hl][i]=0; |
642 |
< |
_sigmaAT[be][hl][i]=0; |
643 |
< |
_sigmaAC[be][hl][i]=0; |
644 |
< |
_sigmaAS[be][hl][i]=0; |
645 |
< |
_sigmaAM[be][hl][i]=0; |
646 |
< |
_sigmaBT[be][hl][i]=0; |
647 |
< |
_sigmaBC[be][hl][i]=0; |
648 |
< |
_sigmaBS[be][hl][i]=0; |
649 |
< |
_sigmaBM[be][hl][i]=0; |
650 |
< |
_sigmaR9[be][hl][i]=0; |
651 |
< |
} |
652 |
< |
|
653 |
< |
_meanScale[be][hl][0]=1.0; |
654 |
< |
if(be==0) { |
655 |
< |
_sigmaScale[be][hl][0]=0.2; |
656 |
< |
_sigmaScale[be][hl][1]=0.03; |
657 |
< |
_sigmaScale[be][hl][2]=0.006; |
658 |
< |
} else { |
659 |
< |
_sigmaScale[be][hl][0]=0.25; |
660 |
< |
_sigmaScale[be][hl][1]=0.05; |
661 |
< |
_sigmaScale[be][hl][2]=0.010; |
662 |
< |
} |
663 |
< |
} |
664 |
< |
} |
665 |
< |
|
666 |
< |
_initialised=true; |
667 |
< |
} |
668 |
< |
|
669 |
< |
if(s=="3_8") { |
670 |
< |
_meanScale[0][0][0]=0.994724; |
671 |
< |
_meanScale[0][0][1]=1.98102e-06; |
672 |
< |
_meanScale[0][0][2]=1.43015e-05; |
673 |
< |
_meanScale[0][0][3]=-0.0908525; |
674 |
< |
_meanAC[0][0][0]=-0.00352041; |
675 |
< |
_meanAC[0][0][1]=0.00982015; |
676 |
< |
_meanAC[0][0][2]=434.32; |
677 |
< |
_meanAC[0][0][3]=529.508; |
678 |
< |
_meanAS[0][0][0]=-1.1; |
679 |
< |
_meanAS[0][0][1]=0.00135995; |
680 |
< |
_meanAS[0][0][2]=295.712; |
681 |
< |
_meanAS[0][0][3]=5.13202e+07; |
682 |
< |
_meanAM[0][0][0]=-0.00140562; |
683 |
< |
_meanAM[0][0][1]=0.156322; |
684 |
< |
_meanAM[0][0][2]=263.097; |
685 |
< |
_meanAM[0][0][3]=222.294; |
686 |
< |
_meanBC[0][0][0]=-0.00294295; |
687 |
< |
_meanBC[0][0][1]=0.011533; |
688 |
< |
_meanBC[0][0][2]=562.905; |
689 |
< |
_meanBC[0][0][3]=421.097; |
690 |
< |
_meanBS[0][0][0]=-0.00204373; |
691 |
< |
_meanBS[0][0][1]=0.00347592; |
692 |
< |
_meanBS[0][0][2]=36.5614; |
693 |
< |
_meanBS[0][0][3]=1265.25; |
694 |
< |
_meanBM[0][0][0]=-0.00275381; |
695 |
< |
_meanBM[0][0][1]=0.0812447; |
696 |
< |
_meanBM[0][0][2]=216.885; |
697 |
< |
_meanBM[0][0][3]=264.754; |
698 |
< |
_meanR9[0][0][0]=0.952584; |
699 |
< |
_meanR9[0][0][1]=22.7119; |
700 |
< |
_meanR9[0][0][2]=402.816; |
701 |
< |
_meanR9[0][0][3]=0; |
702 |
< |
|
703 |
< |
_sigmaScale[0][0][0]=0.167184; |
704 |
< |
_sigmaScale[0][0][1]=6.14323e-11; |
705 |
< |
_sigmaScale[0][0][2]=0.00769693; |
706 |
< |
_sigmaScale[0][0][3]=0; |
707 |
< |
_sigmaAT[0][0][0]=0.228255; |
708 |
< |
_sigmaAT[0][0][1]=0; |
709 |
< |
_sigmaAT[0][0][2]=0; |
710 |
< |
_sigmaAT[0][0][3]=0; |
711 |
< |
_sigmaAC[0][0][0]=-0.00411906; |
712 |
< |
_sigmaAC[0][0][1]=0.077799; |
713 |
< |
_sigmaAC[0][0][2]=23.1033; |
714 |
< |
_sigmaAC[0][0][3]=-3e+17; |
715 |
< |
_sigmaAS[0][0][0]=0; |
716 |
< |
_sigmaAS[0][0][1]=0; |
717 |
< |
_sigmaAS[0][0][2]=0; |
718 |
< |
_sigmaAS[0][0][3]=0; |
719 |
< |
_sigmaAM[0][0][0]=-0.000130695; |
720 |
< |
_sigmaAM[0][0][1]=11.2121; |
721 |
< |
_sigmaAM[0][0][2]=468.535; |
722 |
< |
_sigmaAM[0][0][3]=407.652; |
723 |
< |
_sigmaBT[0][0][0]=1.33384e-05; |
724 |
< |
_sigmaBT[0][0][1]=8.77098; |
725 |
< |
_sigmaBT[0][0][2]=324.048; |
726 |
< |
_sigmaBT[0][0][3]=239.868; |
727 |
< |
_sigmaBC[0][0][0]=-0.00281964; |
728 |
< |
_sigmaBC[0][0][1]=0.125811; |
729 |
< |
_sigmaBC[0][0][2]=538.949; |
730 |
< |
_sigmaBC[0][0][3]=1358.76; |
731 |
< |
_sigmaBS[0][0][0]=0; |
732 |
< |
_sigmaBS[0][0][1]=0; |
733 |
< |
_sigmaBS[0][0][2]=0; |
734 |
< |
_sigmaBS[0][0][3]=0; |
735 |
< |
_sigmaBM[0][0][0]=-0.00293676; |
736 |
< |
_sigmaBM[0][0][1]=8.88276; |
737 |
< |
_sigmaBM[0][0][2]=350.032; |
738 |
< |
_sigmaBM[0][0][3]=580.354; |
739 |
< |
_sigmaR9[0][0][0]=0.955876; |
740 |
< |
_sigmaR9[0][0][1]=2254.5; |
741 |
< |
_sigmaR9[0][0][2]=14627; |
742 |
< |
_sigmaR9[0][0][3]=0; |
743 |
< |
|
744 |
< |
_meanScale[0][1][0]=0.888348; |
745 |
< |
_meanScale[0][1][1]=1.20452e-05; |
746 |
< |
_meanScale[0][1][2]=-1.04458e-05; |
747 |
< |
_meanScale[0][1][3]=-0.542383; |
748 |
< |
_meanAC[0][1][0]=-0.00320856; |
749 |
< |
_meanAC[0][1][1]=0.0240109; |
750 |
< |
_meanAC[0][1][2]=115.145; |
751 |
< |
_meanAC[0][1][3]=205.859; |
752 |
< |
_meanAS[0][1][0]=0.0349736; |
753 |
< |
_meanAS[0][1][1]=-0.00232864; |
754 |
< |
_meanAS[0][1][2]=318.584; |
755 |
< |
_meanAS[0][1][3]=1.4e+09; |
756 |
< |
_meanAM[0][1][0]=-0.00104798; |
757 |
< |
_meanAM[0][1][1]=0.208249; |
758 |
< |
_meanAM[0][1][2]=297.049; |
759 |
< |
_meanAM[0][1][3]=220.609; |
760 |
< |
_meanBC[0][1][0]=-0.00420429; |
761 |
< |
_meanBC[0][1][1]=0.00203991; |
762 |
< |
_meanBC[0][1][2]=172.278; |
763 |
< |
_meanBC[0][1][3]=410.677; |
764 |
< |
_meanBS[0][1][0]=-0.0430854; |
765 |
< |
_meanBS[0][1][1]=0.0961883; |
766 |
< |
_meanBS[0][1][2]=0.196958; |
767 |
< |
_meanBS[0][1][3]=11442.2; |
768 |
< |
_meanBM[0][1][0]=-0.00389457; |
769 |
< |
_meanBM[0][1][1]=0.0449086; |
770 |
< |
_meanBM[0][1][2]=78.9252; |
771 |
< |
_meanBM[0][1][3]=103.237; |
772 |
< |
_meanR9[0][1][0]=0.0182102; |
773 |
< |
_meanR9[0][1][1]=-0.03752; |
774 |
< |
_meanR9[0][1][2]=0.0198881; |
775 |
< |
_meanR9[0][1][3]=0; |
776 |
< |
|
777 |
< |
_sigmaScale[0][1][0]=0.386681; |
778 |
< |
_sigmaScale[0][1][1]=0.0913412; |
779 |
< |
_sigmaScale[0][1][2]=0.00119232; |
780 |
< |
_sigmaScale[0][1][3]=0; |
781 |
< |
_sigmaAT[0][1][0]=1.36562; |
782 |
< |
_sigmaAT[0][1][1]=0; |
783 |
< |
_sigmaAT[0][1][2]=0; |
784 |
< |
_sigmaAT[0][1][3]=0; |
785 |
< |
_sigmaAC[0][1][0]=-0.00504613; |
786 |
< |
_sigmaAC[0][1][1]=-1.09115; |
787 |
< |
_sigmaAC[0][1][2]=8.57406; |
788 |
< |
_sigmaAC[0][1][3]=57.1351; |
789 |
< |
_sigmaAS[0][1][0]=0; |
790 |
< |
_sigmaAS[0][1][1]=0; |
791 |
< |
_sigmaAS[0][1][2]=0; |
792 |
< |
_sigmaAS[0][1][3]=0; |
793 |
< |
_sigmaAM[0][1][0]=-0.00014319; |
794 |
< |
_sigmaAM[0][1][1]=5.39527; |
795 |
< |
_sigmaAM[0][1][2]=432.566; |
796 |
< |
_sigmaAM[0][1][3]=265.165; |
797 |
< |
_sigmaBT[0][1][0]=-0.040161; |
798 |
< |
_sigmaBT[0][1][1]=2.65711; |
799 |
< |
_sigmaBT[0][1][2]=-0.398357; |
800 |
< |
_sigmaBT[0][1][3]=-0.440649; |
801 |
< |
_sigmaBC[0][1][0]=0.00580015; |
802 |
< |
_sigmaBC[0][1][1]=-0.631833; |
803 |
< |
_sigmaBC[0][1][2]=18594.3; |
804 |
< |
_sigmaBC[0][1][3]=4.00955e+08; |
805 |
< |
_sigmaBS[0][1][0]=0; |
806 |
< |
_sigmaBS[0][1][1]=0; |
807 |
< |
_sigmaBS[0][1][2]=0; |
808 |
< |
_sigmaBS[0][1][3]=0; |
809 |
< |
_sigmaBM[0][1][0]=-0.00376665; |
810 |
< |
_sigmaBM[0][1][1]=3.74316; |
811 |
< |
_sigmaBM[0][1][2]=102.72; |
812 |
< |
_sigmaBM[0][1][3]=157.396; |
813 |
< |
_sigmaR9[0][1][0]=-3.12696; |
814 |
< |
_sigmaR9[0][1][1]=1.75114; |
815 |
< |
_sigmaR9[0][1][2]=0; |
816 |
< |
_sigmaR9[0][1][3]=0; |
817 |
< |
|
818 |
< |
_meanScale[1][0][0]=0.999461; |
819 |
< |
_meanScale[1][0][1]=4.37414e-06; |
820 |
< |
_meanScale[1][0][2]=4.92078e-06; |
821 |
< |
_meanScale[1][0][3]=-0.121609; |
822 |
< |
_meanAC[1][0][0]=-0.000396058; |
823 |
< |
_meanAC[1][0][1]=0.0144837; |
824 |
< |
_meanAC[1][0][2]=1374.93; |
825 |
< |
_meanAC[1][0][3]=945.634; |
826 |
< |
_meanAS[1][0][0]=-0.000871036; |
827 |
< |
_meanAS[1][0][1]=0.0442747; |
828 |
< |
_meanAS[1][0][2]=645.709; |
829 |
< |
_meanAS[1][0][3]=962.845; |
830 |
< |
_meanAM[1][0][0]=0.000434298; |
831 |
< |
_meanAM[1][0][1]=0.0658628; |
832 |
< |
_meanAM[1][0][2]=1928.49; |
833 |
< |
_meanAM[1][0][3]=728.522; |
834 |
< |
_meanBC[1][0][0]=-0.000452212; |
835 |
< |
_meanBC[1][0][1]=0.0129968; |
836 |
< |
_meanBC[1][0][2]=1056.08; |
837 |
< |
_meanBC[1][0][3]=759.102; |
838 |
< |
_meanBS[1][0][0]=-0.000786157; |
839 |
< |
_meanBS[1][0][1]=0.0346555; |
840 |
< |
_meanBS[1][0][2]=592.239; |
841 |
< |
_meanBS[1][0][3]=854.285; |
842 |
< |
_meanBM[1][0][0]=-0.0665038; |
843 |
< |
_meanBM[1][0][1]=-0.00211713; |
844 |
< |
_meanBM[1][0][2]=4.84395; |
845 |
< |
_meanBM[1][0][3]=11.6644; |
846 |
< |
_meanR9[1][0][0]=0.971355; |
847 |
< |
_meanR9[1][0][1]=47.2751; |
848 |
< |
_meanR9[1][0][2]=536.907; |
849 |
< |
_meanR9[1][0][3]=0; |
850 |
< |
|
851 |
< |
_sigmaScale[1][0][0]=0.254641; |
852 |
< |
_sigmaScale[1][0][1]=0.00264818; |
853 |
< |
_sigmaScale[1][0][2]=0.0114953; |
854 |
< |
_sigmaScale[1][0][3]=0; |
855 |
< |
_sigmaAT[1][0][0]=0.935839; |
856 |
< |
_sigmaAT[1][0][1]=0; |
857 |
< |
_sigmaAT[1][0][2]=0; |
858 |
< |
_sigmaAT[1][0][3]=0; |
859 |
< |
_sigmaAC[1][0][0]=-0.00476475; |
860 |
< |
_sigmaAC[1][0][1]=2.14548; |
861 |
< |
_sigmaAC[1][0][2]=29937; |
862 |
< |
_sigmaAC[1][0][3]=2.6e+11; |
863 |
< |
_sigmaAS[1][0][0]=-8.17285e-05; |
864 |
< |
_sigmaAS[1][0][1]=1.5821; |
865 |
< |
_sigmaAS[1][0][2]=1928.83; |
866 |
< |
_sigmaAS[1][0][3]=902.519; |
867 |
< |
_sigmaAM[1][0][0]=0.0278577; |
868 |
< |
_sigmaAM[1][0][1]=0.58439; |
869 |
< |
_sigmaAM[1][0][2]=43.3575; |
870 |
< |
_sigmaAM[1][0][3]=19.7836; |
871 |
< |
_sigmaBT[1][0][0]=-0.456051; |
872 |
< |
_sigmaBT[1][0][1]=0; |
873 |
< |
_sigmaBT[1][0][2]=0; |
874 |
< |
_sigmaBT[1][0][3]=0; |
875 |
< |
_sigmaBC[1][0][0]=-0.00264527; |
876 |
< |
_sigmaBC[1][0][1]=0.696043; |
877 |
< |
_sigmaBC[1][0][2]=7.49509e+12; |
878 |
< |
_sigmaBC[1][0][3]=96843; |
879 |
< |
_sigmaBS[1][0][0]=0.000258933; |
880 |
< |
_sigmaBS[1][0][1]=1.28387; |
881 |
< |
_sigmaBS[1][0][2]=1668.71; |
882 |
< |
_sigmaBS[1][0][3]=730.716; |
883 |
< |
_sigmaBM[1][0][0]=0.00121506; |
884 |
< |
_sigmaBM[1][0][1]=0.938541; |
885 |
< |
_sigmaBM[1][0][2]=9003.57; |
886 |
< |
_sigmaBM[1][0][3]=288.897; |
887 |
< |
_sigmaR9[1][0][0]=1.01207; |
888 |
< |
_sigmaR9[1][0][1]=-816.244; |
889 |
< |
_sigmaR9[1][0][2]=-16283.8; |
890 |
< |
_sigmaR9[1][0][3]=0; |
891 |
< |
|
892 |
< |
_meanScale[1][1][0]=0.324634; |
893 |
< |
_meanScale[1][1][1]=9.48206e-05; |
894 |
< |
_meanScale[1][1][2]=1.0e-12; |
895 |
< |
_meanScale[1][1][3]=1.0e-12; |
896 |
< |
_meanAC[1][1][0]=-0.00158311; |
897 |
< |
_meanAC[1][1][1]=0.0106161; |
898 |
< |
_meanAC[1][1][2]=338.964; |
899 |
< |
_meanAC[1][1][3]=797.172; |
900 |
< |
_meanAS[1][1][0]=-0.00960269; |
901 |
< |
_meanAS[1][1][1]=-0.00496491; |
902 |
< |
_meanAS[1][1][2]=934.472; |
903 |
< |
_meanAS[1][1][3]=8.32667e-16; |
904 |
< |
_meanAM[1][1][0]=-0.00219814; |
905 |
< |
_meanAM[1][1][1]=0.653906; |
906 |
< |
_meanAM[1][1][2]=0.0949848; |
907 |
< |
_meanAM[1][1][3]=0.0977831; |
908 |
< |
_meanBC[1][1][0]=-0.00423472; |
909 |
< |
_meanBC[1][1][1]=0.0279695; |
910 |
< |
_meanBC[1][1][2]=28073.7; |
911 |
< |
_meanBC[1][1][3]=118612; |
912 |
< |
_meanBS[1][1][0]=-0.0012476; |
913 |
< |
_meanBS[1][1][1]=0.02744; |
914 |
< |
_meanBS[1][1][2]=390.697; |
915 |
< |
_meanBS[1][1][3]=727.861; |
916 |
< |
_meanBM[1][1][0]=-1.36573e-05; |
917 |
< |
_meanBM[1][1][1]=0.0667504; |
918 |
< |
_meanBM[1][1][2]=-80154.4; |
919 |
< |
_meanBM[1][1][3]=576.637; |
920 |
< |
_meanR9[1][1][0]=0.113317; |
921 |
< |
_meanR9[1][1][1]=0.0142669; |
922 |
< |
_meanR9[1][1][2]=-0.125721; |
923 |
< |
_meanR9[1][1][3]=0; |
924 |
< |
|
925 |
< |
_sigmaScale[1][1][0]=0.471767; |
926 |
< |
_sigmaScale[1][1][1]=0.211196; |
927 |
< |
_sigmaScale[1][1][2]=0.0240124; |
928 |
< |
_sigmaScale[1][1][3]=0; |
929 |
< |
_sigmaAT[1][1][0]=0.404395; |
930 |
< |
_sigmaAT[1][1][1]=0; |
931 |
< |
_sigmaAT[1][1][2]=0; |
932 |
< |
_sigmaAT[1][1][3]=0; |
933 |
< |
_sigmaAC[1][1][0]=0.00173151; |
934 |
< |
_sigmaAC[1][1][1]=-0.479291; |
935 |
< |
_sigmaAC[1][1][2]=11583.5; |
936 |
< |
_sigmaAC[1][1][3]=-7e+09; |
937 |
< |
_sigmaAS[1][1][0]=0.000450387; |
938 |
< |
_sigmaAS[1][1][1]=0.662978; |
939 |
< |
_sigmaAS[1][1][2]=924.051; |
940 |
< |
_sigmaAS[1][1][3]=448.417; |
941 |
< |
_sigmaAM[1][1][0]=0.00335603; |
942 |
< |
_sigmaAM[1][1][1]=0.648407; |
943 |
< |
_sigmaAM[1][1][2]=134.672; |
944 |
< |
_sigmaAM[1][1][3]=27.4139; |
945 |
< |
_sigmaBT[1][1][0]=0.602402; |
946 |
< |
_sigmaBT[1][1][1]=0; |
947 |
< |
_sigmaBT[1][1][2]=0; |
948 |
< |
_sigmaBT[1][1][3]=0; |
949 |
< |
_sigmaBC[1][1][0]=-0.00256192; |
950 |
< |
_sigmaBC[1][1][1]=2.01276; |
951 |
< |
_sigmaBC[1][1][2]=114558; |
952 |
< |
_sigmaBC[1][1][3]=2.15421e+06; |
953 |
< |
_sigmaBS[1][1][0]=0.00151576; |
954 |
< |
_sigmaBS[1][1][1]=0.359084; |
955 |
< |
_sigmaBS[1][1][2]=329.414; |
956 |
< |
_sigmaBS[1][1][3]=154.509; |
957 |
< |
_sigmaBM[1][1][0]=-0.0452587; |
958 |
< |
_sigmaBM[1][1][1]=1.26253; |
959 |
< |
_sigmaBM[1][1][2]=1.9e+09; |
960 |
< |
_sigmaBM[1][1][3]=1058.76; |
961 |
< |
_sigmaR9[1][1][0]=4.59667; |
962 |
< |
_sigmaR9[1][1][1]=-5.14404; |
963 |
< |
_sigmaR9[1][1][2]=0; |
964 |
< |
_sigmaR9[1][1][3]=0; |
965 |
< |
|
966 |
< |
_initialised=true; |
967 |
< |
} |
968 |
< |
|
969 |
< |
if(s=="3_11") { |
970 |
< |
_meanScale[0][0][0]=0.994363; |
971 |
< |
_meanScale[0][0][1]=4.84904e-07; |
972 |
< |
_meanScale[0][0][2]=1.54475e-05; |
973 |
< |
_meanScale[0][0][3]=-0.103309; |
974 |
< |
_meanAC[0][0][0]=-0.00360057; |
975 |
< |
_meanAC[0][0][1]=0.00970858; |
976 |
< |
_meanAC[0][0][2]=409.406; |
977 |
< |
_meanAC[0][0][3]=527.952; |
978 |
< |
_meanAS[0][0][0]=-1.1; |
979 |
< |
_meanAS[0][0][1]=0.00135995; |
980 |
< |
_meanAS[0][0][2]=295.712; |
981 |
< |
_meanAS[0][0][3]=5.13202e+07; |
982 |
< |
_meanAM[0][0][0]=-0.00129854; |
983 |
< |
_meanAM[0][0][1]=0.151466; |
984 |
< |
_meanAM[0][0][2]=261.828; |
985 |
< |
_meanAM[0][0][3]=214.662; |
986 |
< |
_meanBC[0][0][0]=-0.00286864; |
987 |
< |
_meanBC[0][0][1]=0.0114118; |
988 |
< |
_meanBC[0][0][2]=563.962; |
989 |
< |
_meanBC[0][0][3]=412.922; |
990 |
< |
_meanBS[0][0][0]=-0.00210996; |
991 |
< |
_meanBS[0][0][1]=0.00327867; |
992 |
< |
_meanBS[0][0][2]=23.617; |
993 |
< |
_meanBS[0][0][3]=1018.45; |
994 |
< |
_meanBM[0][0][0]=-0.002287; |
995 |
< |
_meanBM[0][0][1]=0.0848984; |
996 |
< |
_meanBM[0][0][2]=235.575; |
997 |
< |
_meanBM[0][0][3]=260.773; |
998 |
< |
_meanR9[0][0][0]=0.951724; |
999 |
< |
_meanR9[0][0][1]=23.7181; |
1000 |
< |
_meanR9[0][0][2]=177.34; |
1001 |
< |
_meanR9[0][0][3]=0; |
1002 |
< |
|
1003 |
< |
_sigmaScale[0][0][0]=0.187578; |
1004 |
< |
_sigmaScale[0][0][1]=-0.000901045; |
1005 |
< |
_sigmaScale[0][0][2]=0.00673186; |
1006 |
< |
_sigmaScale[0][0][3]=0; |
1007 |
< |
_sigmaAT[0][0][0]=0.183777; |
1008 |
< |
_sigmaAT[0][0][1]=0; |
1009 |
< |
_sigmaAT[0][0][2]=0; |
1010 |
< |
_sigmaAT[0][0][3]=0; |
1011 |
< |
_sigmaAC[0][0][0]=-0.00430202; |
1012 |
< |
_sigmaAC[0][0][1]=0.122501; |
1013 |
< |
_sigmaAC[0][0][2]=51.9772; |
1014 |
< |
_sigmaAC[0][0][3]=-3e+17; |
1015 |
< |
_sigmaAS[0][0][0]=0; |
1016 |
< |
_sigmaAS[0][0][1]=0; |
1017 |
< |
_sigmaAS[0][0][2]=0; |
1018 |
< |
_sigmaAS[0][0][3]=0; |
1019 |
< |
_sigmaAM[0][0][0]=0.00101883; |
1020 |
< |
_sigmaAM[0][0][1]=11.2009; |
1021 |
< |
_sigmaAM[0][0][2]=593.111; |
1022 |
< |
_sigmaAM[0][0][3]=345.433; |
1023 |
< |
_sigmaBT[0][0][0]=-6.02356e-05; |
1024 |
< |
_sigmaBT[0][0][1]=6.99896; |
1025 |
< |
_sigmaBT[0][0][2]=235.996; |
1026 |
< |
_sigmaBT[0][0][3]=196; |
1027 |
< |
_sigmaBC[0][0][0]=-0.00282254; |
1028 |
< |
_sigmaBC[0][0][1]=0.18764; |
1029 |
< |
_sigmaBC[0][0][2]=509.825; |
1030 |
< |
_sigmaBC[0][0][3]=1400.14; |
1031 |
< |
_sigmaBS[0][0][0]=0; |
1032 |
< |
_sigmaBS[0][0][1]=0; |
1033 |
< |
_sigmaBS[0][0][2]=0; |
1034 |
< |
_sigmaBS[0][0][3]=0; |
1035 |
< |
_sigmaBM[0][0][0]=-0.00252199; |
1036 |
< |
_sigmaBM[0][0][1]=39.1544; |
1037 |
< |
_sigmaBM[0][0][2]=612.481; |
1038 |
< |
_sigmaBM[0][0][3]=905.994; |
1039 |
< |
_sigmaR9[0][0][0]=0.95608; |
1040 |
< |
_sigmaR9[0][0][1]=2203.31; |
1041 |
< |
_sigmaR9[0][0][2]=-22454.2; |
1042 |
< |
_sigmaR9[0][0][3]=0; |
1043 |
< |
|
1044 |
< |
_meanScale[0][1][0]=0.889415; |
1045 |
< |
_meanScale[0][1][1]=1.21788e-05; |
1046 |
< |
_meanScale[0][1][2]=-4.3438e-06; |
1047 |
< |
_meanScale[0][1][3]=-0.629968; |
1048 |
< |
_meanAC[0][1][0]=-0.00313701; |
1049 |
< |
_meanAC[0][1][1]=0.0227998; |
1050 |
< |
_meanAC[0][1][2]=128.653; |
1051 |
< |
_meanAC[0][1][3]=234.333; |
1052 |
< |
_meanAS[0][1][0]=0.0346198; |
1053 |
< |
_meanAS[0][1][1]=-0.00261336; |
1054 |
< |
_meanAS[0][1][2]=177.983; |
1055 |
< |
_meanAS[0][1][3]=1.19839e+14; |
1056 |
< |
_meanAM[0][1][0]=-0.00100745; |
1057 |
< |
_meanAM[0][1][1]=0.264247; |
1058 |
< |
_meanAM[0][1][2]=337.255; |
1059 |
< |
_meanAM[0][1][3]=251.454; |
1060 |
< |
_meanBC[0][1][0]=-0.00397794; |
1061 |
< |
_meanBC[0][1][1]=0.00219079; |
1062 |
< |
_meanBC[0][1][2]=176.842; |
1063 |
< |
_meanBC[0][1][3]=450.29; |
1064 |
< |
_meanBS[0][1][0]=-2e+07; |
1065 |
< |
_meanBS[0][1][1]=0.0957598; |
1066 |
< |
_meanBS[0][1][2]=-8.88573e-27; |
1067 |
< |
_meanBS[0][1][3]=11442.2; |
1068 |
< |
_meanBM[0][1][0]=-0.00366315; |
1069 |
< |
_meanBM[0][1][1]=0.0622186; |
1070 |
< |
_meanBM[0][1][2]=94.5155; |
1071 |
< |
_meanBM[0][1][3]=126.404; |
1072 |
< |
_meanR9[0][1][0]=0.00636789; |
1073 |
< |
_meanR9[0][1][1]=0.000336062; |
1074 |
< |
_meanR9[0][1][2]=-0.0092699; |
1075 |
< |
_meanR9[0][1][3]=0; |
1076 |
< |
|
1077 |
< |
_sigmaScale[0][1][0]=0.685096; |
1078 |
< |
_sigmaScale[0][1][1]=0.129065; |
1079 |
< |
_sigmaScale[0][1][2]=-0.00212486; |
1080 |
< |
_sigmaScale[0][1][3]=0; |
1081 |
< |
_sigmaAT[0][1][0]=0.898865; |
1082 |
< |
_sigmaAT[0][1][1]=0; |
1083 |
< |
_sigmaAT[0][1][2]=0; |
1084 |
< |
_sigmaAT[0][1][3]=0; |
1085 |
< |
_sigmaAC[0][1][0]=-0.00492979; |
1086 |
< |
_sigmaAC[0][1][1]=-1.20123; |
1087 |
< |
_sigmaAC[0][1][2]=2.89231; |
1088 |
< |
_sigmaAC[0][1][3]=18.2059; |
1089 |
< |
_sigmaAS[0][1][0]=0; |
1090 |
< |
_sigmaAS[0][1][1]=0; |
1091 |
< |
_sigmaAS[0][1][2]=0; |
1092 |
< |
_sigmaAS[0][1][3]=0; |
1093 |
< |
_sigmaAM[0][1][0]=-0.000727825; |
1094 |
< |
_sigmaAM[0][1][1]=8.42395; |
1095 |
< |
_sigmaAM[0][1][2]=512.032; |
1096 |
< |
_sigmaAM[0][1][3]=415.962; |
1097 |
< |
_sigmaBT[0][1][0]=-0.0336364; |
1098 |
< |
_sigmaBT[0][1][1]=2.45182; |
1099 |
< |
_sigmaBT[0][1][2]=-0.284353; |
1100 |
< |
_sigmaBT[0][1][3]=-0.31679; |
1101 |
< |
_sigmaBC[0][1][0]=0.00510553; |
1102 |
< |
_sigmaBC[0][1][1]=-0.953869; |
1103 |
< |
_sigmaBC[0][1][2]=113872; |
1104 |
< |
_sigmaBC[0][1][3]=1.35966e+09; |
1105 |
< |
_sigmaBS[0][1][0]=0; |
1106 |
< |
_sigmaBS[0][1][1]=0; |
1107 |
< |
_sigmaBS[0][1][2]=0; |
1108 |
< |
_sigmaBS[0][1][3]=0; |
1109 |
< |
_sigmaBM[0][1][0]=-0.0034071; |
1110 |
< |
_sigmaBM[0][1][1]=4.19719; |
1111 |
< |
_sigmaBM[0][1][2]=128.952; |
1112 |
< |
_sigmaBM[0][1][3]=180.604; |
1113 |
< |
_sigmaR9[0][1][0]=-3.38988; |
1114 |
< |
_sigmaR9[0][1][1]=2.0714; |
1115 |
< |
_sigmaR9[0][1][2]=0; |
1116 |
< |
_sigmaR9[0][1][3]=0; |
1117 |
< |
|
1118 |
< |
_meanScale[1][0][0]=1.0009; |
1119 |
< |
_meanScale[1][0][1]=-4.79805e-06; |
1120 |
< |
_meanScale[1][0][2]=3.34625e-05; |
1121 |
< |
_meanScale[1][0][3]=-0.194267; |
1122 |
< |
_meanAC[1][0][0]=-0.000177563; |
1123 |
< |
_meanAC[1][0][1]=0.0122839; |
1124 |
< |
_meanAC[1][0][2]=1798.92; |
1125 |
< |
_meanAC[1][0][3]=776.856; |
1126 |
< |
_meanAS[1][0][0]=-0.000533039; |
1127 |
< |
_meanAS[1][0][1]=0.0642604; |
1128 |
< |
_meanAS[1][0][2]=969.596; |
1129 |
< |
_meanAS[1][0][3]=1004.15; |
1130 |
< |
_meanAM[1][0][0]=0.000163185; |
1131 |
< |
_meanAM[1][0][1]=0.085936; |
1132 |
< |
_meanAM[1][0][2]=1593.17; |
1133 |
< |
_meanAM[1][0][3]=681.623; |
1134 |
< |
_meanBC[1][0][0]=-0.000518186; |
1135 |
< |
_meanBC[1][0][1]=0.0121868; |
1136 |
< |
_meanBC[1][0][2]=1112.53; |
1137 |
< |
_meanBC[1][0][3]=933.281; |
1138 |
< |
_meanBS[1][0][0]=-0.000750734; |
1139 |
< |
_meanBS[1][0][1]=0.03859; |
1140 |
< |
_meanBS[1][0][2]=547.579; |
1141 |
< |
_meanBS[1][0][3]=775.887; |
1142 |
< |
_meanBM[1][0][0]=-0.190395; |
1143 |
< |
_meanBM[1][0][1]=-0.00362647; |
1144 |
< |
_meanBM[1][0][2]=5.25687; |
1145 |
< |
_meanBM[1][0][3]=-2.8e+08; |
1146 |
< |
_meanR9[1][0][0]=0.972346; |
1147 |
< |
_meanR9[1][0][1]=53.9185; |
1148 |
< |
_meanR9[1][0][2]=1354.5; |
1149 |
< |
_meanR9[1][0][3]=0; |
1150 |
< |
|
1151 |
< |
_sigmaScale[1][0][0]=0.348019; |
1152 |
< |
_sigmaScale[1][0][1]=-6.43731e-11; |
1153 |
< |
_sigmaScale[1][0][2]=0.0158647; |
1154 |
< |
_sigmaScale[1][0][3]=0; |
1155 |
< |
_sigmaAT[1][0][0]=0.215239; |
1156 |
< |
_sigmaAT[1][0][1]=0; |
1157 |
< |
_sigmaAT[1][0][2]=0; |
1158 |
< |
_sigmaAT[1][0][3]=0; |
1159 |
< |
_sigmaAC[1][0][0]=-0.00492298; |
1160 |
< |
_sigmaAC[1][0][1]=-3.40058; |
1161 |
< |
_sigmaAC[1][0][2]=17263.9; |
1162 |
< |
_sigmaAC[1][0][3]=2.6e+11; |
1163 |
< |
_sigmaAS[1][0][0]=-0.000237998; |
1164 |
< |
_sigmaAS[1][0][1]=3.0258; |
1165 |
< |
_sigmaAS[1][0][2]=1811.25; |
1166 |
< |
_sigmaAS[1][0][3]=1846.79; |
1167 |
< |
_sigmaAM[1][0][0]=0.0210134; |
1168 |
< |
_sigmaAM[1][0][1]=0.328359; |
1169 |
< |
_sigmaAM[1][0][2]=22.49; |
1170 |
< |
_sigmaAM[1][0][3]=14.5021; |
1171 |
< |
_sigmaBT[1][0][0]=-0.495072; |
1172 |
< |
_sigmaBT[1][0][1]=0; |
1173 |
< |
_sigmaBT[1][0][2]=0; |
1174 |
< |
_sigmaBT[1][0][3]=0; |
1175 |
< |
_sigmaBC[1][0][0]=-0.00265007; |
1176 |
< |
_sigmaBC[1][0][1]=0.970549; |
1177 |
< |
_sigmaBC[1][0][2]=-6.89119e+07; |
1178 |
< |
_sigmaBC[1][0][3]=180110; |
1179 |
< |
_sigmaBS[1][0][0]=0.00045833; |
1180 |
< |
_sigmaBS[1][0][1]=2.16342; |
1181 |
< |
_sigmaBS[1][0][2]=3582.4; |
1182 |
< |
_sigmaBS[1][0][3]=1100.36; |
1183 |
< |
_sigmaBM[1][0][0]=0.00188871; |
1184 |
< |
_sigmaBM[1][0][1]=1.66177; |
1185 |
< |
_sigmaBM[1][0][2]=3.2e+08; |
1186 |
< |
_sigmaBM[1][0][3]=2163.81; |
1187 |
< |
_sigmaR9[1][0][0]=-220.415; |
1188 |
< |
_sigmaR9[1][0][1]=5.19136e-08; |
1189 |
< |
_sigmaR9[1][0][2]=3.04028e-10; |
1190 |
< |
_sigmaR9[1][0][3]=0; |
1191 |
< |
|
1192 |
< |
_meanScale[1][1][0]=0.338011; |
1193 |
< |
_meanScale[1][1][1]=9.47815e-05; |
1194 |
< |
_meanScale[1][1][2]=-0.000238735; |
1195 |
< |
_meanScale[1][1][3]=-0.846414; |
1196 |
< |
_meanAC[1][1][0]=-0.00125367; |
1197 |
< |
_meanAC[1][1][1]=0.013324; |
1198 |
< |
_meanAC[1][1][2]=203.988; |
1199 |
< |
_meanAC[1][1][3]=431.951; |
1200 |
< |
_meanAS[1][1][0]=0.000282607; |
1201 |
< |
_meanAS[1][1][1]=0.0307431; |
1202 |
< |
_meanAS[1][1][2]=343.509; |
1203 |
< |
_meanAS[1][1][3]=274.957; |
1204 |
< |
_meanAM[1][1][0]=0.0020258; |
1205 |
< |
_meanAM[1][1][1]=0.643913; |
1206 |
< |
_meanAM[1][1][2]=0.0693877; |
1207 |
< |
_meanAM[1][1][3]=0.0816029; |
1208 |
< |
_meanBC[1][1][0]=-0.00513833; |
1209 |
< |
_meanBC[1][1][1]=5.94424e+08; |
1210 |
< |
_meanBC[1][1][2]=-62814.9; |
1211 |
< |
_meanBC[1][1][3]=118612; |
1212 |
< |
_meanBS[1][1][0]=-0.00152129; |
1213 |
< |
_meanBS[1][1][1]=0.0234694; |
1214 |
< |
_meanBS[1][1][2]=186.483; |
1215 |
< |
_meanBS[1][1][3]=754.201; |
1216 |
< |
_meanBM[1][1][0]=-0.000404987; |
1217 |
< |
_meanBM[1][1][1]=0.156384; |
1218 |
< |
_meanBM[1][1][2]=-1.7e+08; |
1219 |
< |
_meanBM[1][1][3]=1793.83; |
1220 |
< |
_meanR9[1][1][0]=0.0645278; |
1221 |
< |
_meanR9[1][1][1]=0.161614; |
1222 |
< |
_meanR9[1][1][2]=-0.215822; |
1223 |
< |
_meanR9[1][1][3]=0; |
1224 |
< |
|
1225 |
< |
_sigmaScale[1][1][0]=1.07376; |
1226 |
< |
_sigmaScale[1][1][1]=7.47238e-13; |
1227 |
< |
_sigmaScale[1][1][2]=0.0289594; |
1228 |
< |
_sigmaScale[1][1][3]=0; |
1229 |
< |
_sigmaAT[1][1][0]=-0.520907; |
1230 |
< |
_sigmaAT[1][1][1]=0; |
1231 |
< |
_sigmaAT[1][1][2]=0; |
1232 |
< |
_sigmaAT[1][1][3]=0; |
1233 |
< |
_sigmaAC[1][1][0]=0.00165941; |
1234 |
< |
_sigmaAC[1][1][1]=-0.351422; |
1235 |
< |
_sigmaAC[1][1][2]=8968.94; |
1236 |
< |
_sigmaAC[1][1][3]=-7e+09; |
1237 |
< |
_sigmaAS[1][1][0]=0.000490279; |
1238 |
< |
_sigmaAS[1][1][1]=0.554531; |
1239 |
< |
_sigmaAS[1][1][2]=469.111; |
1240 |
< |
_sigmaAS[1][1][3]=457.541; |
1241 |
< |
_sigmaAM[1][1][0]=0.00102079; |
1242 |
< |
_sigmaAM[1][1][1]=0.628055; |
1243 |
< |
_sigmaAM[1][1][2]=53.9452; |
1244 |
< |
_sigmaAM[1][1][3]=72.911; |
1245 |
< |
_sigmaBT[1][1][0]=-0.461542; |
1246 |
< |
_sigmaBT[1][1][1]=0; |
1247 |
< |
_sigmaBT[1][1][2]=0; |
1248 |
< |
_sigmaBT[1][1][3]=0; |
1249 |
< |
_sigmaBC[1][1][0]=-0.00219303; |
1250 |
< |
_sigmaBC[1][1][1]=0.874327; |
1251 |
< |
_sigmaBC[1][1][2]=71353.2; |
1252 |
< |
_sigmaBC[1][1][3]=2.09924e+08; |
1253 |
< |
_sigmaBS[1][1][0]=0.00104021; |
1254 |
< |
_sigmaBS[1][1][1]=0.236098; |
1255 |
< |
_sigmaBS[1][1][2]=482.954; |
1256 |
< |
_sigmaBS[1][1][3]=191.984; |
1257 |
< |
_sigmaBM[1][1][0]=-0.000116086; |
1258 |
< |
_sigmaBM[1][1][1]=2.4438; |
1259 |
< |
_sigmaBM[1][1][2]=1.9e+09; |
1260 |
< |
_sigmaBM[1][1][3]=-700.271; |
1261 |
< |
_sigmaR9[1][1][0]=4.59374; |
1262 |
< |
_sigmaR9[1][1][1]=-5.06202; |
1263 |
< |
_sigmaR9[1][1][2]=0; |
1264 |
< |
_sigmaR9[1][1][3]=0; |
1265 |
< |
|
1266 |
< |
_initialised=true; |
1267 |
< |
} |
1268 |
< |
|
1269 |
< |
if(s=="4_2") { |
1270 |
< |
_meanScale[0][0][0]=0.996799; |
1271 |
< |
_meanScale[0][0][1]=5.60811e-07; |
1272 |
< |
_meanScale[0][0][2]=1.75671e-05; |
1273 |
< |
_meanScale[0][0][3]=-0.0972943; |
1274 |
< |
_meanAC[0][0][0]=-0.00348412; |
1275 |
< |
_meanAC[0][0][1]=0.010197; |
1276 |
< |
_meanAC[0][0][2]=463.582; |
1277 |
< |
_meanAC[0][0][3]=520.443; |
1278 |
< |
_meanAS[0][0][0]=-1.1; |
1279 |
< |
_meanAS[0][0][1]=0.00135995; |
1280 |
< |
_meanAS[0][0][2]=295.712; |
1281 |
< |
_meanAS[0][0][3]=5.13202e+07; |
1282 |
< |
_meanAM[0][0][0]=-0.00120395; |
1283 |
< |
_meanAM[0][0][1]=0.1436; |
1284 |
< |
_meanAM[0][0][2]=262.307; |
1285 |
< |
_meanAM[0][0][3]=202.913; |
1286 |
< |
_meanBC[0][0][0]=-0.00274879; |
1287 |
< |
_meanBC[0][0][1]=0.0126012; |
1288 |
< |
_meanBC[0][0][2]=612.055; |
1289 |
< |
_meanBC[0][0][3]=397.039; |
1290 |
< |
_meanBS[0][0][0]=-0.00203352; |
1291 |
< |
_meanBS[0][0][1]=0.00374733; |
1292 |
< |
_meanBS[0][0][2]=48.7328; |
1293 |
< |
_meanBS[0][0][3]=1128; |
1294 |
< |
_meanBM[0][0][0]=-0.00183083; |
1295 |
< |
_meanBM[0][0][1]=0.0683669; |
1296 |
< |
_meanBM[0][0][2]=218.027; |
1297 |
< |
_meanBM[0][0][3]=210.899; |
1298 |
< |
_meanR9[0][0][0]=0.946449; |
1299 |
< |
_meanR9[0][0][1]=18.7205; |
1300 |
< |
_meanR9[0][0][2]=215.858; |
1301 |
< |
_meanR9[0][0][3]=0; |
1302 |
< |
|
1303 |
< |
_sigmaScale[0][0][0]=0.170521; |
1304 |
< |
_sigmaScale[0][0][1]=0.0219663; |
1305 |
< |
_sigmaScale[0][0][2]=0.00652237; |
1306 |
< |
_sigmaScale[0][0][3]=0; |
1307 |
< |
_sigmaAT[0][0][0]=0.169953; |
1308 |
< |
_sigmaAT[0][0][1]=0; |
1309 |
< |
_sigmaAT[0][0][2]=0; |
1310 |
< |
_sigmaAT[0][0][3]=0; |
1311 |
< |
_sigmaAC[0][0][0]=-0.00383749; |
1312 |
< |
_sigmaAC[0][0][1]=0.0873992; |
1313 |
< |
_sigmaAC[0][0][2]=48.3297; |
1314 |
< |
_sigmaAC[0][0][3]=-3e+17; |
1315 |
< |
_sigmaAS[0][0][0]=0; |
1316 |
< |
_sigmaAS[0][0][1]=0; |
1317 |
< |
_sigmaAS[0][0][2]=0; |
1318 |
< |
_sigmaAS[0][0][3]=0; |
1319 |
< |
_sigmaAM[0][0][0]=0.000929953; |
1320 |
< |
_sigmaAM[0][0][1]=10.4322; |
1321 |
< |
_sigmaAM[0][0][2]=599.042; |
1322 |
< |
_sigmaAM[0][0][3]=302.713; |
1323 |
< |
_sigmaBT[0][0][0]=-0.00237746; |
1324 |
< |
_sigmaBT[0][0][1]=2.84349; |
1325 |
< |
_sigmaBT[0][0][2]=125.522; |
1326 |
< |
_sigmaBT[0][0][3]=144.262; |
1327 |
< |
_sigmaBC[0][0][0]=-0.00170611; |
1328 |
< |
_sigmaBC[0][0][1]=0.260614; |
1329 |
< |
_sigmaBC[0][0][2]=985.412; |
1330 |
< |
_sigmaBC[0][0][3]=806.274; |
1331 |
< |
_sigmaBS[0][0][0]=0; |
1332 |
< |
_sigmaBS[0][0][1]=0; |
1333 |
< |
_sigmaBS[0][0][2]=0; |
1334 |
< |
_sigmaBS[0][0][3]=0; |
1335 |
< |
_sigmaBM[0][0][0]=-0.00252749; |
1336 |
< |
_sigmaBM[0][0][1]=50.861; |
1337 |
< |
_sigmaBM[0][0][2]=673.202; |
1338 |
< |
_sigmaBM[0][0][3]=1011.63; |
1339 |
< |
_sigmaR9[0][0][0]=0.953432; |
1340 |
< |
_sigmaR9[0][0][1]=1814.6; |
1341 |
< |
_sigmaR9[0][0][2]=25838.3; |
1342 |
< |
_sigmaR9[0][0][3]=0; |
1343 |
< |
|
1344 |
< |
_meanScale[0][1][0]=0.888925; |
1345 |
< |
_meanScale[0][1][1]=-1.74431e-05; |
1346 |
< |
_meanScale[0][1][2]=2.96023e-05; |
1347 |
< |
_meanScale[0][1][3]=-0.651503; |
1348 |
< |
_meanAC[0][1][0]=-0.00322338; |
1349 |
< |
_meanAC[0][1][1]=0.0220617; |
1350 |
< |
_meanAC[0][1][2]=137.003; |
1351 |
< |
_meanAC[0][1][3]=237.095; |
1352 |
< |
_meanAS[0][1][0]=0.0331431; |
1353 |
< |
_meanAS[0][1][1]=-0.00594756; |
1354 |
< |
_meanAS[0][1][2]=2675.67; |
1355 |
< |
_meanAS[0][1][3]=1.4e+09; |
1356 |
< |
_meanAM[0][1][0]=-0.000636963; |
1357 |
< |
_meanAM[0][1][1]=0.15048; |
1358 |
< |
_meanAM[0][1][2]=395.704; |
1359 |
< |
_meanAM[0][1][3]=306.8; |
1360 |
< |
_meanBC[0][1][0]=-0.00357393; |
1361 |
< |
_meanBC[0][1][1]=0.00449012; |
1362 |
< |
_meanBC[0][1][2]=887.818; |
1363 |
< |
_meanBC[0][1][3]=855.377; |
1364 |
< |
_meanBS[0][1][0]=-297.287; |
1365 |
< |
_meanBS[0][1][1]=0.0956803; |
1366 |
< |
_meanBS[0][1][2]=-4.74338e-20; |
1367 |
< |
_meanBS[0][1][3]=11442.2; |
1368 |
< |
_meanBM[0][1][0]=-0.00320834; |
1369 |
< |
_meanBM[0][1][1]=0.043721; |
1370 |
< |
_meanBM[0][1][2]=132.981; |
1371 |
< |
_meanBM[0][1][3]=171.418; |
1372 |
< |
_meanR9[0][1][0]=0.0136009; |
1373 |
< |
_meanR9[0][1][1]=-0.0214006; |
1374 |
< |
_meanR9[0][1][2]=0.00866824; |
1375 |
< |
_meanR9[0][1][3]=0; |
1376 |
< |
|
1377 |
< |
_sigmaScale[0][1][0]=0.445368; |
1378 |
< |
_sigmaScale[0][1][1]=0.0898336; |
1379 |
< |
_sigmaScale[0][1][2]=-0.00333875; |
1380 |
< |
_sigmaScale[0][1][3]=0; |
1381 |
< |
_sigmaAT[0][1][0]=1.25749; |
1382 |
< |
_sigmaAT[0][1][1]=0; |
1383 |
< |
_sigmaAT[0][1][2]=0; |
1384 |
< |
_sigmaAT[0][1][3]=0; |
1385 |
< |
_sigmaAC[0][1][0]=-0.00360692; |
1386 |
< |
_sigmaAC[0][1][1]=-1.04963; |
1387 |
< |
_sigmaAC[0][1][2]=10.3527; |
1388 |
< |
_sigmaAC[0][1][3]=29.0662; |
1389 |
< |
_sigmaAS[0][1][0]=0; |
1390 |
< |
_sigmaAS[0][1][1]=0; |
1391 |
< |
_sigmaAS[0][1][2]=0; |
1392 |
< |
_sigmaAS[0][1][3]=0; |
1393 |
< |
_sigmaAM[0][1][0]=-0.000973088; |
1394 |
< |
_sigmaAM[0][1][1]=12.859; |
1395 |
< |
_sigmaAM[0][1][2]=466.397; |
1396 |
< |
_sigmaAM[0][1][3]=464.686; |
1397 |
< |
_sigmaBT[0][1][0]=-0.0284288; |
1398 |
< |
_sigmaBT[0][1][1]=2.6772; |
1399 |
< |
_sigmaBT[0][1][2]=-0.414022; |
1400 |
< |
_sigmaBT[0][1][3]=-0.424373; |
1401 |
< |
_sigmaBC[0][1][0]=0.00567218; |
1402 |
< |
_sigmaBC[0][1][1]=-0.829286; |
1403 |
< |
_sigmaBC[0][1][2]=48132; |
1404 |
< |
_sigmaBC[0][1][3]=3.1211e+08; |
1405 |
< |
_sigmaBS[0][1][0]=0; |
1406 |
< |
_sigmaBS[0][1][1]=0; |
1407 |
< |
_sigmaBS[0][1][2]=0; |
1408 |
< |
_sigmaBS[0][1][3]=0; |
1409 |
< |
_sigmaBM[0][1][0]=-0.00270505; |
1410 |
< |
_sigmaBM[0][1][1]=6.07197; |
1411 |
< |
_sigmaBM[0][1][2]=149.784; |
1412 |
< |
_sigmaBM[0][1][3]=203.478; |
1413 |
< |
_sigmaR9[0][1][0]=-2.78021; |
1414 |
< |
_sigmaR9[0][1][1]=1.33952; |
1415 |
< |
_sigmaR9[0][1][2]=0; |
1416 |
< |
_sigmaR9[0][1][3]=0; |
1417 |
< |
|
1418 |
< |
_meanScale[1][0][0]=0.99928; |
1419 |
< |
_meanScale[1][0][1]=-3.23928e-05; |
1420 |
< |
_meanScale[1][0][2]=0.000126742; |
1421 |
< |
_meanScale[1][0][3]=-0.103714; |
1422 |
< |
_meanAC[1][0][0]=-0.000283383; |
1423 |
< |
_meanAC[1][0][1]=0.0150483; |
1424 |
< |
_meanAC[1][0][2]=1379.81; |
1425 |
< |
_meanAC[1][0][3]=750.912; |
1426 |
< |
_meanAS[1][0][0]=-0.00053446; |
1427 |
< |
_meanAS[1][0][1]=0.0702291; |
1428 |
< |
_meanAS[1][0][2]=835.991; |
1429 |
< |
_meanAS[1][0][3]=1023.41; |
1430 |
< |
_meanAM[1][0][0]=2.63208e-05; |
1431 |
< |
_meanAM[1][0][1]=0.258572; |
1432 |
< |
_meanAM[1][0][2]=2428.89; |
1433 |
< |
_meanAM[1][0][3]=2073.45; |
1434 |
< |
_meanBC[1][0][0]=-0.000345234; |
1435 |
< |
_meanBC[1][0][1]=0.0149896; |
1436 |
< |
_meanBC[1][0][2]=1403.55; |
1437 |
< |
_meanBC[1][0][3]=847.164; |
1438 |
< |
_meanBS[1][0][0]=-0.000411942; |
1439 |
< |
_meanBS[1][0][1]=0.0543678; |
1440 |
< |
_meanBS[1][0][2]=889.136; |
1441 |
< |
_meanBS[1][0][3]=937.071; |
1442 |
< |
_meanBM[1][0][0]=-0.186801; |
1443 |
< |
_meanBM[1][0][1]=-0.00221346; |
1444 |
< |
_meanBM[1][0][2]=3.52258; |
1445 |
< |
_meanBM[1][0][3]=3.17997e+06; |
1446 |
< |
_meanR9[1][0][0]=0.964924; |
1447 |
< |
_meanR9[1][0][1]=31.8205; |
1448 |
< |
_meanR9[1][0][2]=459.004; |
1449 |
< |
_meanR9[1][0][3]=0; |
1450 |
< |
|
1451 |
< |
_sigmaScale[1][0][0]=0.344806; |
1452 |
< |
_sigmaScale[1][0][1]=6.93889e-18; |
1453 |
< |
_sigmaScale[1][0][2]=0.0154355; |
1454 |
< |
_sigmaScale[1][0][3]=0; |
1455 |
< |
_sigmaAT[1][0][0]=0.954147; |
1456 |
< |
_sigmaAT[1][0][1]=0; |
1457 |
< |
_sigmaAT[1][0][2]=0; |
1458 |
< |
_sigmaAT[1][0][3]=0; |
1459 |
< |
_sigmaAC[1][0][0]=48.1275; |
1460 |
< |
_sigmaAC[1][0][1]=1.50005e+08; |
1461 |
< |
_sigmaAC[1][0][2]=21231.6; |
1462 |
< |
_sigmaAC[1][0][3]=2.6e+11; |
1463 |
< |
_sigmaAS[1][0][0]=-0.000195931; |
1464 |
< |
_sigmaAS[1][0][1]=2.61977; |
1465 |
< |
_sigmaAS[1][0][2]=1321.33; |
1466 |
< |
_sigmaAS[1][0][3]=1267.31; |
1467 |
< |
_sigmaAM[1][0][0]=0.0277744; |
1468 |
< |
_sigmaAM[1][0][1]=0.316244; |
1469 |
< |
_sigmaAM[1][0][2]=21.1765; |
1470 |
< |
_sigmaAM[1][0][3]=13.0875; |
1471 |
< |
_sigmaBT[1][0][0]=-0.633404; |
1472 |
< |
_sigmaBT[1][0][1]=0; |
1473 |
< |
_sigmaBT[1][0][2]=0; |
1474 |
< |
_sigmaBT[1][0][3]=0; |
1475 |
< |
_sigmaBC[1][0][0]=-0.00320087; |
1476 |
< |
_sigmaBC[1][0][1]=8.94207; |
1477 |
< |
_sigmaBC[1][0][2]=7.49509e+12; |
1478 |
< |
_sigmaBC[1][0][3]=5.00279e+06; |
1479 |
< |
_sigmaBS[1][0][0]=0.000299388; |
1480 |
< |
_sigmaBS[1][0][1]=2.43008; |
1481 |
< |
_sigmaBS[1][0][2]=2885.75; |
1482 |
< |
_sigmaBS[1][0][3]=1072.72; |
1483 |
< |
_sigmaBM[1][0][0]=0.00154631; |
1484 |
< |
_sigmaBM[1][0][1]=23.6989; |
1485 |
< |
_sigmaBM[1][0][2]=1.2565e+07; |
1486 |
< |
_sigmaBM[1][0][3]=43957.4; |
1487 |
< |
_sigmaR9[1][0][0]=98.4538; |
1488 |
< |
_sigmaR9[1][0][1]=1.85379e-07; |
1489 |
< |
_sigmaR9[1][0][2]=-5.66067e-10; |
1490 |
< |
_sigmaR9[1][0][3]=0; |
1491 |
< |
|
1492 |
< |
_meanScale[1][1][0]=0.325367; |
1493 |
< |
_meanScale[1][1][1]=8.5347e-05; |
1494 |
< |
_meanScale[1][1][2]=-0.000187217; |
1495 |
< |
_meanScale[1][1][3]=-0.991423; |
1496 |
< |
_meanAC[1][1][0]=-0.00114884; |
1497 |
< |
_meanAC[1][1][1]=0.00816447; |
1498 |
< |
_meanAC[1][1][2]=314.939; |
1499 |
< |
_meanAC[1][1][3]=614.316; |
1500 |
< |
_meanAS[1][1][0]=-0.00877504; |
1501 |
< |
_meanAS[1][1][1]=-0.00376867; |
1502 |
< |
_meanAS[1][1][2]=1471.46; |
1503 |
< |
_meanAS[1][1][3]=3.88578e-16; |
1504 |
< |
_meanAM[1][1][0]=0.000631949; |
1505 |
< |
_meanAM[1][1][1]=0.645715; |
1506 |
< |
_meanAM[1][1][2]=0.0241907; |
1507 |
< |
_meanAM[1][1][3]=0.0376477; |
1508 |
< |
_meanBC[1][1][0]=-0.00501182; |
1509 |
< |
_meanBC[1][1][1]=-5303.12; |
1510 |
< |
_meanBC[1][1][2]=41522.7; |
1511 |
< |
_meanBC[1][1][3]=118612; |
1512 |
< |
_meanBS[1][1][0]=-0.00133119; |
1513 |
< |
_meanBS[1][1][1]=0.0239645; |
1514 |
< |
_meanBS[1][1][2]=308.148; |
1515 |
< |
_meanBS[1][1][3]=752.554; |
1516 |
< |
_meanBM[1][1][0]=-8.08678e-05; |
1517 |
< |
_meanBM[1][1][1]=0.0502046; |
1518 |
< |
_meanBM[1][1][2]=-7.5e+06; |
1519 |
< |
_meanBM[1][1][3]=870.829; |
1520 |
< |
_meanR9[1][1][0]=0.20763; |
1521 |
< |
_meanR9[1][1][1]=-0.0992461; |
1522 |
< |
_meanR9[1][1][2]=-0.114749; |
1523 |
< |
_meanR9[1][1][3]=0; |
1524 |
< |
|
1525 |
< |
_sigmaScale[1][1][0]=1.05009; |
1526 |
< |
_sigmaScale[1][1][1]=1.38778e-17; |
1527 |
< |
_sigmaScale[1][1][2]=0.0256383; |
1528 |
< |
_sigmaScale[1][1][3]=0; |
1529 |
< |
_sigmaAT[1][1][0]=-0.668389; |
1530 |
< |
_sigmaAT[1][1][1]=0; |
1531 |
< |
_sigmaAT[1][1][2]=0; |
1532 |
< |
_sigmaAT[1][1][3]=0; |
1533 |
< |
_sigmaAC[1][1][0]=0.00168503; |
1534 |
< |
_sigmaAC[1][1][1]=-0.540635; |
1535 |
< |
_sigmaAC[1][1][2]=95975.1; |
1536 |
< |
_sigmaAC[1][1][3]=-7e+09; |
1537 |
< |
_sigmaAS[1][1][0]=8.02356e-05; |
1538 |
< |
_sigmaAS[1][1][1]=0.854919; |
1539 |
< |
_sigmaAS[1][1][2]=526.113; |
1540 |
< |
_sigmaAS[1][1][3]=666.797; |
1541 |
< |
_sigmaAM[1][1][0]=-0.00504173; |
1542 |
< |
_sigmaAM[1][1][1]=0.910018; |
1543 |
< |
_sigmaAM[1][1][2]=45.1636; |
1544 |
< |
_sigmaAM[1][1][3]=754.491; |
1545 |
< |
_sigmaBT[1][1][0]=-0.816975; |
1546 |
< |
_sigmaBT[1][1][1]=0; |
1547 |
< |
_sigmaBT[1][1][2]=0; |
1548 |
< |
_sigmaBT[1][1][3]=0; |
1549 |
< |
_sigmaBC[1][1][0]=-0.00208737; |
1550 |
< |
_sigmaBC[1][1][1]=3.20678; |
1551 |
< |
_sigmaBC[1][1][2]=214874; |
1552 |
< |
_sigmaBC[1][1][3]=-5.1e+09; |
1553 |
< |
_sigmaBS[1][1][0]=0.0017277; |
1554 |
< |
_sigmaBS[1][1][1]=0.290957; |
1555 |
< |
_sigmaBS[1][1][2]=535.114; |
1556 |
< |
_sigmaBS[1][1][3]=317.952; |
1557 |
< |
_sigmaBM[1][1][0]=-0.0454821; |
1558 |
< |
_sigmaBM[1][1][1]=4.776; |
1559 |
< |
_sigmaBM[1][1][2]=1.9e+09; |
1560 |
< |
_sigmaBM[1][1][3]=14413; |
1561 |
< |
_sigmaR9[1][1][0]=4.83148; |
1562 |
< |
_sigmaR9[1][1][1]=-5.29859; |
1563 |
< |
_sigmaR9[1][1][2]=0; |
1564 |
< |
_sigmaR9[1][1][3]=0; |
1565 |
< |
|
1566 |
< |
_initialised=true; |
1567 |
< |
} |
1568 |
< |
|
1569 |
< |
assert(_initialised); |
1570 |
< |
return true; |
1571 |
< |
} |
1572 |
< |
|
1573 |
< |
// Get the geometry of cracks and gaps from file |
1574 |
< |
bool PhotonFix::initialiseGeometry(const std::string &s, const std::string &infile) { |
1575 |
< |
|
1576 |
< |
std::ifstream fin(infile.c_str()); |
1577 |
< |
assert(fin); |
1578 |
< |
|
1579 |
< |
std::cout << "Reading in here" << std::endl; |
1580 |
< |
for(unsigned i(0);i<169;i++) { |
1581 |
< |
for(unsigned j(0);j<360;j++) { |
1582 |
< |
for(unsigned k(0);k<2;k++) { |
1583 |
< |
fin >> _barrelCGap[i][j][k]; |
1584 |
< |
} |
1585 |
< |
} |
1586 |
< |
} |
1587 |
< |
|
1588 |
< |
for(unsigned i(0);i<33;i++) { |
1589 |
< |
for(unsigned j(0);j<180;j++) { |
1590 |
< |
for(unsigned k(0);k<2;k++) { |
1591 |
< |
fin >> _barrelSGap[i][j][k]; |
1592 |
< |
} |
1593 |
< |
} |
1594 |
< |
} |
1595 |
< |
|
1596 |
< |
for(unsigned i(0);i<7;i++) { |
1597 |
< |
for(unsigned j(0);j<18;j++) { |
1598 |
< |
for(unsigned k(0);k<2;k++) { |
1599 |
< |
fin >> _barrelMGap[i][j][k]; |
1600 |
< |
} |
1601 |
< |
} |
1602 |
< |
} |
1603 |
< |
for(unsigned i(0);i<100;i++) { |
1604 |
< |
for(unsigned j(0);j<100;j++) { |
1605 |
< |
unsigned k; |
1606 |
< |
fin >> k; |
1607 |
< |
_endcapCrystal[i][j]=(k==0); |
1608 |
< |
} |
1609 |
< |
} |
1610 |
< |
|
1611 |
< |
for(unsigned i(0);i<2;i++) { |
1612 |
< |
for(unsigned j(0);j<7080;j++) { |
1613 |
< |
for(unsigned k(0);k<2;k++) { |
1614 |
< |
fin >> _endcapCGap[i][j][k]; |
1615 |
< |
} |
1616 |
< |
} |
1617 |
< |
} |
1618 |
< |
|
1619 |
< |
for(unsigned i(0);i<2;i++) { |
1620 |
< |
for(unsigned j(0);j<264;j++) { |
1621 |
< |
for(unsigned k(0);k<2;k++) { |
1622 |
< |
fin >> _endcapSGap[i][j][k]; |
1623 |
< |
} |
1624 |
< |
} |
1625 |
< |
} |
1626 |
< |
|
1627 |
< |
for(unsigned i(0);i<2;i++) { |
1628 |
< |
for(unsigned j(0);j<1;j++) { |
1629 |
< |
for(unsigned k(0);k<2;k++) { |
1630 |
< |
fin >> _endcapMGap[i][j][k]; |
1631 |
< |
} |
1632 |
< |
} |
1633 |
< |
} |
1634 |
< |
|
1635 |
< |
assert(fin); |
1636 |
< |
|
1637 |
< |
return true; |
1638 |
< |
} |
1639 |
< |
|
1640 |
< |
const double PhotonFix::_onePi(acos(-1.0)); |
1641 |
< |
const double PhotonFix::_twoPi(2.0*acos(-1.0)); |
1642 |
< |
|
1643 |
< |
bool PhotonFix::_initialised=false; |
1644 |
< |
|
1645 |
< |
double PhotonFix::_meanScale[2][2][4]; |
1646 |
< |
double PhotonFix::_meanAC[2][2][4]; |
1647 |
< |
double PhotonFix::_meanAS[2][2][4]; |
1648 |
< |
double PhotonFix::_meanAM[2][2][4]; |
1649 |
< |
double PhotonFix::_meanBC[2][2][4]; |
1650 |
< |
double PhotonFix::_meanBS[2][2][4]; |
1651 |
< |
double PhotonFix::_meanBM[2][2][4]; |
1652 |
< |
double PhotonFix::_meanR9[2][2][4]; |
1653 |
< |
|
1654 |
< |
double PhotonFix::_sigmaScale[2][2][4]; |
1655 |
< |
double PhotonFix::_sigmaAT[2][2][4]; |
1656 |
< |
double PhotonFix::_sigmaAC[2][2][4]; |
1657 |
< |
double PhotonFix::_sigmaAS[2][2][4]; |
1658 |
< |
double PhotonFix::_sigmaAM[2][2][4]; |
1659 |
< |
double PhotonFix::_sigmaBT[2][2][4]; |
1660 |
< |
double PhotonFix::_sigmaBC[2][2][4]; |
1661 |
< |
double PhotonFix::_sigmaBS[2][2][4]; |
1662 |
< |
double PhotonFix::_sigmaBM[2][2][4]; |
1663 |
< |
double PhotonFix::_sigmaR9[2][2][4]; |
1664 |
< |
|
1665 |
< |
double PhotonFix::_barrelCGap[169][360][2]; |
1666 |
< |
double PhotonFix::_barrelSGap[33][180][2]; |
1667 |
< |
double PhotonFix::_barrelMGap[7][18][2]; |
1668 |
< |
|
1669 |
< |
bool PhotonFix::_endcapCrystal[100][100]; |
1670 |
< |
double PhotonFix::_endcapCGap[2][7080][2]; |
1671 |
< |
double PhotonFix::_endcapSGap[2][264][2]; |
1672 |
< |
double PhotonFix::_endcapMGap[2][1][2]; |
1 |
> |
#include <cmath> |
2 |
> |
#include <cassert> |
3 |
> |
#include <fstream> |
4 |
> |
#include <iomanip> |
5 |
> |
|
6 |
> |
// ensure that this include points to the appropriate location for PhotonFix.h |
7 |
> |
#include "../interface/PhotonFix.h" |
8 |
> |
|
9 |
> |
/*PhotonFix::PhotonFix(double e, double eta, double phi, double r9) : |
10 |
> |
_e(e), _eta(eta), _phi(phi), _r9(r9) { |
11 |
> |
|
12 |
> |
setup(); |
13 |
> |
}*/ |
14 |
> |
|
15 |
> |
void PhotonFix::setup(double e, double eta, double phi, double r9){ |
16 |
> |
// Check constants have been set up |
17 |
> |
assert(_initialised); |
18 |
> |
|
19 |
> |
_e = e; |
20 |
> |
_eta = eta; |
21 |
> |
_phi = phi; |
22 |
> |
_r9 = r9; |
23 |
> |
|
24 |
> |
// Determine if EB or EE |
25 |
> |
_be=(fabs(_eta)<1.48?0:1); |
26 |
> |
|
27 |
> |
// Determine if high or low R9 |
28 |
> |
if(_be==0) _hl=(_r9>=0.94?0:1); |
29 |
> |
else _hl=(_r9>=0.95?0:1); |
30 |
> |
|
31 |
> |
// Coordinates relative to cracks |
32 |
> |
double r2Min; |
33 |
> |
if(_be==0) { |
34 |
> |
|
35 |
> |
r2Min=1.0e6; |
36 |
> |
for(unsigned i(0);i<169;i++) { |
37 |
> |
for(unsigned j(0);j<360;j++) { |
38 |
> |
double de(_eta-_barrelCGap[i][j][0]); |
39 |
> |
double df(dPhi(_phi,_barrelCGap[i][j][1])); |
40 |
> |
double r2(de*de+df*df); |
41 |
> |
|
42 |
> |
if(r2<r2Min) { |
43 |
> |
r2Min=r2; |
44 |
> |
if(i>=84) { |
45 |
> |
_aC= de; |
46 |
> |
_bC=-df; |
47 |
> |
} else { |
48 |
> |
_aC=-de; |
49 |
> |
_bC= df; |
50 |
> |
} |
51 |
> |
} |
52 |
> |
} |
53 |
> |
} |
54 |
> |
|
55 |
> |
r2Min=1.0e6; |
56 |
> |
for(unsigned i(0);i<33;i++) { |
57 |
> |
for(unsigned j(0);j<180;j++) { |
58 |
> |
double de(_eta-_barrelSGap[i][j][0]); |
59 |
> |
double df(dPhi(_phi,_barrelSGap[i][j][1])); |
60 |
> |
double r2(de*de+df*df); |
61 |
> |
|
62 |
> |
if(r2<r2Min) { |
63 |
> |
r2Min=r2; |
64 |
> |
if(i>=16) { |
65 |
> |
_aS= de; |
66 |
> |
_bS=-df; |
67 |
> |
} else { |
68 |
> |
_aS=-de; |
69 |
> |
_bS= df; |
70 |
> |
} |
71 |
> |
} |
72 |
> |
} |
73 |
> |
} |
74 |
> |
|
75 |
> |
r2Min=1.0e6; |
76 |
> |
for(unsigned i(0);i<7;i++) { |
77 |
> |
for(unsigned j(0);j<18;j++) { |
78 |
> |
double de(_eta-_barrelMGap[i][j][0]); |
79 |
> |
double df(dPhi(_phi,_barrelMGap[i][j][1])); |
80 |
> |
double r2(de*de+df*df); |
81 |
> |
|
82 |
> |
if(r2<r2Min) { |
83 |
> |
r2Min=r2; |
84 |
> |
if(i>=3) { |
85 |
> |
_aM= de; |
86 |
> |
_bM=-df; |
87 |
> |
} else { |
88 |
> |
_aM=-de; |
89 |
> |
_bM= df; |
90 |
> |
} |
91 |
> |
} |
92 |
> |
} |
93 |
> |
} |
94 |
> |
|
95 |
> |
} else { |
96 |
> |
unsigned iz(_eta>=0.0?0:1); |
97 |
> |
double r[2]={xZ(),yZ()}; |
98 |
> |
|
99 |
> |
r2Min=1.0e6; |
100 |
> |
for(unsigned i(0);i<7080;i++) { |
101 |
> |
double dx(r[0]-_endcapCGap[iz][i][0]); |
102 |
> |
double dy(r[1]-_endcapCGap[iz][i][1]); |
103 |
> |
double r2(dx*dx+dy*dy); |
104 |
> |
|
105 |
> |
if(r2<r2Min) { |
106 |
> |
r2Min=r2; |
107 |
> |
if(r[0]>0.0) _aC= dx; |
108 |
> |
else _aC=-dx; |
109 |
> |
if(r[1]>0.0) _bC= dy; |
110 |
> |
else _bC=-dy; |
111 |
> |
} |
112 |
> |
} |
113 |
> |
|
114 |
> |
r2Min=1.0e6; |
115 |
> |
for(unsigned i(0);i<264;i++) { |
116 |
> |
double dx(r[0]-_endcapSGap[iz][i][0]); |
117 |
> |
double dy(r[1]-_endcapSGap[iz][i][1]); |
118 |
> |
double r2(dx*dx+dy*dy); |
119 |
> |
|
120 |
> |
if(r2<r2Min) { |
121 |
> |
r2Min=r2; |
122 |
> |
if(r[0]>0.0) _aS= dx; |
123 |
> |
else _aS=-dx; |
124 |
> |
if(r[1]>0.0) _bS= dy; |
125 |
> |
else _bS=-dy; |
126 |
> |
} |
127 |
> |
} |
128 |
> |
|
129 |
> |
r2Min=1.0e6; |
130 |
> |
for(unsigned i(0);i<1;i++) { |
131 |
> |
double dx(r[0]-_endcapMGap[iz][i][0]); |
132 |
> |
double dy(r[1]-_endcapMGap[iz][i][1]); |
133 |
> |
double r2(dx*dx+dy*dy); |
134 |
> |
|
135 |
> |
if(r2<r2Min) { |
136 |
> |
r2Min=r2; |
137 |
> |
if(iz==0) {_aM= dx;_bM= dy;} |
138 |
> |
else {_aM=-dx;_bM=-dy;} |
139 |
> |
} |
140 |
> |
} |
141 |
> |
} |
142 |
> |
} |
143 |
> |
|
144 |
> |
double PhotonFix::fixedEnergy() const { |
145 |
> |
double f(0.0); |
146 |
> |
|
147 |
> |
// Overall scale and energy(T) dependence |
148 |
> |
f =_meanScale[_be][_hl][0]; |
149 |
> |
f+=_meanScale[_be][_hl][1]*_e; |
150 |
> |
f+=_meanScale[_be][_hl][2]*_e/cosh(_eta); |
151 |
> |
f+=_meanScale[_be][_hl][3]*cosh(_eta)/_e; |
152 |
> |
|
153 |
> |
// General eta or zeta dependence |
154 |
> |
if(_be==0) { |
155 |
> |
f+=_meanAT[_be][_hl][0]*_eta*_eta; |
156 |
> |
f+=expCorrection(_eta,_meanBT[_be][_hl]); |
157 |
> |
} else { |
158 |
> |
f+=_meanAT[_be][_hl][0]*xZ()*xZ(); |
159 |
> |
f+=_meanBT[_be][_hl][0]*yZ()*yZ(); |
160 |
> |
} |
161 |
> |
|
162 |
> |
// Eta or x crystal, submodule and module dependence |
163 |
> |
f+=expCorrection(_aC,_meanAC[_be][_hl]); |
164 |
> |
f+=expCorrection(_aS,_meanAS[_be][_hl]); |
165 |
> |
f+=expCorrection(_aM,_meanAM[_be][_hl]); |
166 |
> |
|
167 |
> |
// Phi or y crystal, submodule and module dependence |
168 |
> |
f+=expCorrection(_bC,_meanBC[_be][_hl]); |
169 |
> |
f+=expCorrection(_bS,_meanBS[_be][_hl]); |
170 |
> |
f+=expCorrection(_bM,_meanBM[_be][_hl]); |
171 |
> |
|
172 |
> |
// R9 dependence |
173 |
> |
if(_hl==0) { |
174 |
> |
f+=_meanR9[_be][_hl][1]*(_r9-_meanR9[_be][_hl][0])*(_r9-_meanR9[_be][_hl][0]) |
175 |
> |
+_meanR9[_be][_hl][2]*(_r9-_meanR9[_be][_hl][0])*(_r9-_meanR9[_be][_hl][0])*(_r9-_meanR9[_be][_hl][0]); |
176 |
> |
} else { |
177 |
> |
f+=_meanR9[_be][_hl][0]*_r9+_meanR9[_be][_hl][1]*_r9*_r9+_meanR9[_be][_hl][2]*_r9*_r9*_r9; |
178 |
> |
} |
179 |
> |
|
180 |
> |
return _e*f; |
181 |
> |
} |
182 |
> |
|
183 |
> |
double PhotonFix::sigmaEnergy() const { |
184 |
> |
|
185 |
> |
// Overall resolution scale vs energy |
186 |
> |
double sigma; |
187 |
> |
if(_be==0) { |
188 |
> |
sigma =_sigmaScale[_be][_hl][0]*_sigmaScale[_be][_hl][0]; |
189 |
> |
//std::cout << "PhotonFix::sigmaEnergy 1 sigma = " << sigma << std::endl; |
190 |
> |
sigma+=_sigmaScale[_be][_hl][1]*_sigmaScale[_be][_hl][1]*_e; |
191 |
> |
//std::cout << "PhotonFix::sigmaEnergy 2 sigma = " << sigma << std::endl; |
192 |
> |
sigma+=_sigmaScale[_be][_hl][2]*_sigmaScale[_be][_hl][2]*_e*_e; |
193 |
> |
//std::cout << "PhotonFix::sigmaEnergy 3 sigma = " << sigma << std::endl; |
194 |
> |
} else { |
195 |
> |
sigma =_sigmaScale[_be][_hl][0]*_sigmaScale[_be][_hl][0]*cosh(_eta)*cosh(_eta); |
196 |
> |
sigma+=_sigmaScale[_be][_hl][1]*_sigmaScale[_be][_hl][1]*_e; |
197 |
> |
sigma+=_sigmaScale[_be][_hl][2]*_sigmaScale[_be][_hl][2]*_e*_e; |
198 |
> |
} |
199 |
> |
sigma=sqrt(sigma); |
200 |
> |
|
201 |
> |
double f(1.0); |
202 |
> |
|
203 |
> |
// General eta or zeta dependence |
204 |
> |
if(_be==0) { |
205 |
> |
f+=_sigmaAT[_be][_hl][0]*_eta*_eta; |
206 |
> |
//std::cout << "PhotonFix::sigmaEnergy 4 f = " << f << std::endl; |
207 |
> |
f+=expCorrection(_eta,_sigmaBT[_be][_hl]); |
208 |
> |
//std::cout << "PhotonFix::sigmaEnergy 5 f = " << f << std::endl; |
209 |
> |
} else { |
210 |
> |
f+=_sigmaAT[_be][_hl][0]*xZ()*xZ(); |
211 |
> |
f+=_sigmaBT[_be][_hl][0]*yZ()*yZ(); |
212 |
> |
} |
213 |
> |
|
214 |
> |
// Eta or x crystal, submodule and module dependence |
215 |
> |
f+=expCorrection(_aC,_sigmaAC[_be][_hl]); |
216 |
> |
//std::cout << "PhotonFix::sigmaEnergy 6 f = " << f << std::endl; |
217 |
> |
f+=expCorrection(_aS,_sigmaAS[_be][_hl]); |
218 |
> |
//std::cout << "PhotonFix::sigmaEnergy 7 f = " << f << std::endl; |
219 |
> |
f+=expCorrection(_aM,_sigmaAM[_be][_hl]); |
220 |
> |
//std::cout << "PhotonFix::sigmaEnergy 8 f = " << f << std::endl; |
221 |
> |
|
222 |
> |
// Phi or y crystal, submodule and module dependence |
223 |
> |
f+=expCorrection(_bC,_sigmaBC[_be][_hl]); |
224 |
> |
//std::cout << "PhotonFix::sigmaEnergy 9 f = " << f << std::endl; |
225 |
> |
f+=expCorrection(_bS,_sigmaBS[_be][_hl]); |
226 |
> |
//std::cout << "PhotonFix::sigmaEnergy 10 f = " << f << std::endl; |
227 |
> |
f+=expCorrection(_bM,_sigmaBM[_be][_hl]); |
228 |
> |
//std::cout << "PhotonFix::sigmaEnergy 11 f = " << f << std::endl; |
229 |
> |
|
230 |
> |
// R9 dependence |
231 |
> |
if(_hl==0) { |
232 |
> |
f+=_sigmaR9[_be][_hl][1]*(_r9-_sigmaR9[_be][_hl][0])*(_r9-_sigmaR9[_be][_hl][0]) |
233 |
> |
+_sigmaR9[_be][_hl][2]*(_r9-_sigmaR9[_be][_hl][0])*(_r9-_sigmaR9[_be][_hl][0])*(_r9-_sigmaR9[_be][_hl][0]); |
234 |
> |
//std::cout << "PhotonFix::sigmaEnergy 12 f = " << f << std::endl; |
235 |
> |
} else { |
236 |
> |
f+=_sigmaR9[_be][_hl][0]*_r9+_sigmaR9[_be][_hl][1]*_r9*_r9+_sigmaR9[_be][_hl][2]*_r9*_r9*_r9; |
237 |
> |
//std::cout << "PhotonFix::sigmaEnergy 13 f = " << f << std::endl; |
238 |
> |
} |
239 |
> |
|
240 |
> |
return sigma*f; |
241 |
> |
} |
242 |
> |
|
243 |
> |
double PhotonFix::rawEnergy() const { |
244 |
> |
return _e; |
245 |
> |
} |
246 |
> |
|
247 |
> |
double PhotonFix::eta() const { |
248 |
> |
return _eta; |
249 |
> |
} |
250 |
> |
|
251 |
> |
double PhotonFix::phi() const { |
252 |
> |
return _phi; |
253 |
> |
} |
254 |
> |
|
255 |
> |
double PhotonFix::r9() const { |
256 |
> |
return _r9; |
257 |
> |
} |
258 |
> |
|
259 |
> |
double PhotonFix::etaC() const { |
260 |
> |
assert(_be==0); |
261 |
> |
return _aC; |
262 |
> |
} |
263 |
> |
|
264 |
> |
double PhotonFix::etaS() const { |
265 |
> |
assert(_be==0); |
266 |
> |
return _aS; |
267 |
> |
} |
268 |
> |
|
269 |
> |
double PhotonFix::etaM() const { |
270 |
> |
assert(_be==0); |
271 |
> |
return _aM; |
272 |
> |
} |
273 |
> |
|
274 |
> |
double PhotonFix::phiC() const { |
275 |
> |
assert(_be==0); |
276 |
> |
return _bC; |
277 |
> |
} |
278 |
> |
|
279 |
> |
double PhotonFix::phiS() const { |
280 |
> |
assert(_be==0); |
281 |
> |
return _bS; |
282 |
> |
} |
283 |
> |
|
284 |
> |
double PhotonFix::phiM() const { |
285 |
> |
assert(_be==0); |
286 |
> |
return _bM; |
287 |
> |
} |
288 |
> |
|
289 |
> |
double PhotonFix::xZ() const { |
290 |
> |
assert(_be==1); |
291 |
> |
return asinh(cos(_phi)/sinh(_eta)); |
292 |
> |
} |
293 |
> |
|
294 |
> |
double PhotonFix::xC() const { |
295 |
> |
assert(_be==1); |
296 |
> |
return _aC; |
297 |
> |
} |
298 |
> |
|
299 |
> |
double PhotonFix::xS() const { |
300 |
> |
assert(_be==1); |
301 |
> |
return _aS; |
302 |
> |
} |
303 |
> |
|
304 |
> |
double PhotonFix::xM() const { |
305 |
> |
assert(_be==1); |
306 |
> |
return _aM; |
307 |
> |
} |
308 |
> |
|
309 |
> |
double PhotonFix::yZ() const { |
310 |
> |
assert(_be==1); |
311 |
> |
return asinh(sin(_phi)/sinh(_eta)); |
312 |
> |
} |
313 |
> |
|
314 |
> |
double PhotonFix::yC() const { |
315 |
> |
assert(_be==1); |
316 |
> |
return _bC; |
317 |
> |
} |
318 |
> |
|
319 |
> |
double PhotonFix::yS() const { |
320 |
> |
assert(_be==1); |
321 |
> |
return _bS; |
322 |
> |
} |
323 |
> |
|
324 |
> |
double PhotonFix::yM() const { |
325 |
> |
assert(_be==1); |
326 |
> |
return _bM; |
327 |
> |
} |
328 |
> |
|
329 |
> |
double PhotonFix::GetaPhi(double f0, double f1) const { |
330 |
> |
return aPhi(f0,f1); |
331 |
> |
} |
332 |
> |
|
333 |
> |
void PhotonFix::barrelCGap(unsigned i, unsigned j, unsigned k, double c){ |
334 |
> |
_barrelCGap[i][j][k] = c; |
335 |
> |
} |
336 |
> |
void PhotonFix::barrelSGap(unsigned i, unsigned j, unsigned k, double c){ |
337 |
> |
_barrelSGap[i][j][k] = c; |
338 |
> |
} |
339 |
> |
void PhotonFix::barrelMGap(unsigned i, unsigned j, unsigned k, double c){ |
340 |
> |
_barrelMGap[i][j][k] = c; |
341 |
> |
} |
342 |
> |
void PhotonFix::endcapCrystal(unsigned i, unsigned j, bool c){ |
343 |
> |
_endcapCrystal[i][j] = c; |
344 |
> |
} |
345 |
> |
void PhotonFix::endcapCGap(unsigned i, unsigned j, unsigned k, double c){ |
346 |
> |
_endcapCGap[i][j][k] = c; |
347 |
> |
} |
348 |
> |
void PhotonFix::endcapSGap(unsigned i, unsigned j, unsigned k, double c){ |
349 |
> |
_endcapSGap[i][j][k] = c; |
350 |
> |
} |
351 |
> |
void PhotonFix::endcapMGap(unsigned i, unsigned j, unsigned k, double c){ |
352 |
> |
_endcapMGap[i][j][k] = c; |
353 |
> |
} |
354 |
> |
|
355 |
> |
|
356 |
> |
void PhotonFix::print() const { |
357 |
> |
std::cout << "PhotonFix: e,eta,phi,r9 = " << _e << ", " << _eta << ", " << _phi << ", " << _r9 << ", gaps " |
358 |
> |
<< _aC << ", " << _aS << ", " << _aM << ", " |
359 |
> |
<< _bC << ", " << _bS << ", " << _bM << std::endl; |
360 |
> |
} |
361 |
> |
|
362 |
> |
void PhotonFix::setParameters(unsigned be, unsigned hl, const double *p) { |
363 |
> |
for(unsigned i(0);i<4;i++) { |
364 |
> |
_meanScale[be][hl][i] =p[i+ 0*4]; |
365 |
> |
_meanAT[be][hl][i] =p[i+ 1*4]; |
366 |
> |
_meanAC[be][hl][i] =p[i+ 2*4]; |
367 |
> |
_meanAS[be][hl][i] =p[i+ 3*4]; |
368 |
> |
_meanAM[be][hl][i] =p[i+ 4*4]; |
369 |
> |
_meanBT[be][hl][i] =p[i+ 5*4]; |
370 |
> |
_meanBC[be][hl][i] =p[i+ 6*4]; |
371 |
> |
_meanBS[be][hl][i] =p[i+ 7*4]; |
372 |
> |
_meanBM[be][hl][i] =p[i+ 8*4]; |
373 |
> |
_meanR9[be][hl][i] =p[i+ 9*4]; |
374 |
> |
|
375 |
> |
_sigmaScale[be][hl][i]=p[i+10*4]; |
376 |
> |
_sigmaAT[be][hl][i] =p[i+11*4]; |
377 |
> |
_sigmaAC[be][hl][i] =p[i+12*4]; |
378 |
> |
_sigmaAS[be][hl][i] =p[i+13*4]; |
379 |
> |
_sigmaAM[be][hl][i] =p[i+14*4]; |
380 |
> |
_sigmaBT[be][hl][i] =p[i+15*4]; |
381 |
> |
_sigmaBC[be][hl][i] =p[i+16*4]; |
382 |
> |
_sigmaBS[be][hl][i] =p[i+17*4]; |
383 |
> |
_sigmaBM[be][hl][i] =p[i+18*4]; |
384 |
> |
_sigmaR9[be][hl][i] =p[i+19*4]; |
385 |
> |
} |
386 |
> |
} |
387 |
> |
|
388 |
> |
void PhotonFix::getParameters(unsigned be, unsigned hl, double *p) { |
389 |
> |
for(unsigned i(0);i<4;i++) { |
390 |
> |
p[i+ 0*4]=_meanScale[be][hl][i]; |
391 |
> |
p[i+ 1*4]=_meanAT[be][hl][i]; |
392 |
> |
p[i+ 2*4]=_meanAC[be][hl][i]; |
393 |
> |
p[i+ 3*4]=_meanAS[be][hl][i]; |
394 |
> |
p[i+ 4*4]=_meanAM[be][hl][i]; |
395 |
> |
p[i+ 5*4]=_meanBT[be][hl][i]; |
396 |
> |
p[i+ 6*4]=_meanBC[be][hl][i]; |
397 |
> |
p[i+ 7*4]=_meanBS[be][hl][i]; |
398 |
> |
p[i+ 8*4]=_meanBM[be][hl][i]; |
399 |
> |
p[i+ 9*4]=_meanR9[be][hl][i]; |
400 |
> |
|
401 |
> |
p[i+10*4]=_sigmaScale[be][hl][i]; |
402 |
> |
p[i+11*4]=_sigmaAT[be][hl][i]; |
403 |
> |
p[i+12*4]=_sigmaAC[be][hl][i]; |
404 |
> |
p[i+13*4]=_sigmaAS[be][hl][i]; |
405 |
> |
p[i+14*4]=_sigmaAM[be][hl][i]; |
406 |
> |
p[i+15*4]=_sigmaBT[be][hl][i]; |
407 |
> |
p[i+16*4]=_sigmaBC[be][hl][i]; |
408 |
> |
p[i+17*4]=_sigmaBS[be][hl][i]; |
409 |
> |
p[i+18*4]=_sigmaBM[be][hl][i]; |
410 |
> |
p[i+19*4]=_sigmaR9[be][hl][i]; |
411 |
> |
} |
412 |
> |
} |
413 |
> |
|
414 |
> |
void PhotonFix::dumpParameters(std::ostream &o) { |
415 |
> |
o << std::setprecision(9); |
416 |
> |
|
417 |
> |
for(unsigned be(0);be<2;be++) { |
418 |
> |
for(unsigned hl(0);hl<2;hl++) { |
419 |
> |
for(unsigned i(0);i<4;i++) { |
420 |
> |
o << " _meanScale[" << be << "][" << hl << "][" << i << "]=" << _meanScale[be][hl][i] << ";" << std::endl; |
421 |
> |
} |
422 |
> |
for(unsigned i(0);i<4;i++) { |
423 |
> |
o << " _meanAT[" << be << "][" << hl << "][" << i << "]=" << _meanAT[be][hl][i] << ";" << std::endl; |
424 |
> |
} |
425 |
> |
for(unsigned i(0);i<4;i++) { |
426 |
> |
o << " _meanAC[" << be << "][" << hl << "][" << i << "]=" << _meanAC[be][hl][i] << ";" << std::endl; |
427 |
> |
} |
428 |
> |
for(unsigned i(0);i<4;i++) { |
429 |
> |
o << " _meanAS[" << be << "][" << hl << "][" << i << "]=" << _meanAS[be][hl][i] << ";" << std::endl; |
430 |
> |
} |
431 |
> |
for(unsigned i(0);i<4;i++) { |
432 |
> |
o << " _meanAM[" << be << "][" << hl << "][" << i << "]=" << _meanAM[be][hl][i] << ";" << std::endl; |
433 |
> |
} |
434 |
> |
for(unsigned i(0);i<4;i++) { |
435 |
> |
o << " _meanBT[" << be << "][" << hl << "][" << i << "]=" << _meanBT[be][hl][i] << ";" << std::endl; |
436 |
> |
} |
437 |
> |
for(unsigned i(0);i<4;i++) { |
438 |
> |
o << " _meanBC[" << be << "][" << hl << "][" << i << "]=" << _meanBC[be][hl][i] << ";" << std::endl; |
439 |
> |
} |
440 |
> |
for(unsigned i(0);i<4;i++) { |
441 |
> |
o << " _meanBS[" << be << "][" << hl << "][" << i << "]=" << _meanBS[be][hl][i] << ";" << std::endl; |
442 |
> |
} |
443 |
> |
for(unsigned i(0);i<4;i++) { |
444 |
> |
o << " _meanBM[" << be << "][" << hl << "][" << i << "]=" << _meanBM[be][hl][i] << ";" << std::endl; |
445 |
> |
} |
446 |
> |
for(unsigned i(0);i<4;i++) { |
447 |
> |
o << " _meanR9[" << be << "][" << hl << "][" << i << "]=" << _meanR9[be][hl][i] << ";" << std::endl; |
448 |
> |
} |
449 |
> |
o << std::endl; |
450 |
> |
|
451 |
> |
for(unsigned i(0);i<4;i++) { |
452 |
> |
o << " _sigmaScale[" << be << "][" << hl << "][" << i << "]=" << _sigmaScale[be][hl][i] << ";" << std::endl; |
453 |
> |
} |
454 |
> |
for(unsigned i(0);i<4;i++) { |
455 |
> |
o << " _sigmaAT[" << be << "][" << hl << "][" << i << "]=" << _sigmaAT[be][hl][i] << ";" << std::endl; |
456 |
> |
} |
457 |
> |
for(unsigned i(0);i<4;i++) { |
458 |
> |
o << " _sigmaAC[" << be << "][" << hl << "][" << i << "]=" << _sigmaAC[be][hl][i] << ";" << std::endl; |
459 |
> |
} |
460 |
> |
for(unsigned i(0);i<4;i++) { |
461 |
> |
o << " _sigmaAS[" << be << "][" << hl << "][" << i << "]=" << _sigmaAS[be][hl][i] << ";" << std::endl; |
462 |
> |
} |
463 |
> |
for(unsigned i(0);i<4;i++) { |
464 |
> |
o << " _sigmaAM[" << be << "][" << hl << "][" << i << "]=" << _sigmaAM[be][hl][i] << ";" << std::endl; |
465 |
> |
} |
466 |
> |
for(unsigned i(0);i<4;i++) { |
467 |
> |
o << " _sigmaBT[" << be << "][" << hl << "][" << i << "]=" << _sigmaBT[be][hl][i] << ";" << std::endl; |
468 |
> |
} |
469 |
> |
for(unsigned i(0);i<4;i++) { |
470 |
> |
o << " _sigmaBC[" << be << "][" << hl << "][" << i << "]=" << _sigmaBC[be][hl][i] << ";" << std::endl; |
471 |
> |
} |
472 |
> |
for(unsigned i(0);i<4;i++) { |
473 |
> |
o << " _sigmaBS[" << be << "][" << hl << "][" << i << "]=" << _sigmaBS[be][hl][i] << ";" << std::endl; |
474 |
> |
} |
475 |
> |
for(unsigned i(0);i<4;i++) { |
476 |
> |
o << " _sigmaBM[" << be << "][" << hl << "][" << i << "]=" << _sigmaBM[be][hl][i] << ";" << std::endl; |
477 |
> |
} |
478 |
> |
for(unsigned i(0);i<4;i++) { |
479 |
> |
o << " _sigmaR9[" << be << "][" << hl << "][" << i << "]=" << _sigmaR9[be][hl][i] << ";" << std::endl; |
480 |
> |
} |
481 |
> |
o << std::endl; |
482 |
> |
} |
483 |
> |
} |
484 |
> |
} |
485 |
> |
|
486 |
> |
void PhotonFix::printParameters(std::ostream &o) { |
487 |
> |
o << "PhotonFix::printParameters()" << std::endl; |
488 |
> |
|
489 |
> |
for(unsigned be(0);be<2;be++) { |
490 |
> |
for(unsigned hl(0);hl<2;hl++) { |
491 |
> |
o << " Parameters for " << (be==0?"barrel":"endcap") |
492 |
> |
<< ", " << (hl==0?"high":"low") << " R9" << std::endl; |
493 |
> |
|
494 |
> |
o << " Mean scaling "; |
495 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanScale[be][hl][i]; |
496 |
> |
o << std::endl; |
497 |
> |
o << " Mean " << (be==0?"Eta ":"ZetaX") << " total "; |
498 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanAT[be][hl][i]; |
499 |
> |
o << std::endl; |
500 |
> |
o << " Mean " << (be==0?"Eta ":"ZetaX") << " crystal "; |
501 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanAC[be][hl][i]; |
502 |
> |
o << std::endl; |
503 |
> |
o << " Mean " << (be==0?"Eta ":"ZetaX") << " submodule"; |
504 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanAS[be][hl][i]; |
505 |
> |
o << std::endl; |
506 |
> |
o << " Mean " << (be==0?"Eta ":"ZetaX") << " module "; |
507 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanAM[be][hl][i]; |
508 |
> |
o << std::endl; |
509 |
> |
o << " Mean " << (be==0?"Eta zero ":"ZetaY total "); |
510 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanBT[be][hl][i]; |
511 |
> |
o << std::endl; |
512 |
> |
o << " Mean " << (be==0?"Phi ":"ZetaY") << " crystal "; |
513 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanBC[be][hl][i]; |
514 |
> |
o << std::endl; |
515 |
> |
o << " Mean " << (be==0?"Phi ":"ZetaY") << " submodule"; |
516 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanBS[be][hl][i]; |
517 |
> |
o << std::endl; |
518 |
> |
o << " Mean " << (be==0?"Phi ":"ZetaY") << " module "; |
519 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanBM[be][hl][i]; |
520 |
> |
o << std::endl; |
521 |
> |
o << " Mean R9 "; |
522 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanR9[be][hl][i]; |
523 |
> |
o << std::endl; |
524 |
> |
|
525 |
> |
o << " Sigma scaling "; |
526 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaScale[be][hl][i]; |
527 |
> |
o << std::endl; |
528 |
> |
o << " Sigma " << (be==0?"Eta ":"ZetaX") << " total "; |
529 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaAT[be][hl][i]; |
530 |
> |
o << std::endl; |
531 |
> |
o << " Sigma " << (be==0?"Eta ":"ZetaX") << " crystal "; |
532 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaAC[be][hl][i]; |
533 |
> |
o << std::endl; |
534 |
> |
o << " Sigma " << (be==0?"Eta ":"ZetaX") << " submodule"; |
535 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaAS[be][hl][i]; |
536 |
> |
o << std::endl; |
537 |
> |
o << " Sigma " << (be==0?"Eta ":"ZetaX") << " module "; |
538 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaAM[be][hl][i]; |
539 |
> |
o << std::endl; |
540 |
> |
o << " Sigma " << (be==0?"Eta ":"ZetaY") << " total "; |
541 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaBT[be][hl][i]; |
542 |
> |
o << std::endl; |
543 |
> |
o << " Sigma " << (be==0?"Eta ":"ZetaY") << " crystal "; |
544 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaBC[be][hl][i]; |
545 |
> |
o << std::endl; |
546 |
> |
o << " Sigma " << (be==0?"Phi ":"ZetaY") << " submodule"; |
547 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaBS[be][hl][i]; |
548 |
> |
o << std::endl; |
549 |
> |
o << " Sigma " << (be==0?"Phi ":"ZetaY") << " module "; |
550 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaBM[be][hl][i]; |
551 |
> |
o << std::endl; |
552 |
> |
o << " Sigma R9 "; |
553 |
> |
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaR9[be][hl][i]; |
554 |
> |
o << std::endl; |
555 |
> |
} |
556 |
> |
} |
557 |
> |
} |
558 |
> |
|
559 |
> |
double PhotonFix::asinh(double s) const { |
560 |
> |
if(s>=0.0) return log(sqrt(s*s+1.0)+s); |
561 |
> |
else return -log(sqrt(s*s+1.0)-s); |
562 |
> |
} |
563 |
> |
|
564 |
> |
void PhotonFix::dumpGaps(std::ostream &o) { |
565 |
> |
o << std::setprecision(15); |
566 |
> |
|
567 |
> |
for(unsigned i(0);i<169;i++) { |
568 |
> |
for(unsigned j(0);j<360;j++) { |
569 |
> |
for(unsigned k(0);k<2;k++) { |
570 |
> |
o << _barrelCGap[i][j][k] << std::endl; |
571 |
> |
} |
572 |
> |
} |
573 |
> |
} |
574 |
> |
|
575 |
> |
for(unsigned i(0);i<33;i++) { |
576 |
> |
for(unsigned j(0);j<180;j++) { |
577 |
> |
for(unsigned k(0);k<2;k++) { |
578 |
> |
o << _barrelSGap[i][j][k] << std::endl; |
579 |
> |
} |
580 |
> |
} |
581 |
> |
} |
582 |
> |
|
583 |
> |
for(unsigned i(0);i<7;i++) { |
584 |
> |
for(unsigned j(0);j<18;j++) { |
585 |
> |
for(unsigned k(0);k<2;k++) { |
586 |
> |
o << _barrelMGap[i][j][k] << std::endl; |
587 |
> |
} |
588 |
> |
} |
589 |
> |
} |
590 |
> |
|
591 |
> |
for(unsigned i(0);i<100;i++) { |
592 |
> |
for(unsigned j(0);j<100;j++) { |
593 |
> |
if(_endcapCrystal[i][j]) o << 0 << std::endl; |
594 |
> |
else o << 1 << std::endl; |
595 |
> |
} |
596 |
> |
} |
597 |
> |
|
598 |
> |
for(unsigned i(0);i<2;i++) { |
599 |
> |
for(unsigned j(0);j<7080;j++) { |
600 |
> |
for(unsigned k(0);k<2;k++) { |
601 |
> |
o << _endcapCGap[i][j][k] << std::endl; |
602 |
> |
} |
603 |
> |
} |
604 |
> |
} |
605 |
> |
|
606 |
> |
for(unsigned i(0);i<2;i++) { |
607 |
> |
for(unsigned j(0);j<264;j++) { |
608 |
> |
for(unsigned k(0);k<2;k++) { |
609 |
> |
o << _endcapSGap[i][j][k] << std::endl; |
610 |
> |
} |
611 |
> |
} |
612 |
> |
} |
613 |
> |
|
614 |
> |
for(unsigned i(0);i<2;i++) { |
615 |
> |
for(unsigned j(0);j<1;j++) { |
616 |
> |
for(unsigned k(0);k<2;k++) { |
617 |
> |
o << _endcapMGap[i][j][k] << std::endl; |
618 |
> |
} |
619 |
> |
} |
620 |
> |
} |
621 |
> |
} |
622 |
> |
|
623 |
> |
double PhotonFix::dPhi(double f0, double f1) const { |
624 |
> |
double df(f0-f1); |
625 |
> |
if(df> _onePi) df-=_twoPi; |
626 |
> |
if(df<-_onePi) df+=_twoPi; |
627 |
> |
return df; |
628 |
> |
} |
629 |
> |
|
630 |
> |
double PhotonFix::aPhi(double f0, double f1) const { |
631 |
> |
double af(0.5*(f0+f1)); |
632 |
> |
if(fabs(dPhi(af,f0))>0.5*_onePi) { |
633 |
> |
if(af>=0.0) af-=_onePi; |
634 |
> |
else af+=_onePi; |
635 |
> |
} |
636 |
> |
|
637 |
> |
assert(fabs(dPhi(af,f0))<0.5*_onePi); |
638 |
> |
assert(fabs(dPhi(af,f1))<0.5*_onePi); |
639 |
> |
|
640 |
> |
return af; |
641 |
> |
} |
642 |
> |
|
643 |
> |
double PhotonFix::expCorrection(double a, const double *p) const { |
644 |
> |
if(p[1]==0.0 || p[2]==0.0 || p[3]==0.0) return 0.0; |
645 |
> |
|
646 |
> |
double b(a-p[0]); |
647 |
> |
if(b>=0.0) return p[1]*exp(-fabs(p[2])*b); |
648 |
> |
else return p[1]*exp( fabs(p[3])*b); |
649 |
> |
} |
650 |
> |
|
651 |
> |
double PhotonFix::gausCorrection(double a, const double *p) const { |
652 |
> |
if(p[1]==0.0 || p[2]==0.0 || p[3]==0.0) return 0.0; |
653 |
> |
|
654 |
> |
double b(a-p[0]); |
655 |
> |
if(b>=0.0) return p[1]*exp(-0.5*p[2]*p[2]*b*b); |
656 |
> |
else return p[1]*exp(-0.5*p[3]*p[3]*b*b); |
657 |
> |
} |
658 |
> |
bool PhotonFix::initialised() { |
659 |
> |
return _initialised; |
660 |
> |
} |
661 |
> |
bool PhotonFix::initialise(const std::string &s, const std::string &infile) { |
662 |
> |
if(_initialised) return false; |
663 |
> |
|
664 |
> |
|
665 |
> |
initialiseParameters(s); |
666 |
> |
initialiseGeometry(s,infile); |
667 |
> |
return true; |
668 |
> |
} |
669 |
> |
|
670 |
> |
bool PhotonFix::initialiseParameters(const std::string &s) { |
671 |
> |
_initialised=false; |
672 |
> |
|
673 |
> |
if(s=="Nominal") { |
674 |
> |
for(unsigned be(0);be<2;be++) { |
675 |
> |
for(unsigned hl(0);hl<2;hl++) { |
676 |
> |
for(unsigned i(0);i<4;i++) { |
677 |
> |
_meanScale[be][hl][i]=0; |
678 |
> |
_meanAT[be][hl][i]=0; |
679 |
> |
_meanAC[be][hl][i]=0; |
680 |
> |
_meanAS[be][hl][i]=0; |
681 |
> |
_meanAM[be][hl][i]=0; |
682 |
> |
_meanBT[be][hl][i]=0; |
683 |
> |
_meanBC[be][hl][i]=0; |
684 |
> |
_meanBS[be][hl][i]=0; |
685 |
> |
_meanBM[be][hl][i]=0; |
686 |
> |
_meanR9[be][hl][i]=0; |
687 |
> |
|
688 |
> |
_sigmaScale[be][hl][i]=0; |
689 |
> |
_sigmaAT[be][hl][i]=0; |
690 |
> |
_sigmaAC[be][hl][i]=0; |
691 |
> |
_sigmaAS[be][hl][i]=0; |
692 |
> |
_sigmaAM[be][hl][i]=0; |
693 |
> |
_sigmaBT[be][hl][i]=0; |
694 |
> |
_sigmaBC[be][hl][i]=0; |
695 |
> |
_sigmaBS[be][hl][i]=0; |
696 |
> |
_sigmaBM[be][hl][i]=0; |
697 |
> |
_sigmaR9[be][hl][i]=0; |
698 |
> |
} |
699 |
> |
|
700 |
> |
_meanScale[be][hl][0]=1.0; |
701 |
> |
if(be==0) { |
702 |
> |
_sigmaScale[be][hl][0]=0.2; |
703 |
> |
_sigmaScale[be][hl][1]=0.03; |
704 |
> |
_sigmaScale[be][hl][2]=0.006; |
705 |
> |
} else { |
706 |
> |
_sigmaScale[be][hl][0]=0.25; |
707 |
> |
_sigmaScale[be][hl][1]=0.05; |
708 |
> |
_sigmaScale[be][hl][2]=0.010; |
709 |
> |
} |
710 |
> |
} |
711 |
> |
} |
712 |
> |
|
713 |
> |
_initialised=true; |
714 |
> |
} |
715 |
> |
|
716 |
> |
if(s=="3_8") { |
717 |
> |
_meanScale[0][0][0]=0.994724; |
718 |
> |
_meanScale[0][0][1]=1.98102e-06; |
719 |
> |
_meanScale[0][0][2]=1.43015e-05; |
720 |
> |
_meanScale[0][0][3]=-0.0908525; |
721 |
> |
_meanAT[0][0][0]=0.0; |
722 |
> |
_meanAT[0][0][1]=0.0; |
723 |
> |
_meanAT[0][0][2]=0.0; |
724 |
> |
_meanAT[0][0][3]=0.0; |
725 |
> |
_meanAC[0][0][0]=-0.00352041; |
726 |
> |
_meanAC[0][0][1]=0.00982015; |
727 |
> |
_meanAC[0][0][2]=434.32; |
728 |
> |
_meanAC[0][0][3]=529.508; |
729 |
> |
_meanAS[0][0][0]=-1.1; |
730 |
> |
_meanAS[0][0][1]=0.00135995; |
731 |
> |
_meanAS[0][0][2]=295.712; |
732 |
> |
_meanAS[0][0][3]=5.13202e+07; |
733 |
> |
_meanAM[0][0][0]=-0.00140562; |
734 |
> |
_meanAM[0][0][1]=0.156322; |
735 |
> |
_meanAM[0][0][2]=263.097; |
736 |
> |
_meanAM[0][0][3]=222.294; |
737 |
> |
_meanBT[0][0][0]=0.0; |
738 |
> |
_meanBT[0][0][1]=0.0; |
739 |
> |
_meanBT[0][0][2]=0.0; |
740 |
> |
_meanBT[0][0][3]=0.0; |
741 |
> |
_meanBC[0][0][0]=-0.00294295; |
742 |
> |
_meanBC[0][0][1]=0.011533; |
743 |
> |
_meanBC[0][0][2]=562.905; |
744 |
> |
_meanBC[0][0][3]=421.097; |
745 |
> |
_meanBS[0][0][0]=-0.00204373; |
746 |
> |
_meanBS[0][0][1]=0.00347592; |
747 |
> |
_meanBS[0][0][2]=36.5614; |
748 |
> |
_meanBS[0][0][3]=1265.25; |
749 |
> |
_meanBM[0][0][0]=-0.00275381; |
750 |
> |
_meanBM[0][0][1]=0.0812447; |
751 |
> |
_meanBM[0][0][2]=216.885; |
752 |
> |
_meanBM[0][0][3]=264.754; |
753 |
> |
_meanR9[0][0][0]=0.952584; |
754 |
> |
_meanR9[0][0][1]=22.7119; |
755 |
> |
_meanR9[0][0][2]=402.816; |
756 |
> |
_meanR9[0][0][3]=0; |
757 |
> |
|
758 |
> |
_sigmaScale[0][0][0]=0.167184; |
759 |
> |
_sigmaScale[0][0][1]=6.14323e-11; |
760 |
> |
_sigmaScale[0][0][2]=0.00769693; |
761 |
> |
_sigmaScale[0][0][3]=0; |
762 |
> |
_sigmaAT[0][0][0]=0.228255; |
763 |
> |
_sigmaAT[0][0][1]=0; |
764 |
> |
_sigmaAT[0][0][2]=0; |
765 |
> |
_sigmaAT[0][0][3]=0; |
766 |
> |
_sigmaAC[0][0][0]=-0.00411906; |
767 |
> |
_sigmaAC[0][0][1]=0.077799; |
768 |
> |
_sigmaAC[0][0][2]=23.1033; |
769 |
> |
_sigmaAC[0][0][3]=-3e+17; |
770 |
> |
_sigmaAS[0][0][0]=0; |
771 |
> |
_sigmaAS[0][0][1]=0; |
772 |
> |
_sigmaAS[0][0][2]=0; |
773 |
> |
_sigmaAS[0][0][3]=0; |
774 |
> |
_sigmaAM[0][0][0]=-0.000130695; |
775 |
> |
_sigmaAM[0][0][1]=11.2121; |
776 |
> |
_sigmaAM[0][0][2]=468.535; |
777 |
> |
_sigmaAM[0][0][3]=407.652; |
778 |
> |
_sigmaBT[0][0][0]=1.33384e-05; |
779 |
> |
_sigmaBT[0][0][1]=8.77098; |
780 |
> |
_sigmaBT[0][0][2]=324.048; |
781 |
> |
_sigmaBT[0][0][3]=239.868; |
782 |
> |
_sigmaBC[0][0][0]=-0.00281964; |
783 |
> |
_sigmaBC[0][0][1]=0.125811; |
784 |
> |
_sigmaBC[0][0][2]=538.949; |
785 |
> |
_sigmaBC[0][0][3]=1358.76; |
786 |
> |
_sigmaBS[0][0][0]=0; |
787 |
> |
_sigmaBS[0][0][1]=0; |
788 |
> |
_sigmaBS[0][0][2]=0; |
789 |
> |
_sigmaBS[0][0][3]=0; |
790 |
> |
_sigmaBM[0][0][0]=-0.00293676; |
791 |
> |
_sigmaBM[0][0][1]=8.88276; |
792 |
> |
_sigmaBM[0][0][2]=350.032; |
793 |
> |
_sigmaBM[0][0][3]=580.354; |
794 |
> |
_sigmaR9[0][0][0]=0.955876; |
795 |
> |
_sigmaR9[0][0][1]=2254.5; |
796 |
> |
_sigmaR9[0][0][2]=14627; |
797 |
> |
_sigmaR9[0][0][3]=0; |
798 |
> |
|
799 |
> |
_meanScale[0][1][0]=0.888348; |
800 |
> |
_meanScale[0][1][1]=1.20452e-05; |
801 |
> |
_meanScale[0][1][2]=-1.04458e-05; |
802 |
> |
_meanScale[0][1][3]=-0.542383; |
803 |
> |
_meanAT[0][1][0]=0.0; |
804 |
> |
_meanAT[0][1][1]=0.0; |
805 |
> |
_meanAT[0][1][2]=0.0; |
806 |
> |
_meanAT[0][1][3]=0.0; |
807 |
> |
_meanAC[0][1][0]=-0.00320856; |
808 |
> |
_meanAC[0][1][1]=0.0240109; |
809 |
> |
_meanAC[0][1][2]=115.145; |
810 |
> |
_meanAC[0][1][3]=205.859; |
811 |
> |
_meanAS[0][1][0]=0.0349736; |
812 |
> |
_meanAS[0][1][1]=-0.00232864; |
813 |
> |
_meanAS[0][1][2]=318.584; |
814 |
> |
_meanAS[0][1][3]=1.4e+09; |
815 |
> |
_meanAM[0][1][0]=-0.00104798; |
816 |
> |
_meanAM[0][1][1]=0.208249; |
817 |
> |
_meanAM[0][1][2]=297.049; |
818 |
> |
_meanAM[0][1][3]=220.609; |
819 |
> |
_meanBT[0][1][0]=0.0; |
820 |
> |
_meanBT[0][1][1]=0.0; |
821 |
> |
_meanBT[0][1][2]=0.0; |
822 |
> |
_meanBT[0][1][3]=0.0; |
823 |
> |
_meanBC[0][1][0]=-0.00420429; |
824 |
> |
_meanBC[0][1][1]=0.00203991; |
825 |
> |
_meanBC[0][1][2]=172.278; |
826 |
> |
_meanBC[0][1][3]=410.677; |
827 |
> |
_meanBS[0][1][0]=-0.0430854; |
828 |
> |
_meanBS[0][1][1]=0.0961883; |
829 |
> |
_meanBS[0][1][2]=0.196958; |
830 |
> |
_meanBS[0][1][3]=11442.2; |
831 |
> |
_meanBM[0][1][0]=-0.00389457; |
832 |
> |
_meanBM[0][1][1]=0.0449086; |
833 |
> |
_meanBM[0][1][2]=78.9252; |
834 |
> |
_meanBM[0][1][3]=103.237; |
835 |
> |
_meanR9[0][1][0]=0.0182102; |
836 |
> |
_meanR9[0][1][1]=-0.03752; |
837 |
> |
_meanR9[0][1][2]=0.0198881; |
838 |
> |
_meanR9[0][1][3]=0; |
839 |
> |
|
840 |
> |
_sigmaScale[0][1][0]=0.386681; |
841 |
> |
_sigmaScale[0][1][1]=0.0913412; |
842 |
> |
_sigmaScale[0][1][2]=0.00119232; |
843 |
> |
_sigmaScale[0][1][3]=0; |
844 |
> |
_sigmaAT[0][1][0]=1.36562; |
845 |
> |
_sigmaAT[0][1][1]=0; |
846 |
> |
_sigmaAT[0][1][2]=0; |
847 |
> |
_sigmaAT[0][1][3]=0; |
848 |
> |
_sigmaAC[0][1][0]=-0.00504613; |
849 |
> |
_sigmaAC[0][1][1]=-1.09115; |
850 |
> |
_sigmaAC[0][1][2]=8.57406; |
851 |
> |
_sigmaAC[0][1][3]=57.1351; |
852 |
> |
_sigmaAS[0][1][0]=0; |
853 |
> |
_sigmaAS[0][1][1]=0; |
854 |
> |
_sigmaAS[0][1][2]=0; |
855 |
> |
_sigmaAS[0][1][3]=0; |
856 |
> |
_sigmaAM[0][1][0]=-0.00014319; |
857 |
> |
_sigmaAM[0][1][1]=5.39527; |
858 |
> |
_sigmaAM[0][1][2]=432.566; |
859 |
> |
_sigmaAM[0][1][3]=265.165; |
860 |
> |
_sigmaBT[0][1][0]=-0.040161; |
861 |
> |
_sigmaBT[0][1][1]=2.65711; |
862 |
> |
_sigmaBT[0][1][2]=-0.398357; |
863 |
> |
_sigmaBT[0][1][3]=-0.440649; |
864 |
> |
_sigmaBC[0][1][0]=0.00580015; |
865 |
> |
_sigmaBC[0][1][1]=-0.631833; |
866 |
> |
_sigmaBC[0][1][2]=18594.3; |
867 |
> |
_sigmaBC[0][1][3]=4.00955e+08; |
868 |
> |
_sigmaBS[0][1][0]=0; |
869 |
> |
_sigmaBS[0][1][1]=0; |
870 |
> |
_sigmaBS[0][1][2]=0; |
871 |
> |
_sigmaBS[0][1][3]=0; |
872 |
> |
_sigmaBM[0][1][0]=-0.00376665; |
873 |
> |
_sigmaBM[0][1][1]=3.74316; |
874 |
> |
_sigmaBM[0][1][2]=102.72; |
875 |
> |
_sigmaBM[0][1][3]=157.396; |
876 |
> |
_sigmaR9[0][1][0]=-3.12696; |
877 |
> |
_sigmaR9[0][1][1]=1.75114; |
878 |
> |
_sigmaR9[0][1][2]=0; |
879 |
> |
_sigmaR9[0][1][3]=0; |
880 |
> |
|
881 |
> |
_meanScale[1][0][0]=0.999461; |
882 |
> |
_meanScale[1][0][1]=4.37414e-06; |
883 |
> |
_meanScale[1][0][2]=4.92078e-06; |
884 |
> |
_meanScale[1][0][3]=-0.121609; |
885 |
> |
_meanAT[1][0][0]=0.0; |
886 |
> |
_meanAT[1][0][1]=0.0; |
887 |
> |
_meanAT[1][0][2]=0.0; |
888 |
> |
_meanAT[1][0][3]=0.0; |
889 |
> |
_meanAC[1][0][0]=-0.000396058; |
890 |
> |
_meanAC[1][0][1]=0.0144837; |
891 |
> |
_meanAC[1][0][2]=1374.93; |
892 |
> |
_meanAC[1][0][3]=945.634; |
893 |
> |
_meanAS[1][0][0]=-0.000871036; |
894 |
> |
_meanAS[1][0][1]=0.0442747; |
895 |
> |
_meanAS[1][0][2]=645.709; |
896 |
> |
_meanAS[1][0][3]=962.845; |
897 |
> |
_meanAM[1][0][0]=0.000434298; |
898 |
> |
_meanAM[1][0][1]=0.0658628; |
899 |
> |
_meanAM[1][0][2]=1928.49; |
900 |
> |
_meanAM[1][0][3]=728.522; |
901 |
> |
_meanBT[1][0][0]=0.0; |
902 |
> |
_meanBT[1][0][1]=0.0; |
903 |
> |
_meanBT[1][0][2]=0.0; |
904 |
> |
_meanBT[1][0][3]=0.0; |
905 |
> |
_meanBC[1][0][0]=-0.000452212; |
906 |
> |
_meanBC[1][0][1]=0.0129968; |
907 |
> |
_meanBC[1][0][2]=1056.08; |
908 |
> |
_meanBC[1][0][3]=759.102; |
909 |
> |
_meanBS[1][0][0]=-0.000786157; |
910 |
> |
_meanBS[1][0][1]=0.0346555; |
911 |
> |
_meanBS[1][0][2]=592.239; |
912 |
> |
_meanBS[1][0][3]=854.285; |
913 |
> |
_meanBM[1][0][0]=-0.0665038; |
914 |
> |
_meanBM[1][0][1]=-0.00211713; |
915 |
> |
_meanBM[1][0][2]=4.84395; |
916 |
> |
_meanBM[1][0][3]=11.6644; |
917 |
> |
_meanR9[1][0][0]=0.971355; |
918 |
> |
_meanR9[1][0][1]=47.2751; |
919 |
> |
_meanR9[1][0][2]=536.907; |
920 |
> |
_meanR9[1][0][3]=0; |
921 |
> |
|
922 |
> |
_sigmaScale[1][0][0]=0.254641; |
923 |
> |
_sigmaScale[1][0][1]=0.00264818; |
924 |
> |
_sigmaScale[1][0][2]=0.0114953; |
925 |
> |
_sigmaScale[1][0][3]=0; |
926 |
> |
_sigmaAT[1][0][0]=0.935839; |
927 |
> |
_sigmaAT[1][0][1]=0; |
928 |
> |
_sigmaAT[1][0][2]=0; |
929 |
> |
_sigmaAT[1][0][3]=0; |
930 |
> |
_sigmaAC[1][0][0]=-0.00476475; |
931 |
> |
_sigmaAC[1][0][1]=2.14548; |
932 |
> |
_sigmaAC[1][0][2]=29937; |
933 |
> |
_sigmaAC[1][0][3]=2.6e+11; |
934 |
> |
_sigmaAS[1][0][0]=-8.17285e-05; |
935 |
> |
_sigmaAS[1][0][1]=1.5821; |
936 |
> |
_sigmaAS[1][0][2]=1928.83; |
937 |
> |
_sigmaAS[1][0][3]=902.519; |
938 |
> |
_sigmaAM[1][0][0]=0.0278577; |
939 |
> |
_sigmaAM[1][0][1]=0.58439; |
940 |
> |
_sigmaAM[1][0][2]=43.3575; |
941 |
> |
_sigmaAM[1][0][3]=19.7836; |
942 |
> |
_sigmaBT[1][0][0]=-0.456051; |
943 |
> |
_sigmaBT[1][0][1]=0; |
944 |
> |
_sigmaBT[1][0][2]=0; |
945 |
> |
_sigmaBT[1][0][3]=0; |
946 |
> |
_sigmaBC[1][0][0]=-0.00264527; |
947 |
> |
_sigmaBC[1][0][1]=0.696043; |
948 |
> |
_sigmaBC[1][0][2]=7.49509e+12; |
949 |
> |
_sigmaBC[1][0][3]=96843; |
950 |
> |
_sigmaBS[1][0][0]=0.000258933; |
951 |
> |
_sigmaBS[1][0][1]=1.28387; |
952 |
> |
_sigmaBS[1][0][2]=1668.71; |
953 |
> |
_sigmaBS[1][0][3]=730.716; |
954 |
> |
_sigmaBM[1][0][0]=0.00121506; |
955 |
> |
_sigmaBM[1][0][1]=0.938541; |
956 |
> |
_sigmaBM[1][0][2]=9003.57; |
957 |
> |
_sigmaBM[1][0][3]=288.897; |
958 |
> |
_sigmaR9[1][0][0]=1.01207; |
959 |
> |
_sigmaR9[1][0][1]=-816.244; |
960 |
> |
_sigmaR9[1][0][2]=-16283.8; |
961 |
> |
_sigmaR9[1][0][3]=0; |
962 |
> |
|
963 |
> |
_meanScale[1][1][0]=0.324634; |
964 |
> |
_meanScale[1][1][1]=9.48206e-05; |
965 |
> |
_meanScale[1][1][2]=1.0e-12; |
966 |
> |
_meanScale[1][1][3]=1.0e-12; |
967 |
> |
_meanAT[1][1][0]=0.0; |
968 |
> |
_meanAT[1][1][1]=0.0; |
969 |
> |
_meanAT[1][1][2]=0.0; |
970 |
> |
_meanAT[1][1][3]=0.0; |
971 |
> |
_meanAC[1][1][0]=-0.00158311; |
972 |
> |
_meanAC[1][1][1]=0.0106161; |
973 |
> |
_meanAC[1][1][2]=338.964; |
974 |
> |
_meanAC[1][1][3]=797.172; |
975 |
> |
_meanAS[1][1][0]=-0.00960269; |
976 |
> |
_meanAS[1][1][1]=-0.00496491; |
977 |
> |
_meanAS[1][1][2]=934.472; |
978 |
> |
_meanAS[1][1][3]=8.32667e-16; |
979 |
> |
_meanAM[1][1][0]=-0.00219814; |
980 |
> |
_meanAM[1][1][1]=0.653906; |
981 |
> |
_meanAM[1][1][2]=0.0949848; |
982 |
> |
_meanAM[1][1][3]=0.0977831; |
983 |
> |
_meanBT[1][1][0]=0.0; |
984 |
> |
_meanBT[1][1][1]=0.0; |
985 |
> |
_meanBT[1][1][2]=0.0; |
986 |
> |
_meanBT[1][1][3]=0.0; |
987 |
> |
_meanBC[1][1][0]=-0.00423472; |
988 |
> |
_meanBC[1][1][1]=0.0279695; |
989 |
> |
_meanBC[1][1][2]=28073.7; |
990 |
> |
_meanBC[1][1][3]=118612; |
991 |
> |
_meanBS[1][1][0]=-0.0012476; |
992 |
> |
_meanBS[1][1][1]=0.02744; |
993 |
> |
_meanBS[1][1][2]=390.697; |
994 |
> |
_meanBS[1][1][3]=727.861; |
995 |
> |
_meanBM[1][1][0]=-1.36573e-05; |
996 |
> |
_meanBM[1][1][1]=0.0667504; |
997 |
> |
_meanBM[1][1][2]=-80154.4; |
998 |
> |
_meanBM[1][1][3]=576.637; |
999 |
> |
_meanR9[1][1][0]=0.113317; |
1000 |
> |
_meanR9[1][1][1]=0.0142669; |
1001 |
> |
_meanR9[1][1][2]=-0.125721; |
1002 |
> |
_meanR9[1][1][3]=0; |
1003 |
> |
|
1004 |
> |
_sigmaScale[1][1][0]=0.471767; |
1005 |
> |
_sigmaScale[1][1][1]=0.211196; |
1006 |
> |
_sigmaScale[1][1][2]=0.0240124; |
1007 |
> |
_sigmaScale[1][1][3]=0; |
1008 |
> |
_sigmaAT[1][1][0]=0.404395; |
1009 |
> |
_sigmaAT[1][1][1]=0; |
1010 |
> |
_sigmaAT[1][1][2]=0; |
1011 |
> |
_sigmaAT[1][1][3]=0; |
1012 |
> |
_sigmaAC[1][1][0]=0.00173151; |
1013 |
> |
_sigmaAC[1][1][1]=-0.479291; |
1014 |
> |
_sigmaAC[1][1][2]=11583.5; |
1015 |
> |
_sigmaAC[1][1][3]=-7e+09; |
1016 |
> |
_sigmaAS[1][1][0]=0.000450387; |
1017 |
> |
_sigmaAS[1][1][1]=0.662978; |
1018 |
> |
_sigmaAS[1][1][2]=924.051; |
1019 |
> |
_sigmaAS[1][1][3]=448.417; |
1020 |
> |
_sigmaAM[1][1][0]=0.00335603; |
1021 |
> |
_sigmaAM[1][1][1]=0.648407; |
1022 |
> |
_sigmaAM[1][1][2]=134.672; |
1023 |
> |
_sigmaAM[1][1][3]=27.4139; |
1024 |
> |
_sigmaBT[1][1][0]=0.602402; |
1025 |
> |
_sigmaBT[1][1][1]=0; |
1026 |
> |
_sigmaBT[1][1][2]=0; |
1027 |
> |
_sigmaBT[1][1][3]=0; |
1028 |
> |
_sigmaBC[1][1][0]=-0.00256192; |
1029 |
> |
_sigmaBC[1][1][1]=2.01276; |
1030 |
> |
_sigmaBC[1][1][2]=114558; |
1031 |
> |
_sigmaBC[1][1][3]=2.15421e+06; |
1032 |
> |
_sigmaBS[1][1][0]=0.00151576; |
1033 |
> |
_sigmaBS[1][1][1]=0.359084; |
1034 |
> |
_sigmaBS[1][1][2]=329.414; |
1035 |
> |
_sigmaBS[1][1][3]=154.509; |
1036 |
> |
_sigmaBM[1][1][0]=-0.0452587; |
1037 |
> |
_sigmaBM[1][1][1]=1.26253; |
1038 |
> |
_sigmaBM[1][1][2]=1.9e+09; |
1039 |
> |
_sigmaBM[1][1][3]=1058.76; |
1040 |
> |
_sigmaR9[1][1][0]=4.59667; |
1041 |
> |
_sigmaR9[1][1][1]=-5.14404; |
1042 |
> |
_sigmaR9[1][1][2]=0; |
1043 |
> |
_sigmaR9[1][1][3]=0; |
1044 |
> |
|
1045 |
> |
_initialised=true; |
1046 |
> |
} |
1047 |
> |
|
1048 |
> |
if(s=="3_11") { |
1049 |
> |
_meanScale[0][0][0]=0.994363; |
1050 |
> |
_meanScale[0][0][1]=4.84904e-07; |
1051 |
> |
_meanScale[0][0][2]=1.54475e-05; |
1052 |
> |
_meanScale[0][0][3]=-0.103309; |
1053 |
> |
_meanAT[0][0][0]=0.0; |
1054 |
> |
_meanAT[0][0][1]=0.0; |
1055 |
> |
_meanAT[0][0][2]=0.0; |
1056 |
> |
_meanAT[0][0][3]=0.0; |
1057 |
> |
_meanAC[0][0][0]=-0.00360057; |
1058 |
> |
_meanAC[0][0][1]=0.00970858; |
1059 |
> |
_meanAC[0][0][2]=409.406; |
1060 |
> |
_meanAC[0][0][3]=527.952; |
1061 |
> |
_meanAS[0][0][0]=-1.1; |
1062 |
> |
_meanAS[0][0][1]=0.00135995; |
1063 |
> |
_meanAS[0][0][2]=295.712; |
1064 |
> |
_meanAS[0][0][3]=5.13202e+07; |
1065 |
> |
_meanAM[0][0][0]=-0.00129854; |
1066 |
> |
_meanAM[0][0][1]=0.151466; |
1067 |
> |
_meanAM[0][0][2]=261.828; |
1068 |
> |
_meanAM[0][0][3]=214.662; |
1069 |
> |
_meanBT[0][0][0]=0.0; |
1070 |
> |
_meanBT[0][0][1]=0.0; |
1071 |
> |
_meanBT[0][0][2]=0.0; |
1072 |
> |
_meanBT[0][0][3]=0.0; |
1073 |
> |
_meanBC[0][0][0]=-0.00286864; |
1074 |
> |
_meanBC[0][0][1]=0.0114118; |
1075 |
> |
_meanBC[0][0][2]=563.962; |
1076 |
> |
_meanBC[0][0][3]=412.922; |
1077 |
> |
_meanBS[0][0][0]=-0.00210996; |
1078 |
> |
_meanBS[0][0][1]=0.00327867; |
1079 |
> |
_meanBS[0][0][2]=23.617; |
1080 |
> |
_meanBS[0][0][3]=1018.45; |
1081 |
> |
_meanBM[0][0][0]=-0.002287; |
1082 |
> |
_meanBM[0][0][1]=0.0848984; |
1083 |
> |
_meanBM[0][0][2]=235.575; |
1084 |
> |
_meanBM[0][0][3]=260.773; |
1085 |
> |
_meanR9[0][0][0]=0.951724; |
1086 |
> |
_meanR9[0][0][1]=23.7181; |
1087 |
> |
_meanR9[0][0][2]=177.34; |
1088 |
> |
_meanR9[0][0][3]=0; |
1089 |
> |
|
1090 |
> |
_sigmaScale[0][0][0]=0.187578; |
1091 |
> |
_sigmaScale[0][0][1]=-0.000901045; |
1092 |
> |
_sigmaScale[0][0][2]=0.00673186; |
1093 |
> |
_sigmaScale[0][0][3]=0; |
1094 |
> |
_sigmaAT[0][0][0]=0.183777; |
1095 |
> |
_sigmaAT[0][0][1]=0; |
1096 |
> |
_sigmaAT[0][0][2]=0; |
1097 |
> |
_sigmaAT[0][0][3]=0; |
1098 |
> |
_sigmaAC[0][0][0]=-0.00430202; |
1099 |
> |
_sigmaAC[0][0][1]=0.122501; |
1100 |
> |
_sigmaAC[0][0][2]=51.9772; |
1101 |
> |
_sigmaAC[0][0][3]=-3e+17; |
1102 |
> |
_sigmaAS[0][0][0]=0; |
1103 |
> |
_sigmaAS[0][0][1]=0; |
1104 |
> |
_sigmaAS[0][0][2]=0; |
1105 |
> |
_sigmaAS[0][0][3]=0; |
1106 |
> |
_sigmaAM[0][0][0]=0.00101883; |
1107 |
> |
_sigmaAM[0][0][1]=11.2009; |
1108 |
> |
_sigmaAM[0][0][2]=593.111; |
1109 |
> |
_sigmaAM[0][0][3]=345.433; |
1110 |
> |
_sigmaBT[0][0][0]=-6.02356e-05; |
1111 |
> |
_sigmaBT[0][0][1]=6.99896; |
1112 |
> |
_sigmaBT[0][0][2]=235.996; |
1113 |
> |
_sigmaBT[0][0][3]=196; |
1114 |
> |
_sigmaBC[0][0][0]=-0.00282254; |
1115 |
> |
_sigmaBC[0][0][1]=0.18764; |
1116 |
> |
_sigmaBC[0][0][2]=509.825; |
1117 |
> |
_sigmaBC[0][0][3]=1400.14; |
1118 |
> |
_sigmaBS[0][0][0]=0; |
1119 |
> |
_sigmaBS[0][0][1]=0; |
1120 |
> |
_sigmaBS[0][0][2]=0; |
1121 |
> |
_sigmaBS[0][0][3]=0; |
1122 |
> |
_sigmaBM[0][0][0]=-0.00252199; |
1123 |
> |
_sigmaBM[0][0][1]=39.1544; |
1124 |
> |
_sigmaBM[0][0][2]=612.481; |
1125 |
> |
_sigmaBM[0][0][3]=905.994; |
1126 |
> |
_sigmaR9[0][0][0]=0.95608; |
1127 |
> |
_sigmaR9[0][0][1]=2203.31; |
1128 |
> |
_sigmaR9[0][0][2]=-22454.2; |
1129 |
> |
_sigmaR9[0][0][3]=0; |
1130 |
> |
|
1131 |
> |
_meanScale[0][1][0]=0.889415; |
1132 |
> |
_meanScale[0][1][1]=1.21788e-05; |
1133 |
> |
_meanScale[0][1][2]=-4.3438e-06; |
1134 |
> |
_meanScale[0][1][3]=-0.629968; |
1135 |
> |
_meanAT[0][1][0]=0.0; |
1136 |
> |
_meanAT[0][1][1]=0.0; |
1137 |
> |
_meanAT[0][1][2]=0.0; |
1138 |
> |
_meanAT[0][1][3]=0.0; |
1139 |
> |
_meanAC[0][1][0]=-0.00313701; |
1140 |
> |
_meanAC[0][1][1]=0.0227998; |
1141 |
> |
_meanAC[0][1][2]=128.653; |
1142 |
> |
_meanAC[0][1][3]=234.333; |
1143 |
> |
_meanAS[0][1][0]=0.0346198; |
1144 |
> |
_meanAS[0][1][1]=-0.00261336; |
1145 |
> |
_meanAS[0][1][2]=177.983; |
1146 |
> |
_meanAS[0][1][3]=1.19839e+14; |
1147 |
> |
_meanAM[0][1][0]=-0.00100745; |
1148 |
> |
_meanAM[0][1][1]=0.264247; |
1149 |
> |
_meanAM[0][1][2]=337.255; |
1150 |
> |
_meanAM[0][1][3]=251.454; |
1151 |
> |
_meanBT[0][1][0]=0.0; |
1152 |
> |
_meanBT[0][1][1]=0.0; |
1153 |
> |
_meanBT[0][1][2]=0.0; |
1154 |
> |
_meanBT[0][1][3]=0.0; |
1155 |
> |
_meanBC[0][1][0]=-0.00397794; |
1156 |
> |
_meanBC[0][1][1]=0.00219079; |
1157 |
> |
_meanBC[0][1][2]=176.842; |
1158 |
> |
_meanBC[0][1][3]=450.29; |
1159 |
> |
_meanBS[0][1][0]=-2e+07; |
1160 |
> |
_meanBS[0][1][1]=0.0957598; |
1161 |
> |
_meanBS[0][1][2]=-8.88573e-27; |
1162 |
> |
_meanBS[0][1][3]=11442.2; |
1163 |
> |
_meanBM[0][1][0]=-0.00366315; |
1164 |
> |
_meanBM[0][1][1]=0.0622186; |
1165 |
> |
_meanBM[0][1][2]=94.5155; |
1166 |
> |
_meanBM[0][1][3]=126.404; |
1167 |
> |
_meanR9[0][1][0]=0.00636789; |
1168 |
> |
_meanR9[0][1][1]=0.000336062; |
1169 |
> |
_meanR9[0][1][2]=-0.0092699; |
1170 |
> |
_meanR9[0][1][3]=0; |
1171 |
> |
|
1172 |
> |
_sigmaScale[0][1][0]=0.685096; |
1173 |
> |
_sigmaScale[0][1][1]=0.129065; |
1174 |
> |
_sigmaScale[0][1][2]=-0.00212486; |
1175 |
> |
_sigmaScale[0][1][3]=0; |
1176 |
> |
_sigmaAT[0][1][0]=0.898865; |
1177 |
> |
_sigmaAT[0][1][1]=0; |
1178 |
> |
_sigmaAT[0][1][2]=0; |
1179 |
> |
_sigmaAT[0][1][3]=0; |
1180 |
> |
_sigmaAC[0][1][0]=-0.00492979; |
1181 |
> |
_sigmaAC[0][1][1]=-1.20123; |
1182 |
> |
_sigmaAC[0][1][2]=2.89231; |
1183 |
> |
_sigmaAC[0][1][3]=18.2059; |
1184 |
> |
_sigmaAS[0][1][0]=0; |
1185 |
> |
_sigmaAS[0][1][1]=0; |
1186 |
> |
_sigmaAS[0][1][2]=0; |
1187 |
> |
_sigmaAS[0][1][3]=0; |
1188 |
> |
_sigmaAM[0][1][0]=-0.000727825; |
1189 |
> |
_sigmaAM[0][1][1]=8.42395; |
1190 |
> |
_sigmaAM[0][1][2]=512.032; |
1191 |
> |
_sigmaAM[0][1][3]=415.962; |
1192 |
> |
_sigmaBT[0][1][0]=-0.0336364; |
1193 |
> |
_sigmaBT[0][1][1]=2.45182; |
1194 |
> |
_sigmaBT[0][1][2]=-0.284353; |
1195 |
> |
_sigmaBT[0][1][3]=-0.31679; |
1196 |
> |
_sigmaBC[0][1][0]=0.00510553; |
1197 |
> |
_sigmaBC[0][1][1]=-0.953869; |
1198 |
> |
_sigmaBC[0][1][2]=113872; |
1199 |
> |
_sigmaBC[0][1][3]=1.35966e+09; |
1200 |
> |
_sigmaBS[0][1][0]=0; |
1201 |
> |
_sigmaBS[0][1][1]=0; |
1202 |
> |
_sigmaBS[0][1][2]=0; |
1203 |
> |
_sigmaBS[0][1][3]=0; |
1204 |
> |
_sigmaBM[0][1][0]=-0.0034071; |
1205 |
> |
_sigmaBM[0][1][1]=4.19719; |
1206 |
> |
_sigmaBM[0][1][2]=128.952; |
1207 |
> |
_sigmaBM[0][1][3]=180.604; |
1208 |
> |
_sigmaR9[0][1][0]=-3.38988; |
1209 |
> |
_sigmaR9[0][1][1]=2.0714; |
1210 |
> |
_sigmaR9[0][1][2]=0; |
1211 |
> |
_sigmaR9[0][1][3]=0; |
1212 |
> |
|
1213 |
> |
_meanScale[1][0][0]=1.0009; |
1214 |
> |
_meanScale[1][0][1]=-4.79805e-06; |
1215 |
> |
_meanScale[1][0][2]=3.34625e-05; |
1216 |
> |
_meanScale[1][0][3]=-0.194267; |
1217 |
> |
_meanAT[1][0][0]=0.0; |
1218 |
> |
_meanAT[1][0][1]=0.0; |
1219 |
> |
_meanAT[1][0][2]=0.0; |
1220 |
> |
_meanAT[1][0][3]=0.0; |
1221 |
> |
_meanAC[1][0][0]=-0.000177563; |
1222 |
> |
_meanAC[1][0][1]=0.0122839; |
1223 |
> |
_meanAC[1][0][2]=1798.92; |
1224 |
> |
_meanAC[1][0][3]=776.856; |
1225 |
> |
_meanAS[1][0][0]=-0.000533039; |
1226 |
> |
_meanAS[1][0][1]=0.0642604; |
1227 |
> |
_meanAS[1][0][2]=969.596; |
1228 |
> |
_meanAS[1][0][3]=1004.15; |
1229 |
> |
_meanAM[1][0][0]=0.000163185; |
1230 |
> |
_meanAM[1][0][1]=0.085936; |
1231 |
> |
_meanAM[1][0][2]=1593.17; |
1232 |
> |
_meanAM[1][0][3]=681.623; |
1233 |
> |
_meanBT[1][0][0]=0.0; |
1234 |
> |
_meanBT[1][0][1]=0.0; |
1235 |
> |
_meanBT[1][0][2]=0.0; |
1236 |
> |
_meanBT[1][0][3]=0.0; |
1237 |
> |
_meanBC[1][0][0]=-0.000518186; |
1238 |
> |
_meanBC[1][0][1]=0.0121868; |
1239 |
> |
_meanBC[1][0][2]=1112.53; |
1240 |
> |
_meanBC[1][0][3]=933.281; |
1241 |
> |
_meanBS[1][0][0]=-0.000750734; |
1242 |
> |
_meanBS[1][0][1]=0.03859; |
1243 |
> |
_meanBS[1][0][2]=547.579; |
1244 |
> |
_meanBS[1][0][3]=775.887; |
1245 |
> |
_meanBM[1][0][0]=-0.190395; |
1246 |
> |
_meanBM[1][0][1]=-0.00362647; |
1247 |
> |
_meanBM[1][0][2]=5.25687; |
1248 |
> |
_meanBM[1][0][3]=-2.8e+08; |
1249 |
> |
_meanR9[1][0][0]=0.972346; |
1250 |
> |
_meanR9[1][0][1]=53.9185; |
1251 |
> |
_meanR9[1][0][2]=1354.5; |
1252 |
> |
_meanR9[1][0][3]=0; |
1253 |
> |
|
1254 |
> |
_sigmaScale[1][0][0]=0.348019; |
1255 |
> |
_sigmaScale[1][0][1]=-6.43731e-11; |
1256 |
> |
_sigmaScale[1][0][2]=0.0158647; |
1257 |
> |
_sigmaScale[1][0][3]=0; |
1258 |
> |
_sigmaAT[1][0][0]=0.215239; |
1259 |
> |
_sigmaAT[1][0][1]=0; |
1260 |
> |
_sigmaAT[1][0][2]=0; |
1261 |
> |
_sigmaAT[1][0][3]=0; |
1262 |
> |
_sigmaAC[1][0][0]=-0.00492298; |
1263 |
> |
_sigmaAC[1][0][1]=-3.40058; |
1264 |
> |
_sigmaAC[1][0][2]=17263.9; |
1265 |
> |
_sigmaAC[1][0][3]=2.6e+11; |
1266 |
> |
_sigmaAS[1][0][0]=-0.000237998; |
1267 |
> |
_sigmaAS[1][0][1]=3.0258; |
1268 |
> |
_sigmaAS[1][0][2]=1811.25; |
1269 |
> |
_sigmaAS[1][0][3]=1846.79; |
1270 |
> |
_sigmaAM[1][0][0]=0.0210134; |
1271 |
> |
_sigmaAM[1][0][1]=0.328359; |
1272 |
> |
_sigmaAM[1][0][2]=22.49; |
1273 |
> |
_sigmaAM[1][0][3]=14.5021; |
1274 |
> |
_sigmaBT[1][0][0]=-0.495072; |
1275 |
> |
_sigmaBT[1][0][1]=0; |
1276 |
> |
_sigmaBT[1][0][2]=0; |
1277 |
> |
_sigmaBT[1][0][3]=0; |
1278 |
> |
_sigmaBC[1][0][0]=-0.00265007; |
1279 |
> |
_sigmaBC[1][0][1]=0.970549; |
1280 |
> |
_sigmaBC[1][0][2]=-6.89119e+07; |
1281 |
> |
_sigmaBC[1][0][3]=180110; |
1282 |
> |
_sigmaBS[1][0][0]=0.00045833; |
1283 |
> |
_sigmaBS[1][0][1]=2.16342; |
1284 |
> |
_sigmaBS[1][0][2]=3582.4; |
1285 |
> |
_sigmaBS[1][0][3]=1100.36; |
1286 |
> |
_sigmaBM[1][0][0]=0.00188871; |
1287 |
> |
_sigmaBM[1][0][1]=1.66177; |
1288 |
> |
_sigmaBM[1][0][2]=3.2e+08; |
1289 |
> |
_sigmaBM[1][0][3]=2163.81; |
1290 |
> |
_sigmaR9[1][0][0]=-220.415; |
1291 |
> |
_sigmaR9[1][0][1]=5.19136e-08; |
1292 |
> |
_sigmaR9[1][0][2]=3.04028e-10; |
1293 |
> |
_sigmaR9[1][0][3]=0; |
1294 |
> |
|
1295 |
> |
_meanScale[1][1][0]=0.338011; |
1296 |
> |
_meanScale[1][1][1]=9.47815e-05; |
1297 |
> |
_meanScale[1][1][2]=-0.000238735; |
1298 |
> |
_meanScale[1][1][3]=-0.846414; |
1299 |
> |
_meanAT[1][1][0]=0.0; |
1300 |
> |
_meanAT[1][1][1]=0.0; |
1301 |
> |
_meanAT[1][1][2]=0.0; |
1302 |
> |
_meanAT[1][1][3]=0.0; |
1303 |
> |
_meanAC[1][1][0]=-0.00125367; |
1304 |
> |
_meanAC[1][1][1]=0.013324; |
1305 |
> |
_meanAC[1][1][2]=203.988; |
1306 |
> |
_meanAC[1][1][3]=431.951; |
1307 |
> |
_meanAS[1][1][0]=0.000282607; |
1308 |
> |
_meanAS[1][1][1]=0.0307431; |
1309 |
> |
_meanAS[1][1][2]=343.509; |
1310 |
> |
_meanAS[1][1][3]=274.957; |
1311 |
> |
_meanAM[1][1][0]=0.0020258; |
1312 |
> |
_meanAM[1][1][1]=0.643913; |
1313 |
> |
_meanAM[1][1][2]=0.0693877; |
1314 |
> |
_meanAM[1][1][3]=0.0816029; |
1315 |
> |
_meanBT[1][1][0]=0.0; |
1316 |
> |
_meanBT[1][1][1]=0.0; |
1317 |
> |
_meanBT[1][1][2]=0.0; |
1318 |
> |
_meanBT[1][1][3]=0.0; |
1319 |
> |
_meanBC[1][1][0]=-0.00513833; |
1320 |
> |
_meanBC[1][1][1]=5.94424e+08; |
1321 |
> |
_meanBC[1][1][2]=-62814.9; |
1322 |
> |
_meanBC[1][1][3]=118612; |
1323 |
> |
_meanBS[1][1][0]=-0.00152129; |
1324 |
> |
_meanBS[1][1][1]=0.0234694; |
1325 |
> |
_meanBS[1][1][2]=186.483; |
1326 |
> |
_meanBS[1][1][3]=754.201; |
1327 |
> |
_meanBM[1][1][0]=-0.000404987; |
1328 |
> |
_meanBM[1][1][1]=0.156384; |
1329 |
> |
_meanBM[1][1][2]=-1.7e+08; |
1330 |
> |
_meanBM[1][1][3]=1793.83; |
1331 |
> |
_meanR9[1][1][0]=0.0645278; |
1332 |
> |
_meanR9[1][1][1]=0.161614; |
1333 |
> |
_meanR9[1][1][2]=-0.215822; |
1334 |
> |
_meanR9[1][1][3]=0; |
1335 |
> |
|
1336 |
> |
_sigmaScale[1][1][0]=1.07376; |
1337 |
> |
_sigmaScale[1][1][1]=7.47238e-13; |
1338 |
> |
_sigmaScale[1][1][2]=0.0289594; |
1339 |
> |
_sigmaScale[1][1][3]=0; |
1340 |
> |
_sigmaAT[1][1][0]=-0.520907; |
1341 |
> |
_sigmaAT[1][1][1]=0; |
1342 |
> |
_sigmaAT[1][1][2]=0; |
1343 |
> |
_sigmaAT[1][1][3]=0; |
1344 |
> |
_sigmaAC[1][1][0]=0.00165941; |
1345 |
> |
_sigmaAC[1][1][1]=-0.351422; |
1346 |
> |
_sigmaAC[1][1][2]=8968.94; |
1347 |
> |
_sigmaAC[1][1][3]=-7e+09; |
1348 |
> |
_sigmaAS[1][1][0]=0.000490279; |
1349 |
> |
_sigmaAS[1][1][1]=0.554531; |
1350 |
> |
_sigmaAS[1][1][2]=469.111; |
1351 |
> |
_sigmaAS[1][1][3]=457.541; |
1352 |
> |
_sigmaAM[1][1][0]=0.00102079; |
1353 |
> |
_sigmaAM[1][1][1]=0.628055; |
1354 |
> |
_sigmaAM[1][1][2]=53.9452; |
1355 |
> |
_sigmaAM[1][1][3]=72.911; |
1356 |
> |
_sigmaBT[1][1][0]=-0.461542; |
1357 |
> |
_sigmaBT[1][1][1]=0; |
1358 |
> |
_sigmaBT[1][1][2]=0; |
1359 |
> |
_sigmaBT[1][1][3]=0; |
1360 |
> |
_sigmaBC[1][1][0]=-0.00219303; |
1361 |
> |
_sigmaBC[1][1][1]=0.874327; |
1362 |
> |
_sigmaBC[1][1][2]=71353.2; |
1363 |
> |
_sigmaBC[1][1][3]=2.09924e+08; |
1364 |
> |
_sigmaBS[1][1][0]=0.00104021; |
1365 |
> |
_sigmaBS[1][1][1]=0.236098; |
1366 |
> |
_sigmaBS[1][1][2]=482.954; |
1367 |
> |
_sigmaBS[1][1][3]=191.984; |
1368 |
> |
_sigmaBM[1][1][0]=-0.000116086; |
1369 |
> |
_sigmaBM[1][1][1]=2.4438; |
1370 |
> |
_sigmaBM[1][1][2]=1.9e+09; |
1371 |
> |
_sigmaBM[1][1][3]=-700.271; |
1372 |
> |
_sigmaR9[1][1][0]=4.59374; |
1373 |
> |
_sigmaR9[1][1][1]=-5.06202; |
1374 |
> |
_sigmaR9[1][1][2]=0; |
1375 |
> |
_sigmaR9[1][1][3]=0; |
1376 |
> |
|
1377 |
> |
_initialised=true; |
1378 |
> |
} |
1379 |
> |
|
1380 |
> |
if(s=="4_2") { |
1381 |
> |
_meanScale[0][0][0]=0.995941423; |
1382 |
> |
_meanScale[0][0][1]=-1.41986304e-05; |
1383 |
> |
_meanScale[0][0][2]=3.66129541e-05; |
1384 |
> |
_meanScale[0][0][3]=-0.0774047233; |
1385 |
> |
_meanAT[0][0][0]=0.000720281545; |
1386 |
> |
_meanAT[0][0][1]=0; |
1387 |
> |
_meanAT[0][0][2]=0; |
1388 |
> |
_meanAT[0][0][3]=0; |
1389 |
> |
_meanAC[0][0][0]=-0.00344862444; |
1390 |
> |
_meanAC[0][0][1]=0.0101395802; |
1391 |
> |
_meanAC[0][0][2]=466.112225; |
1392 |
> |
_meanAC[0][0][3]=507.628173; |
1393 |
> |
_meanAS[0][0][0]=0; |
1394 |
> |
_meanAS[0][0][1]=0; |
1395 |
> |
_meanAS[0][0][2]=0; |
1396 |
> |
_meanAS[0][0][3]=0; |
1397 |
> |
_meanAM[0][0][0]=-0.000871553792; |
1398 |
> |
_meanAM[0][0][1]=0.141419889; |
1399 |
> |
_meanAM[0][0][2]=281.104504; |
1400 |
> |
_meanAM[0][0][3]=195.875679; |
1401 |
> |
_meanBT[0][0][0]=0; |
1402 |
> |
_meanBT[0][0][1]=0.026344491; |
1403 |
> |
_meanBT[0][0][2]=-104.20518; |
1404 |
> |
_meanBT[0][0][3]=-176099; |
1405 |
> |
_meanBC[0][0][0]=-0.00272095949; |
1406 |
> |
_meanBC[0][0][1]=0.012411788; |
1407 |
> |
_meanBC[0][0][2]=587.318903; |
1408 |
> |
_meanBC[0][0][3]=381.415059; |
1409 |
> |
_meanBS[0][0][0]=-0.00201265145; |
1410 |
> |
_meanBS[0][0][1]=0.00372948657; |
1411 |
> |
_meanBS[0][0][2]=41.2773112; |
1412 |
> |
_meanBS[0][0][3]=748.890936; |
1413 |
> |
_meanBM[0][0][0]=-0.00168471013; |
1414 |
> |
_meanBM[0][0][1]=0.0685484442; |
1415 |
> |
_meanBM[0][0][2]=217.983503; |
1416 |
> |
_meanBM[0][0][3]=207.660928; |
1417 |
> |
_meanR9[0][0][0]=0.946581139; |
1418 |
> |
_meanR9[0][0][1]=20.6034189; |
1419 |
> |
_meanR9[0][0][2]=187.28856; |
1420 |
> |
_meanR9[0][0][3]=0; |
1421 |
> |
|
1422 |
> |
_sigmaScale[0][0][0]=0.206349443; |
1423 |
> |
_sigmaScale[0][0][1]=0.0206592338; |
1424 |
> |
_sigmaScale[0][0][2]=0.00653752299; |
1425 |
> |
_sigmaScale[0][0][3]=0; |
1426 |
> |
_sigmaAT[0][0][0]=0.178629422; |
1427 |
> |
_sigmaAT[0][0][1]=0; |
1428 |
> |
_sigmaAT[0][0][2]=0; |
1429 |
> |
_sigmaAT[0][0][3]=0; |
1430 |
> |
_sigmaAC[0][0][0]=-0.00335501889; |
1431 |
> |
_sigmaAC[0][0][1]=0.0997921532; |
1432 |
> |
_sigmaAC[0][0][2]=93.6397821; |
1433 |
> |
_sigmaAC[0][0][3]=1519.43272; |
1434 |
> |
_sigmaAS[0][0][0]=0; |
1435 |
> |
_sigmaAS[0][0][1]=0; |
1436 |
> |
_sigmaAS[0][0][2]=0; |
1437 |
> |
_sigmaAS[0][0][3]=0; |
1438 |
> |
_sigmaAM[0][0][0]=0.000927325527; |
1439 |
> |
_sigmaAM[0][0][1]=10.2678389; |
1440 |
> |
_sigmaAM[0][0][2]=619.975988; |
1441 |
> |
_sigmaAM[0][0][3]=285.190815; |
1442 |
> |
_sigmaBT[0][0][0]=0; |
1443 |
> |
_sigmaBT[0][0][1]=0.895041707; |
1444 |
> |
_sigmaBT[0][0][2]=94.6834192; |
1445 |
> |
_sigmaBT[0][0][3]=62.3012502; |
1446 |
> |
_sigmaBC[0][0][0]=-0.00169896783; |
1447 |
> |
_sigmaBC[0][0][1]=0.323973706; |
1448 |
> |
_sigmaBC[0][0][2]=1234.03309; |
1449 |
> |
_sigmaBC[0][0][3]=907.352988; |
1450 |
> |
_sigmaBS[0][0][0]=0; |
1451 |
> |
_sigmaBS[0][0][1]=0; |
1452 |
> |
_sigmaBS[0][0][2]=0; |
1453 |
> |
_sigmaBS[0][0][3]=0; |
1454 |
> |
_sigmaBM[0][0][0]=-0.00249508825; |
1455 |
> |
_sigmaBM[0][0][1]=57.8982306; |
1456 |
> |
_sigmaBM[0][0][2]=665.068952; |
1457 |
> |
_sigmaBM[0][0][3]=1075.1094; |
1458 |
> |
_sigmaR9[0][0][0]=0.952890416; |
1459 |
> |
_sigmaR9[0][0][1]=1958.37946; |
1460 |
> |
_sigmaR9[0][0][2]=21612.0219; |
1461 |
> |
_sigmaR9[0][0][3]=0; |
1462 |
> |
|
1463 |
> |
_meanScale[0][1][0]=0.982680412; |
1464 |
> |
_meanScale[0][1][1]=3.13860176e-05; |
1465 |
> |
_meanScale[0][1][2]=-2.89107109e-05; |
1466 |
> |
_meanScale[0][1][3]=-0.458678502; |
1467 |
> |
_meanAT[0][1][0]=-0.00204222443; |
1468 |
> |
_meanAT[0][1][1]=0; |
1469 |
> |
_meanAT[0][1][2]=0; |
1470 |
> |
_meanAT[0][1][3]=0; |
1471 |
> |
_meanAC[0][1][0]=-0.00329797061; |
1472 |
> |
_meanAC[0][1][1]=0.0212879256; |
1473 |
> |
_meanAC[0][1][2]=135.879912; |
1474 |
> |
_meanAC[0][1][3]=238.247576; |
1475 |
> |
_meanAS[0][1][0]=0; |
1476 |
> |
_meanAS[0][1][1]=0; |
1477 |
> |
_meanAS[0][1][2]=0; |
1478 |
> |
_meanAS[0][1][3]=0; |
1479 |
> |
_meanAM[0][1][0]=-0.000512006976; |
1480 |
> |
_meanAM[0][1][1]=0.124281288; |
1481 |
> |
_meanAM[0][1][2]=480.326634; |
1482 |
> |
_meanAM[0][1][3]=286.165783; |
1483 |
> |
_meanBT[0][1][0]=0; |
1484 |
> |
_meanBT[0][1][1]=0.204384889; |
1485 |
> |
_meanBT[0][1][2]=303.764745; |
1486 |
> |
_meanBT[0][1][3]=408.14741; |
1487 |
> |
_meanBC[0][1][0]=-0.0035698745; |
1488 |
> |
_meanBC[0][1][1]=0.00402323151; |
1489 |
> |
_meanBC[0][1][2]=980.296598; |
1490 |
> |
_meanBC[0][1][3]=869.711616; |
1491 |
> |
_meanBS[0][1][0]=0; |
1492 |
> |
_meanBS[0][1][1]=0; |
1493 |
> |
_meanBS[0][1][2]=0; |
1494 |
> |
_meanBS[0][1][3]=0; |
1495 |
> |
_meanBM[0][1][0]=-0.00321305828; |
1496 |
> |
_meanBM[0][1][1]=0.0454848819; |
1497 |
> |
_meanBM[0][1][2]=147.827487; |
1498 |
> |
_meanBM[0][1][3]=227.625382; |
1499 |
> |
_meanR9[0][1][0]=0.0253777359; |
1500 |
> |
_meanR9[0][1][1]=-0.0420810898; |
1501 |
> |
_meanR9[0][1][2]=0.0181966013; |
1502 |
> |
_meanR9[0][1][3]=0; |
1503 |
> |
|
1504 |
> |
_sigmaScale[0][1][0]=1.53707929; |
1505 |
> |
_sigmaScale[0][1][1]=0.0946423194; |
1506 |
> |
_sigmaScale[0][1][2]=-0.00765920151; |
1507 |
> |
_sigmaScale[0][1][3]=0; |
1508 |
> |
_sigmaAT[0][1][0]=0.808880052; |
1509 |
> |
_sigmaAT[0][1][1]=0; |
1510 |
> |
_sigmaAT[0][1][2]=0; |
1511 |
> |
_sigmaAT[0][1][3]=0; |
1512 |
> |
_sigmaAC[0][1][0]=-0.00195542375; |
1513 |
> |
_sigmaAC[0][1][1]=-2.09949949; |
1514 |
> |
_sigmaAC[0][1][2]=4.30292193; |
1515 |
> |
_sigmaAC[0][1][3]=5.09475964; |
1516 |
> |
_sigmaAS[0][1][0]=0; |
1517 |
> |
_sigmaAS[0][1][1]=0; |
1518 |
> |
_sigmaAS[0][1][2]=0; |
1519 |
> |
_sigmaAS[0][1][3]=0; |
1520 |
> |
_sigmaAM[0][1][0]=-0.00105652021; |
1521 |
> |
_sigmaAM[0][1][1]=5.83420851; |
1522 |
> |
_sigmaAM[0][1][2]=506.986527; |
1523 |
> |
_sigmaAM[0][1][3]=468.330744; |
1524 |
> |
_sigmaBT[0][1][0]=0; |
1525 |
> |
_sigmaBT[0][1][1]=2.83411417; |
1526 |
> |
_sigmaBT[0][1][2]=-0.211242292; |
1527 |
> |
_sigmaBT[0][1][3]=-0.198231087; |
1528 |
> |
_sigmaBC[0][1][0]=0.00580038243; |
1529 |
> |
_sigmaBC[0][1][1]=0.165505659; |
1530 |
> |
_sigmaBC[0][1][2]=4133.45418; |
1531 |
> |
_sigmaBC[0][1][3]=375000000; |
1532 |
> |
_sigmaBS[0][1][0]=0; |
1533 |
> |
_sigmaBS[0][1][1]=0; |
1534 |
> |
_sigmaBS[0][1][2]=0; |
1535 |
> |
_sigmaBS[0][1][3]=0; |
1536 |
> |
_sigmaBM[0][1][0]=-0.00269993666; |
1537 |
> |
_sigmaBM[0][1][1]=3.42390459; |
1538 |
> |
_sigmaBM[0][1][2]=171.300481; |
1539 |
> |
_sigmaBM[0][1][3]=284.718025; |
1540 |
> |
_sigmaR9[0][1][0]=-3.75255938; |
1541 |
> |
_sigmaR9[0][1][1]=4.3849733; |
1542 |
> |
_sigmaR9[0][1][2]=-1.81745726; |
1543 |
> |
_sigmaR9[0][1][3]=0; |
1544 |
> |
|
1545 |
> |
_meanScale[1][0][0]=0.990082016; |
1546 |
> |
_meanScale[1][0][1]=-3.75802712e-06; |
1547 |
> |
_meanScale[1][0][2]=2.56693516e-05; |
1548 |
> |
_meanScale[1][0][3]=-0.0492813428; |
1549 |
> |
_meanAT[1][0][0]=0.072352478; |
1550 |
> |
_meanAT[1][0][1]=0; |
1551 |
> |
_meanAT[1][0][2]=0; |
1552 |
> |
_meanAT[1][0][3]=0; |
1553 |
> |
_meanAC[1][0][0]=-0.0002936899; |
1554 |
> |
_meanAC[1][0][1]=0.0160546814; |
1555 |
> |
_meanAC[1][0][2]=1183.48593; |
1556 |
> |
_meanAC[1][0][3]=761.29774; |
1557 |
> |
_meanAS[1][0][0]=-0.000462243216; |
1558 |
> |
_meanAS[1][0][1]=0.0795658256; |
1559 |
> |
_meanAS[1][0][2]=887.080242; |
1560 |
> |
_meanAS[1][0][3]=1067.72442; |
1561 |
> |
_meanAM[1][0][0]=0.000354495505; |
1562 |
> |
_meanAM[1][0][1]=0.516700576; |
1563 |
> |
_meanAM[1][0][2]=4376.14811; |
1564 |
> |
_meanAM[1][0][3]=2093.33478; |
1565 |
> |
_meanBT[1][0][0]=0.077752944; |
1566 |
> |
_meanBT[1][0][1]=0; |
1567 |
> |
_meanBT[1][0][2]=0; |
1568 |
> |
_meanBT[1][0][3]=0; |
1569 |
> |
_meanBC[1][0][0]=-0.000411367107; |
1570 |
> |
_meanBC[1][0][1]=0.0161135906; |
1571 |
> |
_meanBC[1][0][2]=1414.07982; |
1572 |
> |
_meanBC[1][0][3]=951.556042; |
1573 |
> |
_meanBS[1][0][0]=8.51070829e-05; |
1574 |
> |
_meanBS[1][0][1]=0.0699037982; |
1575 |
> |
_meanBS[1][0][2]=1565.72963; |
1576 |
> |
_meanBS[1][0][3]=841.509573; |
1577 |
> |
_meanBM[1][0][0]=-0.00252281385; |
1578 |
> |
_meanBM[1][0][1]=0.00600665031; |
1579 |
> |
_meanBM[1][0][2]=268.761304; |
1580 |
> |
_meanBM[1][0][3]=46.5945865; |
1581 |
> |
_meanR9[1][0][0]=0.964231565; |
1582 |
> |
_meanR9[1][0][1]=30.1631606; |
1583 |
> |
_meanR9[1][0][2]=414.510458; |
1584 |
> |
_meanR9[1][0][3]=0; |
1585 |
> |
|
1586 |
> |
_sigmaScale[1][0][0]=0.218991853; |
1587 |
> |
_sigmaScale[1][0][1]=6.93889e-18; |
1588 |
> |
_sigmaScale[1][0][2]=0.00939222285; |
1589 |
> |
_sigmaScale[1][0][3]=0; |
1590 |
> |
_sigmaAT[1][0][0]=1.61339852; |
1591 |
> |
_sigmaAT[1][0][1]=0; |
1592 |
> |
_sigmaAT[1][0][2]=0; |
1593 |
> |
_sigmaAT[1][0][3]=0; |
1594 |
> |
_sigmaAC[1][0][0]=0.00019476922; |
1595 |
> |
_sigmaAC[1][0][1]=0.697650974; |
1596 |
> |
_sigmaAC[1][0][2]=-0.000125668382; |
1597 |
> |
_sigmaAC[1][0][3]=12.8659982; |
1598 |
> |
_sigmaAS[1][0][0]=-1.68218147e-05; |
1599 |
> |
_sigmaAS[1][0][1]=6.57794255; |
1600 |
> |
_sigmaAS[1][0][2]=1555.93015; |
1601 |
> |
_sigmaAS[1][0][3]=1401.542; |
1602 |
> |
_sigmaAM[1][0][0]=0.0570038229; |
1603 |
> |
_sigmaAM[1][0][1]=0.633551691; |
1604 |
> |
_sigmaAM[1][0][2]=9.59639e+11; |
1605 |
> |
_sigmaAM[1][0][3]=16.4637695; |
1606 |
> |
_sigmaBT[1][0][0]=-0.0591443023; |
1607 |
> |
_sigmaBT[1][0][1]=0; |
1608 |
> |
_sigmaBT[1][0][2]=0; |
1609 |
> |
_sigmaBT[1][0][3]=0; |
1610 |
> |
_sigmaBC[1][0][0]=-0.00320070019; |
1611 |
> |
_sigmaBC[1][0][1]=25.5502578; |
1612 |
> |
_sigmaBC[1][0][2]=7.49509e+12; |
1613 |
> |
_sigmaBC[1][0][3]=3798165.72; |
1614 |
> |
_sigmaBS[1][0][0]=9.63685051e-05; |
1615 |
> |
_sigmaBS[1][0][1]=6.91673581; |
1616 |
> |
_sigmaBS[1][0][2]=2447.68053; |
1617 |
> |
_sigmaBS[1][0][3]=1721.11327; |
1618 |
> |
_sigmaBM[1][0][0]=0.00148006; |
1619 |
> |
_sigmaBM[1][0][1]=28; |
1620 |
> |
_sigmaBM[1][0][2]=5400000; |
1621 |
> |
_sigmaBM[1][0][3]=-9000000; |
1622 |
> |
_sigmaR9[1][0][0]=187.987786; |
1623 |
> |
_sigmaR9[1][0][1]=-1.91777372e-07; |
1624 |
> |
_sigmaR9[1][0][2]=8.29820105e-09; |
1625 |
> |
_sigmaR9[1][0][3]=0; |
1626 |
> |
|
1627 |
> |
_meanScale[1][1][0]=0.331585644; |
1628 |
> |
_meanScale[1][1][1]=-4.97323079e-05; |
1629 |
> |
_meanScale[1][1][2]=0.000208912195; |
1630 |
> |
_meanScale[1][1][3]=-1.36032052; |
1631 |
> |
_meanAT[1][1][0]=-0.0640673292; |
1632 |
> |
_meanAT[1][1][1]=0; |
1633 |
> |
_meanAT[1][1][2]=0; |
1634 |
> |
_meanAT[1][1][3]=0; |
1635 |
> |
_meanAC[1][1][0]=-0.00129027954; |
1636 |
> |
_meanAC[1][1][1]=0.00733510902; |
1637 |
> |
_meanAC[1][1][2]=182.714706; |
1638 |
> |
_meanAC[1][1][3]=621.652554; |
1639 |
> |
_meanAS[1][1][0]=-0.000490574173; |
1640 |
> |
_meanAS[1][1][1]=0.0308208884; |
1641 |
> |
_meanAS[1][1][2]=385.372647; |
1642 |
> |
_meanAS[1][1][3]=492.313289; |
1643 |
> |
_meanAM[1][1][0]=-0.0064828927; |
1644 |
> |
_meanAM[1][1][1]=0.649443452; |
1645 |
> |
_meanAM[1][1][2]=0.0573092773; |
1646 |
> |
_meanAM[1][1][3]=0.0743069; |
1647 |
> |
_meanBT[1][1][0]=-0.147343956; |
1648 |
> |
_meanBT[1][1][1]=0; |
1649 |
> |
_meanBT[1][1][2]=0; |
1650 |
> |
_meanBT[1][1][3]=0; |
1651 |
> |
_meanBC[1][1][0]=-0.00503351921; |
1652 |
> |
_meanBC[1][1][1]=-57691.5085; |
1653 |
> |
_meanBC[1][1][2]=46202.9758; |
1654 |
> |
_meanBC[1][1][3]=118612; |
1655 |
> |
_meanBS[1][1][0]=-0.000793147706; |
1656 |
> |
_meanBS[1][1][1]=0.0238305184; |
1657 |
> |
_meanBS[1][1][2]=402.215233; |
1658 |
> |
_meanBS[1][1][3]=455.848092; |
1659 |
> |
_meanBM[1][1][0]=0.000434549102; |
1660 |
> |
_meanBM[1][1][1]=0.0443539812; |
1661 |
> |
_meanBM[1][1][2]=-39970930.5; |
1662 |
> |
_meanBM[1][1][3]=-635.815445; |
1663 |
> |
_meanR9[1][1][0]=-0.411370898; |
1664 |
> |
_meanR9[1][1][1]=1.30133082; |
1665 |
> |
_meanR9[1][1][2]=-0.890618718; |
1666 |
> |
_meanR9[1][1][3]=0; |
1667 |
> |
|
1668 |
> |
_sigmaScale[1][1][0]=1.49352299; |
1669 |
> |
_sigmaScale[1][1][1]=1.38778e-17; |
1670 |
> |
_sigmaScale[1][1][2]=0.0248352105; |
1671 |
> |
_sigmaScale[1][1][3]=0; |
1672 |
> |
_sigmaAT[1][1][0]=-1.18239629; |
1673 |
> |
_sigmaAT[1][1][1]=0; |
1674 |
> |
_sigmaAT[1][1][2]=0; |
1675 |
> |
_sigmaAT[1][1][3]=0; |
1676 |
> |
_sigmaAC[1][1][0]=0.00155030534; |
1677 |
> |
_sigmaAC[1][1][1]=-0.673931391; |
1678 |
> |
_sigmaAC[1][1][2]=134075.829; |
1679 |
> |
_sigmaAC[1][1][3]=-7e+09; |
1680 |
> |
_sigmaAS[1][1][0]=6.95848091e-05; |
1681 |
> |
_sigmaAS[1][1][1]=0.522471203; |
1682 |
> |
_sigmaAS[1][1][2]=463.305497; |
1683 |
> |
_sigmaAS[1][1][3]=1159.49992; |
1684 |
> |
_sigmaAM[1][1][0]=-0.00509006951; |
1685 |
> |
_sigmaAM[1][1][1]=0.945276887; |
1686 |
> |
_sigmaAM[1][1][2]=46.4072512; |
1687 |
> |
_sigmaAM[1][1][3]=7.11474e+12; |
1688 |
> |
_sigmaBT[1][1][0]=-1.59480683; |
1689 |
> |
_sigmaBT[1][1][1]=0; |
1690 |
> |
_sigmaBT[1][1][2]=0; |
1691 |
> |
_sigmaBT[1][1][3]=0; |
1692 |
> |
_sigmaBC[1][1][0]=-0.00202302997; |
1693 |
> |
_sigmaBC[1][1][1]=15.4301057; |
1694 |
> |
_sigmaBC[1][1][2]=-33315545.5; |
1695 |
> |
_sigmaBC[1][1][3]=-6e+09; |
1696 |
> |
_sigmaBS[1][1][0]=0.00271126099; |
1697 |
> |
_sigmaBS[1][1][1]=0.325669289; |
1698 |
> |
_sigmaBS[1][1][2]=2322.66097; |
1699 |
> |
_sigmaBS[1][1][3]=298.692034; |
1700 |
> |
_sigmaBM[1][1][0]=-0.0454765849; |
1701 |
> |
_sigmaBM[1][1][1]=6.81541098; |
1702 |
> |
_sigmaBM[1][1][2]=1.9e+09; |
1703 |
> |
_sigmaBM[1][1][3]=-26353.4449; |
1704 |
> |
_sigmaR9[1][1][0]=41.1074567; |
1705 |
> |
_sigmaR9[1][1][1]=-86.9595346; |
1706 |
> |
_sigmaR9[1][1][2]=45.7818889; |
1707 |
> |
_sigmaR9[1][1][3]=0; |
1708 |
> |
|
1709 |
> |
_initialised=true; |
1710 |
> |
} |
1711 |
> |
|
1712 |
> |
if(s=="4_2e") { |
1713 |
> |
_meanScale[0][0][0]=1.03294629; |
1714 |
> |
_meanScale[0][0][1]=-0.000210626517; |
1715 |
> |
_meanScale[0][0][2]=0.000268568795; |
1716 |
> |
_meanScale[0][0][3]=0.338053561; |
1717 |
> |
_meanAT[0][0][0]=0.0200811135; |
1718 |
> |
_meanAT[0][0][1]=0; |
1719 |
> |
_meanAT[0][0][2]=0; |
1720 |
> |
_meanAT[0][0][3]=0; |
1721 |
> |
_meanAC[0][0][0]=-0.00326696352; |
1722 |
> |
_meanAC[0][0][1]=0.010765809; |
1723 |
> |
_meanAC[0][0][2]=513.763513; |
1724 |
> |
_meanAC[0][0][3]=546.438243; |
1725 |
> |
_meanAS[0][0][0]=0; |
1726 |
> |
_meanAS[0][0][1]=0; |
1727 |
> |
_meanAS[0][0][2]=0; |
1728 |
> |
_meanAS[0][0][3]=0; |
1729 |
> |
_meanAM[0][0][0]=-0.00135522301; |
1730 |
> |
_meanAM[0][0][1]=0.166490439; |
1731 |
> |
_meanAM[0][0][2]=278.324187; |
1732 |
> |
_meanAM[0][0][3]=245.998361; |
1733 |
> |
_meanBT[0][0][0]=0; |
1734 |
> |
_meanBT[0][0][1]=0; |
1735 |
> |
_meanBT[0][0][2]=0; |
1736 |
> |
_meanBT[0][0][3]=0; |
1737 |
> |
_meanBC[0][0][0]=-0.00332906015; |
1738 |
> |
_meanBC[0][0][1]=0.00792585358; |
1739 |
> |
_meanBC[0][0][2]=514.766605; |
1740 |
> |
_meanBC[0][0][3]=488.870257; |
1741 |
> |
_meanBS[0][0][0]=-0.00199241828; |
1742 |
> |
_meanBS[0][0][1]=0.0037942702; |
1743 |
> |
_meanBS[0][0][2]=29.9438726; |
1744 |
> |
_meanBS[0][0][3]=1077.1644; |
1745 |
> |
_meanBM[0][0][0]=-0.00159080193; |
1746 |
> |
_meanBM[0][0][1]=0.107998922; |
1747 |
> |
_meanBM[0][0][2]=229.934523; |
1748 |
> |
_meanBM[0][0][3]=231.786153; |
1749 |
> |
_meanR9[0][0][0]=0.857844414; |
1750 |
> |
_meanR9[0][0][1]=-16.8494499; |
1751 |
> |
_meanR9[0][0][2]=125.493331; |
1752 |
> |
_meanR9[0][0][3]=0; |
1753 |
> |
|
1754 |
> |
_sigmaScale[0][0][0]=0.392737806; |
1755 |
> |
_sigmaScale[0][0][1]=0.0353140568; |
1756 |
> |
_sigmaScale[0][0][2]=-0.00613223131; |
1757 |
> |
_sigmaScale[0][0][3]=0; |
1758 |
> |
_sigmaAT[0][0][0]=1.02977565; |
1759 |
> |
_sigmaAT[0][0][1]=0; |
1760 |
> |
_sigmaAT[0][0][2]=0; |
1761 |
> |
_sigmaAT[0][0][3]=0; |
1762 |
> |
_sigmaAC[0][0][0]=-0.00350109526; |
1763 |
> |
_sigmaAC[0][0][1]=-0.951103069; |
1764 |
> |
_sigmaAC[0][0][2]=-54434.4267; |
1765 |
> |
_sigmaAC[0][0][3]=-3e+17; |
1766 |
> |
_sigmaAS[0][0][0]=0; |
1767 |
> |
_sigmaAS[0][0][1]=0; |
1768 |
> |
_sigmaAS[0][0][2]=0; |
1769 |
> |
_sigmaAS[0][0][3]=0; |
1770 |
> |
_sigmaAM[0][0][0]=0.00127749544; |
1771 |
> |
_sigmaAM[0][0][1]=5.03867192; |
1772 |
> |
_sigmaAM[0][0][2]=563.047721; |
1773 |
> |
_sigmaAM[0][0][3]=272.293234; |
1774 |
> |
_sigmaBT[0][0][0]=0.00480679465; |
1775 |
> |
_sigmaBT[0][0][1]=7.56230742; |
1776 |
> |
_sigmaBT[0][0][2]=-33600000; |
1777 |
> |
_sigmaBT[0][0][3]=-257.677353; |
1778 |
> |
_sigmaBC[0][0][0]=-0.00169935002; |
1779 |
> |
_sigmaBC[0][0][1]=2790083.26; |
1780 |
> |
_sigmaBC[0][0][2]=-97275416.4; |
1781 |
> |
_sigmaBC[0][0][3]=23710676.7; |
1782 |
> |
_sigmaBS[0][0][0]=0; |
1783 |
> |
_sigmaBS[0][0][1]=0; |
1784 |
> |
_sigmaBS[0][0][2]=0; |
1785 |
> |
_sigmaBS[0][0][3]=0; |
1786 |
> |
_sigmaBM[0][0][0]=-0.00194553738; |
1787 |
> |
_sigmaBM[0][0][1]=7.77713222; |
1788 |
> |
_sigmaBM[0][0][2]=264.960159; |
1789 |
> |
_sigmaBM[0][0][3]=363.487107; |
1790 |
> |
_sigmaR9[0][0][0]=0.952571; |
1791 |
> |
_sigmaR9[0][0][1]=0; |
1792 |
> |
_sigmaR9[0][0][2]=0; |
1793 |
> |
_sigmaR9[0][0][3]=0; |
1794 |
> |
|
1795 |
> |
_meanScale[0][1][0]=0.86164193; |
1796 |
> |
_meanScale[0][1][1]=-0.0001184458; |
1797 |
> |
_meanScale[0][1][2]=0.000232979403; |
1798 |
> |
_meanScale[0][1][3]=0.310305987; |
1799 |
> |
_meanAT[0][1][0]=0.0103409006; |
1800 |
> |
_meanAT[0][1][1]=0; |
1801 |
> |
_meanAT[0][1][2]=0; |
1802 |
> |
_meanAT[0][1][3]=0; |
1803 |
> |
_meanAC[0][1][0]=-0.00325081301; |
1804 |
> |
_meanAC[0][1][1]=0.0208748426; |
1805 |
> |
_meanAC[0][1][2]=165.245698; |
1806 |
> |
_meanAC[0][1][3]=292.03632; |
1807 |
> |
_meanAS[0][1][0]=0.0330004; |
1808 |
> |
_meanAS[0][1][1]=-148569.764; |
1809 |
> |
_meanAS[0][1][2]=87999432.1; |
1810 |
> |
_meanAS[0][1][3]=7787218.96; |
1811 |
> |
_meanAM[0][1][0]=-0.000867413605; |
1812 |
> |
_meanAM[0][1][1]=0.10580464; |
1813 |
> |
_meanAM[0][1][2]=396.92529; |
1814 |
> |
_meanAM[0][1][3]=263.112883; |
1815 |
> |
_meanBT[0][1][0]=0; |
1816 |
> |
_meanBT[0][1][1]=0.216283067; |
1817 |
> |
_meanBT[0][1][2]=312.543466; |
1818 |
> |
_meanBT[0][1][3]=463.601293; |
1819 |
> |
_meanBC[0][1][0]=-0.00505883024; |
1820 |
> |
_meanBC[0][1][1]=0.00182528255; |
1821 |
> |
_meanBC[0][1][2]=507.478054; |
1822 |
> |
_meanBC[0][1][3]=-6837.26736; |
1823 |
> |
_meanBS[0][1][0]=-166707004; |
1824 |
> |
_meanBS[0][1][1]=0.0928055999; |
1825 |
> |
_meanBS[0][1][2]=-5.30004162e-11; |
1826 |
> |
_meanBS[0][1][3]=11442.2; |
1827 |
> |
_meanBM[0][1][0]=-5.93998135e-05; |
1828 |
> |
_meanBM[0][1][1]=0.0096852184; |
1829 |
> |
_meanBM[0][1][2]=59.8040186; |
1830 |
> |
_meanBM[0][1][3]=-440000000; |
1831 |
> |
_meanR9[0][1][0]=0.0716647946; |
1832 |
> |
_meanR9[0][1][1]=-0.204241803; |
1833 |
> |
_meanR9[0][1][2]=0.154962477; |
1834 |
> |
_meanR9[0][1][3]=0; |
1835 |
> |
|
1836 |
> |
_sigmaScale[0][1][0]=0.469123815; |
1837 |
> |
_sigmaScale[0][1][1]=-0.090283052; |
1838 |
> |
_sigmaScale[0][1][2]=0.000469934719; |
1839 |
> |
_sigmaScale[0][1][3]=0; |
1840 |
> |
_sigmaAT[0][1][0]=1.77629522; |
1841 |
> |
_sigmaAT[0][1][1]=0; |
1842 |
> |
_sigmaAT[0][1][2]=0; |
1843 |
> |
_sigmaAT[0][1][3]=0; |
1844 |
> |
_sigmaAC[0][1][0]=-0.00636220086; |
1845 |
> |
_sigmaAC[0][1][1]=-0.781271127; |
1846 |
> |
_sigmaAC[0][1][2]=4.90734224; |
1847 |
> |
_sigmaAC[0][1][3]=65.6835127; |
1848 |
> |
_sigmaAS[0][1][0]=0; |
1849 |
> |
_sigmaAS[0][1][1]=0; |
1850 |
> |
_sigmaAS[0][1][2]=0; |
1851 |
> |
_sigmaAS[0][1][3]=0; |
1852 |
> |
_sigmaAM[0][1][0]=0.000179292631; |
1853 |
> |
_sigmaAM[0][1][1]=7.62815501; |
1854 |
> |
_sigmaAM[0][1][2]=743.55507; |
1855 |
> |
_sigmaAM[0][1][3]=354.656661; |
1856 |
> |
_sigmaBT[0][1][0]=-0.0507778073; |
1857 |
> |
_sigmaBT[0][1][1]=3.00903133; |
1858 |
> |
_sigmaBT[0][1][2]=-0.526032834; |
1859 |
> |
_sigmaBT[0][1][3]=-0.630748789; |
1860 |
> |
_sigmaBC[0][1][0]=0.00490009575; |
1861 |
> |
_sigmaBC[0][1][1]=-1.53772346; |
1862 |
> |
_sigmaBC[0][1][2]=553415.545; |
1863 |
> |
_sigmaBC[0][1][3]=2.36808e+19; |
1864 |
> |
_sigmaBS[0][1][0]=0; |
1865 |
> |
_sigmaBS[0][1][1]=0; |
1866 |
> |
_sigmaBS[0][1][2]=0; |
1867 |
> |
_sigmaBS[0][1][3]=0; |
1868 |
> |
_sigmaBM[0][1][0]=-0.00113947453; |
1869 |
> |
_sigmaBM[0][1][1]=3.74348887; |
1870 |
> |
_sigmaBM[0][1][2]=91.9478901; |
1871 |
> |
_sigmaBM[0][1][3]=101.304882; |
1872 |
> |
_sigmaR9[0][1][0]=-0.261512815; |
1873 |
> |
_sigmaR9[0][1][1]=-1.69974425; |
1874 |
> |
_sigmaR9[0][1][2]=0; |
1875 |
> |
_sigmaR9[0][1][3]=0; |
1876 |
> |
|
1877 |
> |
_meanScale[1][0][0]=0.961072344; |
1878 |
> |
_meanScale[1][0][1]=8.81367775e-05; |
1879 |
> |
_meanScale[1][0][2]=-0.000270690177; |
1880 |
> |
_meanScale[1][0][3]=0.745461418; |
1881 |
> |
_meanAT[1][0][0]=0.532495533; |
1882 |
> |
_meanAT[1][0][1]=0; |
1883 |
> |
_meanAT[1][0][2]=0; |
1884 |
> |
_meanAT[1][0][3]=0; |
1885 |
> |
_meanAC[1][0][0]=-0.000539999855; |
1886 |
> |
_meanAC[1][0][1]=0.0100918811; |
1887 |
> |
_meanAC[1][0][2]=953.905309; |
1888 |
> |
_meanAC[1][0][3]=808.944612; |
1889 |
> |
_meanAS[1][0][0]=-0.000597157153; |
1890 |
> |
_meanAS[1][0][1]=0.0571921693; |
1891 |
> |
_meanAS[1][0][2]=700.692431; |
1892 |
> |
_meanAS[1][0][3]=924.653733; |
1893 |
> |
_meanAM[1][0][0]=0.000230736156; |
1894 |
> |
_meanAM[1][0][1]=1.77368196; |
1895 |
> |
_meanAM[1][0][2]=4461.03178; |
1896 |
> |
_meanAM[1][0][3]=3300.73792; |
1897 |
> |
_meanBT[1][0][0]=0.483274186; |
1898 |
> |
_meanBT[1][0][1]=0; |
1899 |
> |
_meanBT[1][0][2]=0; |
1900 |
> |
_meanBT[1][0][3]=0; |
1901 |
> |
_meanBC[1][0][0]=-0.000651403853; |
1902 |
> |
_meanBC[1][0][1]=0.0111101805; |
1903 |
> |
_meanBC[1][0][2]=1276.07724; |
1904 |
> |
_meanBC[1][0][3]=1489.51887; |
1905 |
> |
_meanBS[1][0][0]=-0.000251246189; |
1906 |
> |
_meanBS[1][0][1]=0.0530409004; |
1907 |
> |
_meanBS[1][0][2]=767.699586; |
1908 |
> |
_meanBS[1][0][3]=835.195311; |
1909 |
> |
_meanBM[1][0][0]=-0.187856578; |
1910 |
> |
_meanBM[1][0][1]=-0.00821848896; |
1911 |
> |
_meanBM[1][0][2]=0.891813494; |
1912 |
> |
_meanBM[1][0][3]=-580000000; |
1913 |
> |
_meanR9[1][0][0]=0.96358076; |
1914 |
> |
_meanR9[1][0][1]=28.7116938; |
1915 |
> |
_meanR9[1][0][2]=697.709731; |
1916 |
> |
_meanR9[1][0][3]=0; |
1917 |
> |
|
1918 |
> |
_sigmaScale[1][0][0]=0.46256953; |
1919 |
> |
_sigmaScale[1][0][1]=-2.50963561e-08; |
1920 |
> |
_sigmaScale[1][0][2]=0.0139636379; |
1921 |
> |
_sigmaScale[1][0][3]=0; |
1922 |
> |
_sigmaAT[1][0][0]=6.47165025; |
1923 |
> |
_sigmaAT[1][0][1]=0; |
1924 |
> |
_sigmaAT[1][0][2]=0; |
1925 |
> |
_sigmaAT[1][0][3]=0; |
1926 |
> |
_sigmaAC[1][0][0]=48.1275; |
1927 |
> |
_sigmaAC[1][0][1]=150005000; |
1928 |
> |
_sigmaAC[1][0][2]=21231.6; |
1929 |
> |
_sigmaAC[1][0][3]=2.6e+11; |
1930 |
> |
_sigmaAS[1][0][0]=0.000209127817; |
1931 |
> |
_sigmaAS[1][0][1]=2.19868731; |
1932 |
> |
_sigmaAS[1][0][2]=1695.98579; |
1933 |
> |
_sigmaAS[1][0][3]=967.250228; |
1934 |
> |
_sigmaAM[1][0][0]=0.0217972665; |
1935 |
> |
_sigmaAM[1][0][1]=1.26317651; |
1936 |
> |
_sigmaAM[1][0][2]=34.0924905; |
1937 |
> |
_sigmaAM[1][0][3]=55.1895282; |
1938 |
> |
_sigmaBT[1][0][0]=5.21983754; |
1939 |
> |
_sigmaBT[1][0][1]=0; |
1940 |
> |
_sigmaBT[1][0][2]=0; |
1941 |
> |
_sigmaBT[1][0][3]=0; |
1942 |
> |
_sigmaBC[1][0][0]=-0.004; |
1943 |
> |
_sigmaBC[1][0][1]=-120000; |
1944 |
> |
_sigmaBC[1][0][2]=7.49509e+12; |
1945 |
> |
_sigmaBC[1][0][3]=36643600; |
1946 |
> |
_sigmaBS[1][0][0]=0.000250338051; |
1947 |
> |
_sigmaBS[1][0][1]=1.98819262; |
1948 |
> |
_sigmaBS[1][0][2]=1967.55308; |
1949 |
> |
_sigmaBS[1][0][3]=1098.23855; |
1950 |
> |
_sigmaBM[1][0][0]=0.00101799874; |
1951 |
> |
_sigmaBM[1][0][1]=88.0546723; |
1952 |
> |
_sigmaBM[1][0][2]=8.47552e+10; |
1953 |
> |
_sigmaBM[1][0][3]=-132255.757; |
1954 |
> |
_sigmaR9[1][0][0]=144.031062; |
1955 |
> |
_sigmaR9[1][0][1]=-6.11507616e-07; |
1956 |
> |
_sigmaR9[1][0][2]=1.18181734e-08; |
1957 |
> |
_sigmaR9[1][0][3]=0; |
1958 |
> |
|
1959 |
> |
_meanScale[1][1][0]=0.288888347; |
1960 |
> |
_meanScale[1][1][1]=6.52038486e-06; |
1961 |
> |
_meanScale[1][1][2]=0.000173654897; |
1962 |
> |
_meanScale[1][1][3]=0.422671325; |
1963 |
> |
_meanAT[1][1][0]=0.0614964598; |
1964 |
> |
_meanAT[1][1][1]=0; |
1965 |
> |
_meanAT[1][1][2]=0; |
1966 |
> |
_meanAT[1][1][3]=0; |
1967 |
> |
_meanAC[1][1][0]=-0.00123181641; |
1968 |
> |
_meanAC[1][1][1]=0.0133568947; |
1969 |
> |
_meanAC[1][1][2]=165.847556; |
1970 |
> |
_meanAC[1][1][3]=332.705784; |
1971 |
> |
_meanAS[1][1][0]=-0.00088161986; |
1972 |
> |
_meanAS[1][1][1]=0.0304986746; |
1973 |
> |
_meanAS[1][1][2]=382.755876; |
1974 |
> |
_meanAS[1][1][3]=616.470187; |
1975 |
> |
_meanAM[1][1][0]=0.000980695422; |
1976 |
> |
_meanAM[1][1][1]=0.63575757; |
1977 |
> |
_meanAM[1][1][2]=0.0336097848; |
1978 |
> |
_meanAM[1][1][3]=0.043315868; |
1979 |
> |
_meanBT[1][1][0]=0.11623414; |
1980 |
> |
_meanBT[1][1][1]=0; |
1981 |
> |
_meanBT[1][1][2]=0; |
1982 |
> |
_meanBT[1][1][3]=0; |
1983 |
> |
_meanBC[1][1][0]=-0.00716072255; |
1984 |
> |
_meanBC[1][1][1]=-0.440696266; |
1985 |
> |
_meanBC[1][1][2]=1887.74154; |
1986 |
> |
_meanBC[1][1][3]=118612; |
1987 |
> |
_meanBS[1][1][0]=-0.000492035977; |
1988 |
> |
_meanBS[1][1][1]=0.0292167014; |
1989 |
> |
_meanBS[1][1][2]=433.232787; |
1990 |
> |
_meanBS[1][1][3]=484.310448; |
1991 |
> |
_meanBM[1][1][0]=0.00299476541; |
1992 |
> |
_meanBM[1][1][1]=0.0149328977; |
1993 |
> |
_meanBM[1][1][2]=-48728700; |
1994 |
> |
_meanBM[1][1][3]=37.0041547; |
1995 |
> |
_meanR9[1][1][0]=0.19617696; |
1996 |
> |
_meanR9[1][1][1]=-0.350976375; |
1997 |
> |
_meanR9[1][1][2]=0.181094838; |
1998 |
> |
_meanR9[1][1][3]=0; |
1999 |
> |
|
2000 |
> |
_sigmaScale[1][1][0]=1.26164895; |
2001 |
> |
_sigmaScale[1][1][1]=-6.61150347e-07; |
2002 |
> |
_sigmaScale[1][1][2]=0.0280532297; |
2003 |
> |
_sigmaScale[1][1][3]=0; |
2004 |
> |
_sigmaAT[1][1][0]=-0.232612761; |
2005 |
> |
_sigmaAT[1][1][1]=0; |
2006 |
> |
_sigmaAT[1][1][2]=0; |
2007 |
> |
_sigmaAT[1][1][3]=0; |
2008 |
> |
_sigmaAC[1][1][0]=0.00137406444; |
2009 |
> |
_sigmaAC[1][1][1]=-0.377659364; |
2010 |
> |
_sigmaAC[1][1][2]=27171.5802; |
2011 |
> |
_sigmaAC[1][1][3]=-560000000; |
2012 |
> |
_sigmaAS[1][1][0]=0.00022943714; |
2013 |
> |
_sigmaAS[1][1][1]=0.335082568; |
2014 |
> |
_sigmaAS[1][1][2]=590.511812; |
2015 |
> |
_sigmaAS[1][1][3]=387.352521; |
2016 |
> |
_sigmaAM[1][1][0]=-0.000780390674; |
2017 |
> |
_sigmaAM[1][1][1]=1.05127796; |
2018 |
> |
_sigmaAM[1][1][2]=33.7378914; |
2019 |
> |
_sigmaAM[1][1][3]=61.3730807; |
2020 |
> |
_sigmaBT[1][1][0]=0.529507693; |
2021 |
> |
_sigmaBT[1][1][1]=0; |
2022 |
> |
_sigmaBT[1][1][2]=0; |
2023 |
> |
_sigmaBT[1][1][3]=0; |
2024 |
> |
_sigmaBC[1][1][0]=-0.00203996; |
2025 |
> |
_sigmaBC[1][1][1]=93000; |
2026 |
> |
_sigmaBC[1][1][2]=61225800; |
2027 |
> |
_sigmaBC[1][1][3]=-4.43323e+17; |
2028 |
> |
_sigmaBS[1][1][0]=0.00125939613; |
2029 |
> |
_sigmaBS[1][1][1]=0.31048111; |
2030 |
> |
_sigmaBS[1][1][2]=295.258764; |
2031 |
> |
_sigmaBS[1][1][3]=263.974257; |
2032 |
> |
_sigmaBM[1][1][0]=-0.046100748; |
2033 |
> |
_sigmaBM[1][1][1]=1.22348596; |
2034 |
> |
_sigmaBM[1][1][2]=1.9e+09; |
2035 |
> |
_sigmaBM[1][1][3]=1254.99; |
2036 |
> |
_sigmaR9[1][1][0]=9.09347838; |
2037 |
> |
_sigmaR9[1][1][1]=-10.0390435; |
2038 |
> |
_sigmaR9[1][1][2]=0; |
2039 |
> |
_sigmaR9[1][1][3]=0; |
2040 |
> |
|
2041 |
> |
_initialised=true; |
2042 |
> |
} |
2043 |
> |
|
2044 |
> |
assert(_initialised); |
2045 |
> |
return true; |
2046 |
> |
} |
2047 |
> |
|
2048 |
> |
// Get the geometry of cracks and gaps from file |
2049 |
> |
bool PhotonFix::initialiseGeometry(const std::string &s,const std::string &infile) { |
2050 |
> |
|
2051 |
> |
std::ifstream fin(infile.c_str()); |
2052 |
> |
assert(fin); |
2053 |
> |
|
2054 |
> |
//std::cout << "Reading in here" << std::endl; |
2055 |
> |
for(unsigned i(0);i<169;i++) { |
2056 |
> |
for(unsigned j(0);j<360;j++) { |
2057 |
> |
for(unsigned k(0);k<2;k++) { |
2058 |
> |
fin >> _barrelCGap[i][j][k]; |
2059 |
> |
} |
2060 |
> |
} |
2061 |
> |
} |
2062 |
> |
|
2063 |
> |
for(unsigned i(0);i<33;i++) { |
2064 |
> |
for(unsigned j(0);j<180;j++) { |
2065 |
> |
for(unsigned k(0);k<2;k++) { |
2066 |
> |
fin >> _barrelSGap[i][j][k]; |
2067 |
> |
} |
2068 |
> |
} |
2069 |
> |
} |
2070 |
> |
|
2071 |
> |
for(unsigned i(0);i<7;i++) { |
2072 |
> |
for(unsigned j(0);j<18;j++) { |
2073 |
> |
for(unsigned k(0);k<2;k++) { |
2074 |
> |
fin >> _barrelMGap[i][j][k]; |
2075 |
> |
} |
2076 |
> |
} |
2077 |
> |
} |
2078 |
> |
for(unsigned i(0);i<100;i++) { |
2079 |
> |
for(unsigned j(0);j<100;j++) { |
2080 |
> |
unsigned k; |
2081 |
> |
fin >> k; |
2082 |
> |
_endcapCrystal[i][j]=(k==0); |
2083 |
> |
} |
2084 |
> |
} |
2085 |
> |
|
2086 |
> |
for(unsigned i(0);i<2;i++) { |
2087 |
> |
for(unsigned j(0);j<7080;j++) { |
2088 |
> |
for(unsigned k(0);k<2;k++) { |
2089 |
> |
fin >> _endcapCGap[i][j][k]; |
2090 |
> |
} |
2091 |
> |
} |
2092 |
> |
} |
2093 |
> |
|
2094 |
> |
for(unsigned i(0);i<2;i++) { |
2095 |
> |
for(unsigned j(0);j<264;j++) { |
2096 |
> |
for(unsigned k(0);k<2;k++) { |
2097 |
> |
fin >> _endcapSGap[i][j][k]; |
2098 |
> |
} |
2099 |
> |
} |
2100 |
> |
} |
2101 |
> |
|
2102 |
> |
for(unsigned i(0);i<2;i++) { |
2103 |
> |
for(unsigned j(0);j<1;j++) { |
2104 |
> |
for(unsigned k(0);k<2;k++) { |
2105 |
> |
fin >> _endcapMGap[i][j][k]; |
2106 |
> |
} |
2107 |
> |
} |
2108 |
> |
} |
2109 |
> |
|
2110 |
> |
assert(fin); |
2111 |
> |
|
2112 |
> |
return true; |
2113 |
> |
} |
2114 |
> |
|
2115 |
> |
|
2116 |
> |
// bool PhotonFix::_initialised=false; |
2117 |
> |
// |
2118 |
> |
// double PhotonFix::_meanScale[2][2][4]; |
2119 |
> |
// double PhotonFix::_meanAT[2][2][4]; |
2120 |
> |
// double PhotonFix::_meanAC[2][2][4]; |
2121 |
> |
// double PhotonFix::_meanAS[2][2][4]; |
2122 |
> |
// double PhotonFix::_meanAM[2][2][4]; |
2123 |
> |
// double PhotonFix::_meanBT[2][2][4]; |
2124 |
> |
// double PhotonFix::_meanBC[2][2][4]; |
2125 |
> |
// double PhotonFix::_meanBS[2][2][4]; |
2126 |
> |
// double PhotonFix::_meanBM[2][2][4]; |
2127 |
> |
// double PhotonFix::_meanR9[2][2][4]; |
2128 |
> |
// |
2129 |
> |
// double PhotonFix::_sigmaScale[2][2][4]; |
2130 |
> |
// double PhotonFix::_sigmaAT[2][2][4]; |
2131 |
> |
// double PhotonFix::_sigmaAC[2][2][4]; |
2132 |
> |
// double PhotonFix::_sigmaAS[2][2][4]; |
2133 |
> |
// double PhotonFix::_sigmaAM[2][2][4]; |
2134 |
> |
// double PhotonFix::_sigmaBT[2][2][4]; |
2135 |
> |
// double PhotonFix::_sigmaBC[2][2][4]; |
2136 |
> |
// double PhotonFix::_sigmaBS[2][2][4]; |
2137 |
> |
// double PhotonFix::_sigmaBM[2][2][4]; |
2138 |
> |
// double PhotonFix::_sigmaR9[2][2][4]; |
2139 |
> |
// |
2140 |
> |
// double PhotonFix::_barrelCGap[169][360][2]; |
2141 |
> |
// double PhotonFix::_barrelSGap[33][180][2]; |
2142 |
> |
// double PhotonFix::_barrelMGap[7][18][2]; |
2143 |
> |
// |
2144 |
> |
// bool PhotonFix::_endcapCrystal[100][100]; |
2145 |
> |
// double PhotonFix::_endcapCGap[2][7080][2]; |
2146 |
> |
// double PhotonFix::_endcapSGap[2][264][2]; |
2147 |
> |
// double PhotonFix::_endcapMGap[2][1][2]; |