1 |
bendavid |
1.2 |
#include <cmath>
|
2 |
|
|
#include <cassert>
|
3 |
|
|
#include <fstream>
|
4 |
|
|
#include <iomanip>
|
5 |
|
|
|
6 |
|
|
// ensure that this include points to the appropriate location for PhotonFix.h
|
7 |
|
|
#include "../interface/PhotonFix.h"
|
8 |
|
|
|
9 |
|
|
/*PhotonFix::PhotonFix(double e, double eta, double phi, double r9) :
|
10 |
|
|
_e(e), _eta(eta), _phi(phi), _r9(r9) {
|
11 |
|
|
|
12 |
|
|
setup();
|
13 |
|
|
}*/
|
14 |
|
|
|
15 |
|
|
void PhotonFix::setup(double e, double eta, double phi, double r9){
|
16 |
|
|
// Check constants have been set up
|
17 |
|
|
assert(_initialised);
|
18 |
|
|
|
19 |
|
|
_e = e;
|
20 |
|
|
_eta = eta;
|
21 |
|
|
_phi = phi;
|
22 |
|
|
_r9 = r9;
|
23 |
|
|
|
24 |
|
|
// Determine if EB or EE
|
25 |
|
|
_be=(fabs(_eta)<1.48?0:1);
|
26 |
|
|
|
27 |
|
|
// Determine if high or low R9
|
28 |
|
|
if(_be==0) _hl=(_r9>=0.94?0:1);
|
29 |
|
|
else _hl=(_r9>=0.95?0:1);
|
30 |
|
|
|
31 |
|
|
// Coordinates relative to cracks
|
32 |
|
|
double r2Min;
|
33 |
|
|
if(_be==0) {
|
34 |
|
|
|
35 |
|
|
r2Min=1.0e6;
|
36 |
|
|
for(unsigned i(0);i<169;i++) {
|
37 |
|
|
for(unsigned j(0);j<360;j++) {
|
38 |
|
|
double de(_eta-_barrelCGap[i][j][0]);
|
39 |
|
|
double df(dPhi(_phi,_barrelCGap[i][j][1]));
|
40 |
|
|
double r2(de*de+df*df);
|
41 |
|
|
|
42 |
|
|
if(r2<r2Min) {
|
43 |
|
|
r2Min=r2;
|
44 |
|
|
if(i>=84) {
|
45 |
|
|
_aC= de;
|
46 |
|
|
_bC=-df;
|
47 |
|
|
} else {
|
48 |
|
|
_aC=-de;
|
49 |
|
|
_bC= df;
|
50 |
|
|
}
|
51 |
|
|
}
|
52 |
|
|
}
|
53 |
|
|
}
|
54 |
|
|
|
55 |
|
|
r2Min=1.0e6;
|
56 |
|
|
for(unsigned i(0);i<33;i++) {
|
57 |
|
|
for(unsigned j(0);j<180;j++) {
|
58 |
|
|
double de(_eta-_barrelSGap[i][j][0]);
|
59 |
|
|
double df(dPhi(_phi,_barrelSGap[i][j][1]));
|
60 |
|
|
double r2(de*de+df*df);
|
61 |
|
|
|
62 |
|
|
if(r2<r2Min) {
|
63 |
|
|
r2Min=r2;
|
64 |
|
|
if(i>=16) {
|
65 |
|
|
_aS= de;
|
66 |
|
|
_bS=-df;
|
67 |
|
|
} else {
|
68 |
|
|
_aS=-de;
|
69 |
|
|
_bS= df;
|
70 |
|
|
}
|
71 |
|
|
}
|
72 |
|
|
}
|
73 |
|
|
}
|
74 |
|
|
|
75 |
|
|
r2Min=1.0e6;
|
76 |
|
|
for(unsigned i(0);i<7;i++) {
|
77 |
|
|
for(unsigned j(0);j<18;j++) {
|
78 |
|
|
double de(_eta-_barrelMGap[i][j][0]);
|
79 |
|
|
double df(dPhi(_phi,_barrelMGap[i][j][1]));
|
80 |
|
|
double r2(de*de+df*df);
|
81 |
|
|
|
82 |
|
|
if(r2<r2Min) {
|
83 |
|
|
r2Min=r2;
|
84 |
|
|
if(i>=3) {
|
85 |
|
|
_aM= de;
|
86 |
|
|
_bM=-df;
|
87 |
|
|
} else {
|
88 |
|
|
_aM=-de;
|
89 |
|
|
_bM= df;
|
90 |
|
|
}
|
91 |
|
|
}
|
92 |
|
|
}
|
93 |
|
|
}
|
94 |
|
|
|
95 |
|
|
} else {
|
96 |
|
|
unsigned iz(_eta>=0.0?0:1);
|
97 |
|
|
double r[2]={xZ(),yZ()};
|
98 |
|
|
|
99 |
|
|
r2Min=1.0e6;
|
100 |
|
|
for(unsigned i(0);i<7080;i++) {
|
101 |
|
|
double dx(r[0]-_endcapCGap[iz][i][0]);
|
102 |
|
|
double dy(r[1]-_endcapCGap[iz][i][1]);
|
103 |
|
|
double r2(dx*dx+dy*dy);
|
104 |
|
|
|
105 |
|
|
if(r2<r2Min) {
|
106 |
|
|
r2Min=r2;
|
107 |
|
|
if(r[0]>0.0) _aC= dx;
|
108 |
|
|
else _aC=-dx;
|
109 |
|
|
if(r[1]>0.0) _bC= dy;
|
110 |
|
|
else _bC=-dy;
|
111 |
|
|
}
|
112 |
|
|
}
|
113 |
|
|
|
114 |
|
|
r2Min=1.0e6;
|
115 |
|
|
for(unsigned i(0);i<264;i++) {
|
116 |
|
|
double dx(r[0]-_endcapSGap[iz][i][0]);
|
117 |
|
|
double dy(r[1]-_endcapSGap[iz][i][1]);
|
118 |
|
|
double r2(dx*dx+dy*dy);
|
119 |
|
|
|
120 |
|
|
if(r2<r2Min) {
|
121 |
|
|
r2Min=r2;
|
122 |
|
|
if(r[0]>0.0) _aS= dx;
|
123 |
|
|
else _aS=-dx;
|
124 |
|
|
if(r[1]>0.0) _bS= dy;
|
125 |
|
|
else _bS=-dy;
|
126 |
|
|
}
|
127 |
|
|
}
|
128 |
|
|
|
129 |
|
|
r2Min=1.0e6;
|
130 |
|
|
for(unsigned i(0);i<1;i++) {
|
131 |
|
|
double dx(r[0]-_endcapMGap[iz][i][0]);
|
132 |
|
|
double dy(r[1]-_endcapMGap[iz][i][1]);
|
133 |
|
|
double r2(dx*dx+dy*dy);
|
134 |
|
|
|
135 |
|
|
if(r2<r2Min) {
|
136 |
|
|
r2Min=r2;
|
137 |
|
|
if(iz==0) {_aM= dx;_bM= dy;}
|
138 |
|
|
else {_aM=-dx;_bM=-dy;}
|
139 |
|
|
}
|
140 |
|
|
}
|
141 |
|
|
}
|
142 |
|
|
}
|
143 |
|
|
|
144 |
|
|
double PhotonFix::fixedEnergy() const {
|
145 |
|
|
double f(0.0);
|
146 |
|
|
|
147 |
|
|
// Overall scale and energy(T) dependence
|
148 |
|
|
f =_meanScale[_be][_hl][0];
|
149 |
|
|
f+=_meanScale[_be][_hl][1]*_e;
|
150 |
|
|
f+=_meanScale[_be][_hl][2]*_e/cosh(_eta);
|
151 |
|
|
f+=_meanScale[_be][_hl][3]*cosh(_eta)/_e;
|
152 |
|
|
|
153 |
|
|
// General eta or zeta dependence
|
154 |
|
|
if(_be==0) {
|
155 |
|
|
f+=_meanAT[_be][_hl][0]*_eta*_eta;
|
156 |
|
|
f+=expCorrection(_eta,_meanBT[_be][_hl]);
|
157 |
|
|
} else {
|
158 |
|
|
f+=_meanAT[_be][_hl][0]*xZ()*xZ();
|
159 |
|
|
f+=_meanBT[_be][_hl][0]*yZ()*yZ();
|
160 |
|
|
}
|
161 |
|
|
|
162 |
|
|
// Eta or x crystal, submodule and module dependence
|
163 |
|
|
f+=expCorrection(_aC,_meanAC[_be][_hl]);
|
164 |
|
|
f+=expCorrection(_aS,_meanAS[_be][_hl]);
|
165 |
|
|
f+=expCorrection(_aM,_meanAM[_be][_hl]);
|
166 |
|
|
|
167 |
|
|
// Phi or y crystal, submodule and module dependence
|
168 |
|
|
f+=expCorrection(_bC,_meanBC[_be][_hl]);
|
169 |
|
|
f+=expCorrection(_bS,_meanBS[_be][_hl]);
|
170 |
|
|
f+=expCorrection(_bM,_meanBM[_be][_hl]);
|
171 |
|
|
|
172 |
|
|
// R9 dependence
|
173 |
|
|
if(_hl==0) {
|
174 |
|
|
f+=_meanR9[_be][_hl][1]*(_r9-_meanR9[_be][_hl][0])*(_r9-_meanR9[_be][_hl][0])
|
175 |
|
|
+_meanR9[_be][_hl][2]*(_r9-_meanR9[_be][_hl][0])*(_r9-_meanR9[_be][_hl][0])*(_r9-_meanR9[_be][_hl][0]);
|
176 |
|
|
} else {
|
177 |
|
|
f+=_meanR9[_be][_hl][0]*_r9+_meanR9[_be][_hl][1]*_r9*_r9+_meanR9[_be][_hl][2]*_r9*_r9*_r9;
|
178 |
|
|
}
|
179 |
|
|
|
180 |
|
|
return _e*f;
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
double PhotonFix::sigmaEnergy() const {
|
184 |
|
|
|
185 |
|
|
// Overall resolution scale vs energy
|
186 |
|
|
double sigma;
|
187 |
|
|
if(_be==0) {
|
188 |
|
|
sigma =_sigmaScale[_be][_hl][0]*_sigmaScale[_be][_hl][0];
|
189 |
|
|
//std::cout << "PhotonFix::sigmaEnergy 1 sigma = " << sigma << std::endl;
|
190 |
|
|
sigma+=_sigmaScale[_be][_hl][1]*_sigmaScale[_be][_hl][1]*_e;
|
191 |
|
|
//std::cout << "PhotonFix::sigmaEnergy 2 sigma = " << sigma << std::endl;
|
192 |
|
|
sigma+=_sigmaScale[_be][_hl][2]*_sigmaScale[_be][_hl][2]*_e*_e;
|
193 |
|
|
//std::cout << "PhotonFix::sigmaEnergy 3 sigma = " << sigma << std::endl;
|
194 |
|
|
} else {
|
195 |
|
|
sigma =_sigmaScale[_be][_hl][0]*_sigmaScale[_be][_hl][0]*cosh(_eta)*cosh(_eta);
|
196 |
|
|
sigma+=_sigmaScale[_be][_hl][1]*_sigmaScale[_be][_hl][1]*_e;
|
197 |
|
|
sigma+=_sigmaScale[_be][_hl][2]*_sigmaScale[_be][_hl][2]*_e*_e;
|
198 |
|
|
}
|
199 |
|
|
sigma=sqrt(sigma);
|
200 |
|
|
|
201 |
|
|
double f(1.0);
|
202 |
|
|
|
203 |
|
|
// General eta or zeta dependence
|
204 |
|
|
if(_be==0) {
|
205 |
|
|
f+=_sigmaAT[_be][_hl][0]*_eta*_eta;
|
206 |
|
|
//std::cout << "PhotonFix::sigmaEnergy 4 f = " << f << std::endl;
|
207 |
|
|
f+=expCorrection(_eta,_sigmaBT[_be][_hl]);
|
208 |
|
|
//std::cout << "PhotonFix::sigmaEnergy 5 f = " << f << std::endl;
|
209 |
|
|
} else {
|
210 |
|
|
f+=_sigmaAT[_be][_hl][0]*xZ()*xZ();
|
211 |
|
|
f+=_sigmaBT[_be][_hl][0]*yZ()*yZ();
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
// Eta or x crystal, submodule and module dependence
|
215 |
|
|
f+=expCorrection(_aC,_sigmaAC[_be][_hl]);
|
216 |
|
|
//std::cout << "PhotonFix::sigmaEnergy 6 f = " << f << std::endl;
|
217 |
|
|
f+=expCorrection(_aS,_sigmaAS[_be][_hl]);
|
218 |
|
|
//std::cout << "PhotonFix::sigmaEnergy 7 f = " << f << std::endl;
|
219 |
|
|
f+=expCorrection(_aM,_sigmaAM[_be][_hl]);
|
220 |
|
|
//std::cout << "PhotonFix::sigmaEnergy 8 f = " << f << std::endl;
|
221 |
|
|
|
222 |
|
|
// Phi or y crystal, submodule and module dependence
|
223 |
|
|
f+=expCorrection(_bC,_sigmaBC[_be][_hl]);
|
224 |
|
|
//std::cout << "PhotonFix::sigmaEnergy 9 f = " << f << std::endl;
|
225 |
|
|
f+=expCorrection(_bS,_sigmaBS[_be][_hl]);
|
226 |
|
|
//std::cout << "PhotonFix::sigmaEnergy 10 f = " << f << std::endl;
|
227 |
|
|
f+=expCorrection(_bM,_sigmaBM[_be][_hl]);
|
228 |
|
|
//std::cout << "PhotonFix::sigmaEnergy 11 f = " << f << std::endl;
|
229 |
|
|
|
230 |
|
|
// R9 dependence
|
231 |
|
|
if(_hl==0) {
|
232 |
|
|
f+=_sigmaR9[_be][_hl][1]*(_r9-_sigmaR9[_be][_hl][0])*(_r9-_sigmaR9[_be][_hl][0])
|
233 |
|
|
+_sigmaR9[_be][_hl][2]*(_r9-_sigmaR9[_be][_hl][0])*(_r9-_sigmaR9[_be][_hl][0])*(_r9-_sigmaR9[_be][_hl][0]);
|
234 |
|
|
//std::cout << "PhotonFix::sigmaEnergy 12 f = " << f << std::endl;
|
235 |
|
|
} else {
|
236 |
|
|
f+=_sigmaR9[_be][_hl][0]*_r9+_sigmaR9[_be][_hl][1]*_r9*_r9+_sigmaR9[_be][_hl][2]*_r9*_r9*_r9;
|
237 |
|
|
//std::cout << "PhotonFix::sigmaEnergy 13 f = " << f << std::endl;
|
238 |
|
|
}
|
239 |
|
|
|
240 |
|
|
return sigma*f;
|
241 |
|
|
}
|
242 |
|
|
|
243 |
|
|
double PhotonFix::rawEnergy() const {
|
244 |
|
|
return _e;
|
245 |
|
|
}
|
246 |
|
|
|
247 |
|
|
double PhotonFix::eta() const {
|
248 |
|
|
return _eta;
|
249 |
|
|
}
|
250 |
|
|
|
251 |
|
|
double PhotonFix::phi() const {
|
252 |
|
|
return _phi;
|
253 |
|
|
}
|
254 |
|
|
|
255 |
|
|
double PhotonFix::r9() const {
|
256 |
|
|
return _r9;
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
double PhotonFix::etaC() const {
|
260 |
|
|
assert(_be==0);
|
261 |
|
|
return _aC;
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
double PhotonFix::etaS() const {
|
265 |
|
|
assert(_be==0);
|
266 |
|
|
return _aS;
|
267 |
|
|
}
|
268 |
|
|
|
269 |
|
|
double PhotonFix::etaM() const {
|
270 |
|
|
assert(_be==0);
|
271 |
|
|
return _aM;
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
double PhotonFix::phiC() const {
|
275 |
|
|
assert(_be==0);
|
276 |
|
|
return _bC;
|
277 |
|
|
}
|
278 |
|
|
|
279 |
|
|
double PhotonFix::phiS() const {
|
280 |
|
|
assert(_be==0);
|
281 |
|
|
return _bS;
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
double PhotonFix::phiM() const {
|
285 |
|
|
assert(_be==0);
|
286 |
|
|
return _bM;
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
double PhotonFix::xZ() const {
|
290 |
|
|
assert(_be==1);
|
291 |
|
|
return asinh(cos(_phi)/sinh(_eta));
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
double PhotonFix::xC() const {
|
295 |
|
|
assert(_be==1);
|
296 |
|
|
return _aC;
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
double PhotonFix::xS() const {
|
300 |
|
|
assert(_be==1);
|
301 |
|
|
return _aS;
|
302 |
|
|
}
|
303 |
|
|
|
304 |
|
|
double PhotonFix::xM() const {
|
305 |
|
|
assert(_be==1);
|
306 |
|
|
return _aM;
|
307 |
|
|
}
|
308 |
|
|
|
309 |
|
|
double PhotonFix::yZ() const {
|
310 |
|
|
assert(_be==1);
|
311 |
|
|
return asinh(sin(_phi)/sinh(_eta));
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
double PhotonFix::yC() const {
|
315 |
|
|
assert(_be==1);
|
316 |
|
|
return _bC;
|
317 |
|
|
}
|
318 |
|
|
|
319 |
|
|
double PhotonFix::yS() const {
|
320 |
|
|
assert(_be==1);
|
321 |
|
|
return _bS;
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
double PhotonFix::yM() const {
|
325 |
|
|
assert(_be==1);
|
326 |
|
|
return _bM;
|
327 |
|
|
}
|
328 |
|
|
|
329 |
|
|
double PhotonFix::GetaPhi(double f0, double f1) const {
|
330 |
|
|
return aPhi(f0,f1);
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
void PhotonFix::barrelCGap(unsigned i, unsigned j, unsigned k, double c){
|
334 |
|
|
_barrelCGap[i][j][k] = c;
|
335 |
|
|
}
|
336 |
|
|
void PhotonFix::barrelSGap(unsigned i, unsigned j, unsigned k, double c){
|
337 |
|
|
_barrelSGap[i][j][k] = c;
|
338 |
|
|
}
|
339 |
|
|
void PhotonFix::barrelMGap(unsigned i, unsigned j, unsigned k, double c){
|
340 |
|
|
_barrelMGap[i][j][k] = c;
|
341 |
|
|
}
|
342 |
|
|
void PhotonFix::endcapCrystal(unsigned i, unsigned j, bool c){
|
343 |
|
|
_endcapCrystal[i][j] = c;
|
344 |
|
|
}
|
345 |
|
|
void PhotonFix::endcapCGap(unsigned i, unsigned j, unsigned k, double c){
|
346 |
|
|
_endcapCGap[i][j][k] = c;
|
347 |
|
|
}
|
348 |
|
|
void PhotonFix::endcapSGap(unsigned i, unsigned j, unsigned k, double c){
|
349 |
|
|
_endcapSGap[i][j][k] = c;
|
350 |
|
|
}
|
351 |
|
|
void PhotonFix::endcapMGap(unsigned i, unsigned j, unsigned k, double c){
|
352 |
|
|
_endcapMGap[i][j][k] = c;
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
|
356 |
|
|
void PhotonFix::print() const {
|
357 |
|
|
std::cout << "PhotonFix: e,eta,phi,r9 = " << _e << ", " << _eta << ", " << _phi << ", " << _r9 << ", gaps "
|
358 |
|
|
<< _aC << ", " << _aS << ", " << _aM << ", "
|
359 |
|
|
<< _bC << ", " << _bS << ", " << _bM << std::endl;
|
360 |
|
|
}
|
361 |
|
|
|
362 |
|
|
void PhotonFix::setParameters(unsigned be, unsigned hl, const double *p) {
|
363 |
|
|
for(unsigned i(0);i<4;i++) {
|
364 |
|
|
_meanScale[be][hl][i] =p[i+ 0*4];
|
365 |
|
|
_meanAT[be][hl][i] =p[i+ 1*4];
|
366 |
|
|
_meanAC[be][hl][i] =p[i+ 2*4];
|
367 |
|
|
_meanAS[be][hl][i] =p[i+ 3*4];
|
368 |
|
|
_meanAM[be][hl][i] =p[i+ 4*4];
|
369 |
|
|
_meanBT[be][hl][i] =p[i+ 5*4];
|
370 |
|
|
_meanBC[be][hl][i] =p[i+ 6*4];
|
371 |
|
|
_meanBS[be][hl][i] =p[i+ 7*4];
|
372 |
|
|
_meanBM[be][hl][i] =p[i+ 8*4];
|
373 |
|
|
_meanR9[be][hl][i] =p[i+ 9*4];
|
374 |
|
|
|
375 |
|
|
_sigmaScale[be][hl][i]=p[i+10*4];
|
376 |
|
|
_sigmaAT[be][hl][i] =p[i+11*4];
|
377 |
|
|
_sigmaAC[be][hl][i] =p[i+12*4];
|
378 |
|
|
_sigmaAS[be][hl][i] =p[i+13*4];
|
379 |
|
|
_sigmaAM[be][hl][i] =p[i+14*4];
|
380 |
|
|
_sigmaBT[be][hl][i] =p[i+15*4];
|
381 |
|
|
_sigmaBC[be][hl][i] =p[i+16*4];
|
382 |
|
|
_sigmaBS[be][hl][i] =p[i+17*4];
|
383 |
|
|
_sigmaBM[be][hl][i] =p[i+18*4];
|
384 |
|
|
_sigmaR9[be][hl][i] =p[i+19*4];
|
385 |
|
|
}
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
void PhotonFix::getParameters(unsigned be, unsigned hl, double *p) {
|
389 |
|
|
for(unsigned i(0);i<4;i++) {
|
390 |
|
|
p[i+ 0*4]=_meanScale[be][hl][i];
|
391 |
|
|
p[i+ 1*4]=_meanAT[be][hl][i];
|
392 |
|
|
p[i+ 2*4]=_meanAC[be][hl][i];
|
393 |
|
|
p[i+ 3*4]=_meanAS[be][hl][i];
|
394 |
|
|
p[i+ 4*4]=_meanAM[be][hl][i];
|
395 |
|
|
p[i+ 5*4]=_meanBT[be][hl][i];
|
396 |
|
|
p[i+ 6*4]=_meanBC[be][hl][i];
|
397 |
|
|
p[i+ 7*4]=_meanBS[be][hl][i];
|
398 |
|
|
p[i+ 8*4]=_meanBM[be][hl][i];
|
399 |
|
|
p[i+ 9*4]=_meanR9[be][hl][i];
|
400 |
|
|
|
401 |
|
|
p[i+10*4]=_sigmaScale[be][hl][i];
|
402 |
|
|
p[i+11*4]=_sigmaAT[be][hl][i];
|
403 |
|
|
p[i+12*4]=_sigmaAC[be][hl][i];
|
404 |
|
|
p[i+13*4]=_sigmaAS[be][hl][i];
|
405 |
|
|
p[i+14*4]=_sigmaAM[be][hl][i];
|
406 |
|
|
p[i+15*4]=_sigmaBT[be][hl][i];
|
407 |
|
|
p[i+16*4]=_sigmaBC[be][hl][i];
|
408 |
|
|
p[i+17*4]=_sigmaBS[be][hl][i];
|
409 |
|
|
p[i+18*4]=_sigmaBM[be][hl][i];
|
410 |
|
|
p[i+19*4]=_sigmaR9[be][hl][i];
|
411 |
|
|
}
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
void PhotonFix::dumpParameters(std::ostream &o) {
|
415 |
|
|
o << std::setprecision(9);
|
416 |
|
|
|
417 |
|
|
for(unsigned be(0);be<2;be++) {
|
418 |
|
|
for(unsigned hl(0);hl<2;hl++) {
|
419 |
|
|
for(unsigned i(0);i<4;i++) {
|
420 |
|
|
o << " _meanScale[" << be << "][" << hl << "][" << i << "]=" << _meanScale[be][hl][i] << ";" << std::endl;
|
421 |
|
|
}
|
422 |
|
|
for(unsigned i(0);i<4;i++) {
|
423 |
|
|
o << " _meanAT[" << be << "][" << hl << "][" << i << "]=" << _meanAT[be][hl][i] << ";" << std::endl;
|
424 |
|
|
}
|
425 |
|
|
for(unsigned i(0);i<4;i++) {
|
426 |
|
|
o << " _meanAC[" << be << "][" << hl << "][" << i << "]=" << _meanAC[be][hl][i] << ";" << std::endl;
|
427 |
|
|
}
|
428 |
|
|
for(unsigned i(0);i<4;i++) {
|
429 |
|
|
o << " _meanAS[" << be << "][" << hl << "][" << i << "]=" << _meanAS[be][hl][i] << ";" << std::endl;
|
430 |
|
|
}
|
431 |
|
|
for(unsigned i(0);i<4;i++) {
|
432 |
|
|
o << " _meanAM[" << be << "][" << hl << "][" << i << "]=" << _meanAM[be][hl][i] << ";" << std::endl;
|
433 |
|
|
}
|
434 |
|
|
for(unsigned i(0);i<4;i++) {
|
435 |
|
|
o << " _meanBT[" << be << "][" << hl << "][" << i << "]=" << _meanBT[be][hl][i] << ";" << std::endl;
|
436 |
|
|
}
|
437 |
|
|
for(unsigned i(0);i<4;i++) {
|
438 |
|
|
o << " _meanBC[" << be << "][" << hl << "][" << i << "]=" << _meanBC[be][hl][i] << ";" << std::endl;
|
439 |
|
|
}
|
440 |
|
|
for(unsigned i(0);i<4;i++) {
|
441 |
|
|
o << " _meanBS[" << be << "][" << hl << "][" << i << "]=" << _meanBS[be][hl][i] << ";" << std::endl;
|
442 |
|
|
}
|
443 |
|
|
for(unsigned i(0);i<4;i++) {
|
444 |
|
|
o << " _meanBM[" << be << "][" << hl << "][" << i << "]=" << _meanBM[be][hl][i] << ";" << std::endl;
|
445 |
|
|
}
|
446 |
|
|
for(unsigned i(0);i<4;i++) {
|
447 |
|
|
o << " _meanR9[" << be << "][" << hl << "][" << i << "]=" << _meanR9[be][hl][i] << ";" << std::endl;
|
448 |
|
|
}
|
449 |
|
|
o << std::endl;
|
450 |
|
|
|
451 |
|
|
for(unsigned i(0);i<4;i++) {
|
452 |
|
|
o << " _sigmaScale[" << be << "][" << hl << "][" << i << "]=" << _sigmaScale[be][hl][i] << ";" << std::endl;
|
453 |
|
|
}
|
454 |
|
|
for(unsigned i(0);i<4;i++) {
|
455 |
|
|
o << " _sigmaAT[" << be << "][" << hl << "][" << i << "]=" << _sigmaAT[be][hl][i] << ";" << std::endl;
|
456 |
|
|
}
|
457 |
|
|
for(unsigned i(0);i<4;i++) {
|
458 |
|
|
o << " _sigmaAC[" << be << "][" << hl << "][" << i << "]=" << _sigmaAC[be][hl][i] << ";" << std::endl;
|
459 |
|
|
}
|
460 |
|
|
for(unsigned i(0);i<4;i++) {
|
461 |
|
|
o << " _sigmaAS[" << be << "][" << hl << "][" << i << "]=" << _sigmaAS[be][hl][i] << ";" << std::endl;
|
462 |
|
|
}
|
463 |
|
|
for(unsigned i(0);i<4;i++) {
|
464 |
|
|
o << " _sigmaAM[" << be << "][" << hl << "][" << i << "]=" << _sigmaAM[be][hl][i] << ";" << std::endl;
|
465 |
|
|
}
|
466 |
|
|
for(unsigned i(0);i<4;i++) {
|
467 |
|
|
o << " _sigmaBT[" << be << "][" << hl << "][" << i << "]=" << _sigmaBT[be][hl][i] << ";" << std::endl;
|
468 |
|
|
}
|
469 |
|
|
for(unsigned i(0);i<4;i++) {
|
470 |
|
|
o << " _sigmaBC[" << be << "][" << hl << "][" << i << "]=" << _sigmaBC[be][hl][i] << ";" << std::endl;
|
471 |
|
|
}
|
472 |
|
|
for(unsigned i(0);i<4;i++) {
|
473 |
|
|
o << " _sigmaBS[" << be << "][" << hl << "][" << i << "]=" << _sigmaBS[be][hl][i] << ";" << std::endl;
|
474 |
|
|
}
|
475 |
|
|
for(unsigned i(0);i<4;i++) {
|
476 |
|
|
o << " _sigmaBM[" << be << "][" << hl << "][" << i << "]=" << _sigmaBM[be][hl][i] << ";" << std::endl;
|
477 |
|
|
}
|
478 |
|
|
for(unsigned i(0);i<4;i++) {
|
479 |
|
|
o << " _sigmaR9[" << be << "][" << hl << "][" << i << "]=" << _sigmaR9[be][hl][i] << ";" << std::endl;
|
480 |
|
|
}
|
481 |
|
|
o << std::endl;
|
482 |
|
|
}
|
483 |
|
|
}
|
484 |
|
|
}
|
485 |
|
|
|
486 |
|
|
void PhotonFix::printParameters(std::ostream &o) {
|
487 |
|
|
o << "PhotonFix::printParameters()" << std::endl;
|
488 |
|
|
|
489 |
|
|
for(unsigned be(0);be<2;be++) {
|
490 |
|
|
for(unsigned hl(0);hl<2;hl++) {
|
491 |
|
|
o << " Parameters for " << (be==0?"barrel":"endcap")
|
492 |
|
|
<< ", " << (hl==0?"high":"low") << " R9" << std::endl;
|
493 |
|
|
|
494 |
|
|
o << " Mean scaling ";
|
495 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanScale[be][hl][i];
|
496 |
|
|
o << std::endl;
|
497 |
|
|
o << " Mean " << (be==0?"Eta ":"ZetaX") << " total ";
|
498 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanAT[be][hl][i];
|
499 |
|
|
o << std::endl;
|
500 |
|
|
o << " Mean " << (be==0?"Eta ":"ZetaX") << " crystal ";
|
501 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanAC[be][hl][i];
|
502 |
|
|
o << std::endl;
|
503 |
|
|
o << " Mean " << (be==0?"Eta ":"ZetaX") << " submodule";
|
504 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanAS[be][hl][i];
|
505 |
|
|
o << std::endl;
|
506 |
|
|
o << " Mean " << (be==0?"Eta ":"ZetaX") << " module ";
|
507 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanAM[be][hl][i];
|
508 |
|
|
o << std::endl;
|
509 |
|
|
o << " Mean " << (be==0?"Eta zero ":"ZetaY total ");
|
510 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanBT[be][hl][i];
|
511 |
|
|
o << std::endl;
|
512 |
|
|
o << " Mean " << (be==0?"Phi ":"ZetaY") << " crystal ";
|
513 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanBC[be][hl][i];
|
514 |
|
|
o << std::endl;
|
515 |
|
|
o << " Mean " << (be==0?"Phi ":"ZetaY") << " submodule";
|
516 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanBS[be][hl][i];
|
517 |
|
|
o << std::endl;
|
518 |
|
|
o << " Mean " << (be==0?"Phi ":"ZetaY") << " module ";
|
519 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanBM[be][hl][i];
|
520 |
|
|
o << std::endl;
|
521 |
|
|
o << " Mean R9 ";
|
522 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _meanR9[be][hl][i];
|
523 |
|
|
o << std::endl;
|
524 |
|
|
|
525 |
|
|
o << " Sigma scaling ";
|
526 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaScale[be][hl][i];
|
527 |
|
|
o << std::endl;
|
528 |
|
|
o << " Sigma " << (be==0?"Eta ":"ZetaX") << " total ";
|
529 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaAT[be][hl][i];
|
530 |
|
|
o << std::endl;
|
531 |
|
|
o << " Sigma " << (be==0?"Eta ":"ZetaX") << " crystal ";
|
532 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaAC[be][hl][i];
|
533 |
|
|
o << std::endl;
|
534 |
|
|
o << " Sigma " << (be==0?"Eta ":"ZetaX") << " submodule";
|
535 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaAS[be][hl][i];
|
536 |
|
|
o << std::endl;
|
537 |
|
|
o << " Sigma " << (be==0?"Eta ":"ZetaX") << " module ";
|
538 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaAM[be][hl][i];
|
539 |
|
|
o << std::endl;
|
540 |
|
|
o << " Sigma " << (be==0?"Eta ":"ZetaY") << " total ";
|
541 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaBT[be][hl][i];
|
542 |
|
|
o << std::endl;
|
543 |
|
|
o << " Sigma " << (be==0?"Eta ":"ZetaY") << " crystal ";
|
544 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaBC[be][hl][i];
|
545 |
|
|
o << std::endl;
|
546 |
|
|
o << " Sigma " << (be==0?"Phi ":"ZetaY") << " submodule";
|
547 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaBS[be][hl][i];
|
548 |
|
|
o << std::endl;
|
549 |
|
|
o << " Sigma " << (be==0?"Phi ":"ZetaY") << " module ";
|
550 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaBM[be][hl][i];
|
551 |
|
|
o << std::endl;
|
552 |
|
|
o << " Sigma R9 ";
|
553 |
|
|
for(unsigned i(0);i<4;i++) o << std::setw(14) << _sigmaR9[be][hl][i];
|
554 |
|
|
o << std::endl;
|
555 |
|
|
}
|
556 |
|
|
}
|
557 |
|
|
}
|
558 |
|
|
|
559 |
|
|
double PhotonFix::asinh(double s) const {
|
560 |
|
|
if(s>=0.0) return log(sqrt(s*s+1.0)+s);
|
561 |
|
|
else return -log(sqrt(s*s+1.0)-s);
|
562 |
|
|
}
|
563 |
|
|
|
564 |
|
|
void PhotonFix::dumpGaps(std::ostream &o) {
|
565 |
|
|
o << std::setprecision(15);
|
566 |
|
|
|
567 |
|
|
for(unsigned i(0);i<169;i++) {
|
568 |
|
|
for(unsigned j(0);j<360;j++) {
|
569 |
|
|
for(unsigned k(0);k<2;k++) {
|
570 |
|
|
o << _barrelCGap[i][j][k] << std::endl;
|
571 |
|
|
}
|
572 |
|
|
}
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
for(unsigned i(0);i<33;i++) {
|
576 |
|
|
for(unsigned j(0);j<180;j++) {
|
577 |
|
|
for(unsigned k(0);k<2;k++) {
|
578 |
|
|
o << _barrelSGap[i][j][k] << std::endl;
|
579 |
|
|
}
|
580 |
|
|
}
|
581 |
|
|
}
|
582 |
|
|
|
583 |
|
|
for(unsigned i(0);i<7;i++) {
|
584 |
|
|
for(unsigned j(0);j<18;j++) {
|
585 |
|
|
for(unsigned k(0);k<2;k++) {
|
586 |
|
|
o << _barrelMGap[i][j][k] << std::endl;
|
587 |
|
|
}
|
588 |
|
|
}
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
for(unsigned i(0);i<100;i++) {
|
592 |
|
|
for(unsigned j(0);j<100;j++) {
|
593 |
|
|
if(_endcapCrystal[i][j]) o << 0 << std::endl;
|
594 |
|
|
else o << 1 << std::endl;
|
595 |
|
|
}
|
596 |
|
|
}
|
597 |
|
|
|
598 |
|
|
for(unsigned i(0);i<2;i++) {
|
599 |
|
|
for(unsigned j(0);j<7080;j++) {
|
600 |
|
|
for(unsigned k(0);k<2;k++) {
|
601 |
|
|
o << _endcapCGap[i][j][k] << std::endl;
|
602 |
|
|
}
|
603 |
|
|
}
|
604 |
|
|
}
|
605 |
|
|
|
606 |
|
|
for(unsigned i(0);i<2;i++) {
|
607 |
|
|
for(unsigned j(0);j<264;j++) {
|
608 |
|
|
for(unsigned k(0);k<2;k++) {
|
609 |
|
|
o << _endcapSGap[i][j][k] << std::endl;
|
610 |
|
|
}
|
611 |
|
|
}
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
for(unsigned i(0);i<2;i++) {
|
615 |
|
|
for(unsigned j(0);j<1;j++) {
|
616 |
|
|
for(unsigned k(0);k<2;k++) {
|
617 |
|
|
o << _endcapMGap[i][j][k] << std::endl;
|
618 |
|
|
}
|
619 |
|
|
}
|
620 |
|
|
}
|
621 |
|
|
}
|
622 |
|
|
|
623 |
|
|
double PhotonFix::dPhi(double f0, double f1) const {
|
624 |
|
|
double df(f0-f1);
|
625 |
|
|
if(df> _onePi) df-=_twoPi;
|
626 |
|
|
if(df<-_onePi) df+=_twoPi;
|
627 |
|
|
return df;
|
628 |
|
|
}
|
629 |
|
|
|
630 |
|
|
double PhotonFix::aPhi(double f0, double f1) const {
|
631 |
|
|
double af(0.5*(f0+f1));
|
632 |
|
|
if(fabs(dPhi(af,f0))>0.5*_onePi) {
|
633 |
|
|
if(af>=0.0) af-=_onePi;
|
634 |
|
|
else af+=_onePi;
|
635 |
|
|
}
|
636 |
|
|
|
637 |
|
|
assert(fabs(dPhi(af,f0))<0.5*_onePi);
|
638 |
|
|
assert(fabs(dPhi(af,f1))<0.5*_onePi);
|
639 |
|
|
|
640 |
|
|
return af;
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
double PhotonFix::expCorrection(double a, const double *p) const {
|
644 |
|
|
if(p[1]==0.0 || p[2]==0.0 || p[3]==0.0) return 0.0;
|
645 |
|
|
|
646 |
|
|
double b(a-p[0]);
|
647 |
|
|
if(b>=0.0) return p[1]*exp(-fabs(p[2])*b);
|
648 |
|
|
else return p[1]*exp( fabs(p[3])*b);
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
double PhotonFix::gausCorrection(double a, const double *p) const {
|
652 |
|
|
if(p[1]==0.0 || p[2]==0.0 || p[3]==0.0) return 0.0;
|
653 |
|
|
|
654 |
|
|
double b(a-p[0]);
|
655 |
|
|
if(b>=0.0) return p[1]*exp(-0.5*p[2]*p[2]*b*b);
|
656 |
|
|
else return p[1]*exp(-0.5*p[3]*p[3]*b*b);
|
657 |
|
|
}
|
658 |
|
|
bool PhotonFix::initialised() {
|
659 |
|
|
return _initialised;
|
660 |
|
|
}
|
661 |
|
|
bool PhotonFix::initialise(const std::string &s, const std::string &infile) {
|
662 |
|
|
if(_initialised) return false;
|
663 |
|
|
|
664 |
|
|
|
665 |
|
|
initialiseParameters(s);
|
666 |
|
|
initialiseGeometry(s,infile);
|
667 |
|
|
return true;
|
668 |
|
|
}
|
669 |
|
|
|
670 |
|
|
bool PhotonFix::initialiseParameters(const std::string &s) {
|
671 |
|
|
_initialised=false;
|
672 |
|
|
|
673 |
|
|
if(s=="Nominal") {
|
674 |
|
|
for(unsigned be(0);be<2;be++) {
|
675 |
|
|
for(unsigned hl(0);hl<2;hl++) {
|
676 |
|
|
for(unsigned i(0);i<4;i++) {
|
677 |
|
|
_meanScale[be][hl][i]=0;
|
678 |
|
|
_meanAT[be][hl][i]=0;
|
679 |
|
|
_meanAC[be][hl][i]=0;
|
680 |
|
|
_meanAS[be][hl][i]=0;
|
681 |
|
|
_meanAM[be][hl][i]=0;
|
682 |
|
|
_meanBT[be][hl][i]=0;
|
683 |
|
|
_meanBC[be][hl][i]=0;
|
684 |
|
|
_meanBS[be][hl][i]=0;
|
685 |
|
|
_meanBM[be][hl][i]=0;
|
686 |
|
|
_meanR9[be][hl][i]=0;
|
687 |
|
|
|
688 |
|
|
_sigmaScale[be][hl][i]=0;
|
689 |
|
|
_sigmaAT[be][hl][i]=0;
|
690 |
|
|
_sigmaAC[be][hl][i]=0;
|
691 |
|
|
_sigmaAS[be][hl][i]=0;
|
692 |
|
|
_sigmaAM[be][hl][i]=0;
|
693 |
|
|
_sigmaBT[be][hl][i]=0;
|
694 |
|
|
_sigmaBC[be][hl][i]=0;
|
695 |
|
|
_sigmaBS[be][hl][i]=0;
|
696 |
|
|
_sigmaBM[be][hl][i]=0;
|
697 |
|
|
_sigmaR9[be][hl][i]=0;
|
698 |
|
|
}
|
699 |
|
|
|
700 |
|
|
_meanScale[be][hl][0]=1.0;
|
701 |
|
|
if(be==0) {
|
702 |
|
|
_sigmaScale[be][hl][0]=0.2;
|
703 |
|
|
_sigmaScale[be][hl][1]=0.03;
|
704 |
|
|
_sigmaScale[be][hl][2]=0.006;
|
705 |
|
|
} else {
|
706 |
|
|
_sigmaScale[be][hl][0]=0.25;
|
707 |
|
|
_sigmaScale[be][hl][1]=0.05;
|
708 |
|
|
_sigmaScale[be][hl][2]=0.010;
|
709 |
|
|
}
|
710 |
|
|
}
|
711 |
|
|
}
|
712 |
|
|
|
713 |
|
|
_initialised=true;
|
714 |
|
|
}
|
715 |
|
|
|
716 |
|
|
if(s=="3_8") {
|
717 |
|
|
_meanScale[0][0][0]=0.994724;
|
718 |
|
|
_meanScale[0][0][1]=1.98102e-06;
|
719 |
|
|
_meanScale[0][0][2]=1.43015e-05;
|
720 |
|
|
_meanScale[0][0][3]=-0.0908525;
|
721 |
|
|
_meanAT[0][0][0]=0.0;
|
722 |
|
|
_meanAT[0][0][1]=0.0;
|
723 |
|
|
_meanAT[0][0][2]=0.0;
|
724 |
|
|
_meanAT[0][0][3]=0.0;
|
725 |
|
|
_meanAC[0][0][0]=-0.00352041;
|
726 |
|
|
_meanAC[0][0][1]=0.00982015;
|
727 |
|
|
_meanAC[0][0][2]=434.32;
|
728 |
|
|
_meanAC[0][0][3]=529.508;
|
729 |
|
|
_meanAS[0][0][0]=-1.1;
|
730 |
|
|
_meanAS[0][0][1]=0.00135995;
|
731 |
|
|
_meanAS[0][0][2]=295.712;
|
732 |
|
|
_meanAS[0][0][3]=5.13202e+07;
|
733 |
|
|
_meanAM[0][0][0]=-0.00140562;
|
734 |
|
|
_meanAM[0][0][1]=0.156322;
|
735 |
|
|
_meanAM[0][0][2]=263.097;
|
736 |
|
|
_meanAM[0][0][3]=222.294;
|
737 |
|
|
_meanBT[0][0][0]=0.0;
|
738 |
|
|
_meanBT[0][0][1]=0.0;
|
739 |
|
|
_meanBT[0][0][2]=0.0;
|
740 |
|
|
_meanBT[0][0][3]=0.0;
|
741 |
|
|
_meanBC[0][0][0]=-0.00294295;
|
742 |
|
|
_meanBC[0][0][1]=0.011533;
|
743 |
|
|
_meanBC[0][0][2]=562.905;
|
744 |
|
|
_meanBC[0][0][3]=421.097;
|
745 |
|
|
_meanBS[0][0][0]=-0.00204373;
|
746 |
|
|
_meanBS[0][0][1]=0.00347592;
|
747 |
|
|
_meanBS[0][0][2]=36.5614;
|
748 |
|
|
_meanBS[0][0][3]=1265.25;
|
749 |
|
|
_meanBM[0][0][0]=-0.00275381;
|
750 |
|
|
_meanBM[0][0][1]=0.0812447;
|
751 |
|
|
_meanBM[0][0][2]=216.885;
|
752 |
|
|
_meanBM[0][0][3]=264.754;
|
753 |
|
|
_meanR9[0][0][0]=0.952584;
|
754 |
|
|
_meanR9[0][0][1]=22.7119;
|
755 |
|
|
_meanR9[0][0][2]=402.816;
|
756 |
|
|
_meanR9[0][0][3]=0;
|
757 |
|
|
|
758 |
|
|
_sigmaScale[0][0][0]=0.167184;
|
759 |
|
|
_sigmaScale[0][0][1]=6.14323e-11;
|
760 |
|
|
_sigmaScale[0][0][2]=0.00769693;
|
761 |
|
|
_sigmaScale[0][0][3]=0;
|
762 |
|
|
_sigmaAT[0][0][0]=0.228255;
|
763 |
|
|
_sigmaAT[0][0][1]=0;
|
764 |
|
|
_sigmaAT[0][0][2]=0;
|
765 |
|
|
_sigmaAT[0][0][3]=0;
|
766 |
|
|
_sigmaAC[0][0][0]=-0.00411906;
|
767 |
|
|
_sigmaAC[0][0][1]=0.077799;
|
768 |
|
|
_sigmaAC[0][0][2]=23.1033;
|
769 |
|
|
_sigmaAC[0][0][3]=-3e+17;
|
770 |
|
|
_sigmaAS[0][0][0]=0;
|
771 |
|
|
_sigmaAS[0][0][1]=0;
|
772 |
|
|
_sigmaAS[0][0][2]=0;
|
773 |
|
|
_sigmaAS[0][0][3]=0;
|
774 |
|
|
_sigmaAM[0][0][0]=-0.000130695;
|
775 |
|
|
_sigmaAM[0][0][1]=11.2121;
|
776 |
|
|
_sigmaAM[0][0][2]=468.535;
|
777 |
|
|
_sigmaAM[0][0][3]=407.652;
|
778 |
|
|
_sigmaBT[0][0][0]=1.33384e-05;
|
779 |
|
|
_sigmaBT[0][0][1]=8.77098;
|
780 |
|
|
_sigmaBT[0][0][2]=324.048;
|
781 |
|
|
_sigmaBT[0][0][3]=239.868;
|
782 |
|
|
_sigmaBC[0][0][0]=-0.00281964;
|
783 |
|
|
_sigmaBC[0][0][1]=0.125811;
|
784 |
|
|
_sigmaBC[0][0][2]=538.949;
|
785 |
|
|
_sigmaBC[0][0][3]=1358.76;
|
786 |
|
|
_sigmaBS[0][0][0]=0;
|
787 |
|
|
_sigmaBS[0][0][1]=0;
|
788 |
|
|
_sigmaBS[0][0][2]=0;
|
789 |
|
|
_sigmaBS[0][0][3]=0;
|
790 |
|
|
_sigmaBM[0][0][0]=-0.00293676;
|
791 |
|
|
_sigmaBM[0][0][1]=8.88276;
|
792 |
|
|
_sigmaBM[0][0][2]=350.032;
|
793 |
|
|
_sigmaBM[0][0][3]=580.354;
|
794 |
|
|
_sigmaR9[0][0][0]=0.955876;
|
795 |
|
|
_sigmaR9[0][0][1]=2254.5;
|
796 |
|
|
_sigmaR9[0][0][2]=14627;
|
797 |
|
|
_sigmaR9[0][0][3]=0;
|
798 |
|
|
|
799 |
|
|
_meanScale[0][1][0]=0.888348;
|
800 |
|
|
_meanScale[0][1][1]=1.20452e-05;
|
801 |
|
|
_meanScale[0][1][2]=-1.04458e-05;
|
802 |
|
|
_meanScale[0][1][3]=-0.542383;
|
803 |
|
|
_meanAT[0][1][0]=0.0;
|
804 |
|
|
_meanAT[0][1][1]=0.0;
|
805 |
|
|
_meanAT[0][1][2]=0.0;
|
806 |
|
|
_meanAT[0][1][3]=0.0;
|
807 |
|
|
_meanAC[0][1][0]=-0.00320856;
|
808 |
|
|
_meanAC[0][1][1]=0.0240109;
|
809 |
|
|
_meanAC[0][1][2]=115.145;
|
810 |
|
|
_meanAC[0][1][3]=205.859;
|
811 |
|
|
_meanAS[0][1][0]=0.0349736;
|
812 |
|
|
_meanAS[0][1][1]=-0.00232864;
|
813 |
|
|
_meanAS[0][1][2]=318.584;
|
814 |
|
|
_meanAS[0][1][3]=1.4e+09;
|
815 |
|
|
_meanAM[0][1][0]=-0.00104798;
|
816 |
|
|
_meanAM[0][1][1]=0.208249;
|
817 |
|
|
_meanAM[0][1][2]=297.049;
|
818 |
|
|
_meanAM[0][1][3]=220.609;
|
819 |
|
|
_meanBT[0][1][0]=0.0;
|
820 |
|
|
_meanBT[0][1][1]=0.0;
|
821 |
|
|
_meanBT[0][1][2]=0.0;
|
822 |
|
|
_meanBT[0][1][3]=0.0;
|
823 |
|
|
_meanBC[0][1][0]=-0.00420429;
|
824 |
|
|
_meanBC[0][1][1]=0.00203991;
|
825 |
|
|
_meanBC[0][1][2]=172.278;
|
826 |
|
|
_meanBC[0][1][3]=410.677;
|
827 |
|
|
_meanBS[0][1][0]=-0.0430854;
|
828 |
|
|
_meanBS[0][1][1]=0.0961883;
|
829 |
|
|
_meanBS[0][1][2]=0.196958;
|
830 |
|
|
_meanBS[0][1][3]=11442.2;
|
831 |
|
|
_meanBM[0][1][0]=-0.00389457;
|
832 |
|
|
_meanBM[0][1][1]=0.0449086;
|
833 |
|
|
_meanBM[0][1][2]=78.9252;
|
834 |
|
|
_meanBM[0][1][3]=103.237;
|
835 |
|
|
_meanR9[0][1][0]=0.0182102;
|
836 |
|
|
_meanR9[0][1][1]=-0.03752;
|
837 |
|
|
_meanR9[0][1][2]=0.0198881;
|
838 |
|
|
_meanR9[0][1][3]=0;
|
839 |
|
|
|
840 |
|
|
_sigmaScale[0][1][0]=0.386681;
|
841 |
|
|
_sigmaScale[0][1][1]=0.0913412;
|
842 |
|
|
_sigmaScale[0][1][2]=0.00119232;
|
843 |
|
|
_sigmaScale[0][1][3]=0;
|
844 |
|
|
_sigmaAT[0][1][0]=1.36562;
|
845 |
|
|
_sigmaAT[0][1][1]=0;
|
846 |
|
|
_sigmaAT[0][1][2]=0;
|
847 |
|
|
_sigmaAT[0][1][3]=0;
|
848 |
|
|
_sigmaAC[0][1][0]=-0.00504613;
|
849 |
|
|
_sigmaAC[0][1][1]=-1.09115;
|
850 |
|
|
_sigmaAC[0][1][2]=8.57406;
|
851 |
|
|
_sigmaAC[0][1][3]=57.1351;
|
852 |
|
|
_sigmaAS[0][1][0]=0;
|
853 |
|
|
_sigmaAS[0][1][1]=0;
|
854 |
|
|
_sigmaAS[0][1][2]=0;
|
855 |
|
|
_sigmaAS[0][1][3]=0;
|
856 |
|
|
_sigmaAM[0][1][0]=-0.00014319;
|
857 |
|
|
_sigmaAM[0][1][1]=5.39527;
|
858 |
|
|
_sigmaAM[0][1][2]=432.566;
|
859 |
|
|
_sigmaAM[0][1][3]=265.165;
|
860 |
|
|
_sigmaBT[0][1][0]=-0.040161;
|
861 |
|
|
_sigmaBT[0][1][1]=2.65711;
|
862 |
|
|
_sigmaBT[0][1][2]=-0.398357;
|
863 |
|
|
_sigmaBT[0][1][3]=-0.440649;
|
864 |
|
|
_sigmaBC[0][1][0]=0.00580015;
|
865 |
|
|
_sigmaBC[0][1][1]=-0.631833;
|
866 |
|
|
_sigmaBC[0][1][2]=18594.3;
|
867 |
|
|
_sigmaBC[0][1][3]=4.00955e+08;
|
868 |
|
|
_sigmaBS[0][1][0]=0;
|
869 |
|
|
_sigmaBS[0][1][1]=0;
|
870 |
|
|
_sigmaBS[0][1][2]=0;
|
871 |
|
|
_sigmaBS[0][1][3]=0;
|
872 |
|
|
_sigmaBM[0][1][0]=-0.00376665;
|
873 |
|
|
_sigmaBM[0][1][1]=3.74316;
|
874 |
|
|
_sigmaBM[0][1][2]=102.72;
|
875 |
|
|
_sigmaBM[0][1][3]=157.396;
|
876 |
|
|
_sigmaR9[0][1][0]=-3.12696;
|
877 |
|
|
_sigmaR9[0][1][1]=1.75114;
|
878 |
|
|
_sigmaR9[0][1][2]=0;
|
879 |
|
|
_sigmaR9[0][1][3]=0;
|
880 |
|
|
|
881 |
|
|
_meanScale[1][0][0]=0.999461;
|
882 |
|
|
_meanScale[1][0][1]=4.37414e-06;
|
883 |
|
|
_meanScale[1][0][2]=4.92078e-06;
|
884 |
|
|
_meanScale[1][0][3]=-0.121609;
|
885 |
|
|
_meanAT[1][0][0]=0.0;
|
886 |
|
|
_meanAT[1][0][1]=0.0;
|
887 |
|
|
_meanAT[1][0][2]=0.0;
|
888 |
|
|
_meanAT[1][0][3]=0.0;
|
889 |
|
|
_meanAC[1][0][0]=-0.000396058;
|
890 |
|
|
_meanAC[1][0][1]=0.0144837;
|
891 |
|
|
_meanAC[1][0][2]=1374.93;
|
892 |
|
|
_meanAC[1][0][3]=945.634;
|
893 |
|
|
_meanAS[1][0][0]=-0.000871036;
|
894 |
|
|
_meanAS[1][0][1]=0.0442747;
|
895 |
|
|
_meanAS[1][0][2]=645.709;
|
896 |
|
|
_meanAS[1][0][3]=962.845;
|
897 |
|
|
_meanAM[1][0][0]=0.000434298;
|
898 |
|
|
_meanAM[1][0][1]=0.0658628;
|
899 |
|
|
_meanAM[1][0][2]=1928.49;
|
900 |
|
|
_meanAM[1][0][3]=728.522;
|
901 |
|
|
_meanBT[1][0][0]=0.0;
|
902 |
|
|
_meanBT[1][0][1]=0.0;
|
903 |
|
|
_meanBT[1][0][2]=0.0;
|
904 |
|
|
_meanBT[1][0][3]=0.0;
|
905 |
|
|
_meanBC[1][0][0]=-0.000452212;
|
906 |
|
|
_meanBC[1][0][1]=0.0129968;
|
907 |
|
|
_meanBC[1][0][2]=1056.08;
|
908 |
|
|
_meanBC[1][0][3]=759.102;
|
909 |
|
|
_meanBS[1][0][0]=-0.000786157;
|
910 |
|
|
_meanBS[1][0][1]=0.0346555;
|
911 |
|
|
_meanBS[1][0][2]=592.239;
|
912 |
|
|
_meanBS[1][0][3]=854.285;
|
913 |
|
|
_meanBM[1][0][0]=-0.0665038;
|
914 |
|
|
_meanBM[1][0][1]=-0.00211713;
|
915 |
|
|
_meanBM[1][0][2]=4.84395;
|
916 |
|
|
_meanBM[1][0][3]=11.6644;
|
917 |
|
|
_meanR9[1][0][0]=0.971355;
|
918 |
|
|
_meanR9[1][0][1]=47.2751;
|
919 |
|
|
_meanR9[1][0][2]=536.907;
|
920 |
|
|
_meanR9[1][0][3]=0;
|
921 |
|
|
|
922 |
|
|
_sigmaScale[1][0][0]=0.254641;
|
923 |
|
|
_sigmaScale[1][0][1]=0.00264818;
|
924 |
|
|
_sigmaScale[1][0][2]=0.0114953;
|
925 |
|
|
_sigmaScale[1][0][3]=0;
|
926 |
|
|
_sigmaAT[1][0][0]=0.935839;
|
927 |
|
|
_sigmaAT[1][0][1]=0;
|
928 |
|
|
_sigmaAT[1][0][2]=0;
|
929 |
|
|
_sigmaAT[1][0][3]=0;
|
930 |
|
|
_sigmaAC[1][0][0]=-0.00476475;
|
931 |
|
|
_sigmaAC[1][0][1]=2.14548;
|
932 |
|
|
_sigmaAC[1][0][2]=29937;
|
933 |
|
|
_sigmaAC[1][0][3]=2.6e+11;
|
934 |
|
|
_sigmaAS[1][0][0]=-8.17285e-05;
|
935 |
|
|
_sigmaAS[1][0][1]=1.5821;
|
936 |
|
|
_sigmaAS[1][0][2]=1928.83;
|
937 |
|
|
_sigmaAS[1][0][3]=902.519;
|
938 |
|
|
_sigmaAM[1][0][0]=0.0278577;
|
939 |
|
|
_sigmaAM[1][0][1]=0.58439;
|
940 |
|
|
_sigmaAM[1][0][2]=43.3575;
|
941 |
|
|
_sigmaAM[1][0][3]=19.7836;
|
942 |
|
|
_sigmaBT[1][0][0]=-0.456051;
|
943 |
|
|
_sigmaBT[1][0][1]=0;
|
944 |
|
|
_sigmaBT[1][0][2]=0;
|
945 |
|
|
_sigmaBT[1][0][3]=0;
|
946 |
|
|
_sigmaBC[1][0][0]=-0.00264527;
|
947 |
|
|
_sigmaBC[1][0][1]=0.696043;
|
948 |
|
|
_sigmaBC[1][0][2]=7.49509e+12;
|
949 |
|
|
_sigmaBC[1][0][3]=96843;
|
950 |
|
|
_sigmaBS[1][0][0]=0.000258933;
|
951 |
|
|
_sigmaBS[1][0][1]=1.28387;
|
952 |
|
|
_sigmaBS[1][0][2]=1668.71;
|
953 |
|
|
_sigmaBS[1][0][3]=730.716;
|
954 |
|
|
_sigmaBM[1][0][0]=0.00121506;
|
955 |
|
|
_sigmaBM[1][0][1]=0.938541;
|
956 |
|
|
_sigmaBM[1][0][2]=9003.57;
|
957 |
|
|
_sigmaBM[1][0][3]=288.897;
|
958 |
|
|
_sigmaR9[1][0][0]=1.01207;
|
959 |
|
|
_sigmaR9[1][0][1]=-816.244;
|
960 |
|
|
_sigmaR9[1][0][2]=-16283.8;
|
961 |
|
|
_sigmaR9[1][0][3]=0;
|
962 |
|
|
|
963 |
|
|
_meanScale[1][1][0]=0.324634;
|
964 |
|
|
_meanScale[1][1][1]=9.48206e-05;
|
965 |
|
|
_meanScale[1][1][2]=1.0e-12;
|
966 |
|
|
_meanScale[1][1][3]=1.0e-12;
|
967 |
|
|
_meanAT[1][1][0]=0.0;
|
968 |
|
|
_meanAT[1][1][1]=0.0;
|
969 |
|
|
_meanAT[1][1][2]=0.0;
|
970 |
|
|
_meanAT[1][1][3]=0.0;
|
971 |
|
|
_meanAC[1][1][0]=-0.00158311;
|
972 |
|
|
_meanAC[1][1][1]=0.0106161;
|
973 |
|
|
_meanAC[1][1][2]=338.964;
|
974 |
|
|
_meanAC[1][1][3]=797.172;
|
975 |
|
|
_meanAS[1][1][0]=-0.00960269;
|
976 |
|
|
_meanAS[1][1][1]=-0.00496491;
|
977 |
|
|
_meanAS[1][1][2]=934.472;
|
978 |
|
|
_meanAS[1][1][3]=8.32667e-16;
|
979 |
|
|
_meanAM[1][1][0]=-0.00219814;
|
980 |
|
|
_meanAM[1][1][1]=0.653906;
|
981 |
|
|
_meanAM[1][1][2]=0.0949848;
|
982 |
|
|
_meanAM[1][1][3]=0.0977831;
|
983 |
|
|
_meanBT[1][1][0]=0.0;
|
984 |
|
|
_meanBT[1][1][1]=0.0;
|
985 |
|
|
_meanBT[1][1][2]=0.0;
|
986 |
|
|
_meanBT[1][1][3]=0.0;
|
987 |
|
|
_meanBC[1][1][0]=-0.00423472;
|
988 |
|
|
_meanBC[1][1][1]=0.0279695;
|
989 |
|
|
_meanBC[1][1][2]=28073.7;
|
990 |
|
|
_meanBC[1][1][3]=118612;
|
991 |
|
|
_meanBS[1][1][0]=-0.0012476;
|
992 |
|
|
_meanBS[1][1][1]=0.02744;
|
993 |
|
|
_meanBS[1][1][2]=390.697;
|
994 |
|
|
_meanBS[1][1][3]=727.861;
|
995 |
|
|
_meanBM[1][1][0]=-1.36573e-05;
|
996 |
|
|
_meanBM[1][1][1]=0.0667504;
|
997 |
|
|
_meanBM[1][1][2]=-80154.4;
|
998 |
|
|
_meanBM[1][1][3]=576.637;
|
999 |
|
|
_meanR9[1][1][0]=0.113317;
|
1000 |
|
|
_meanR9[1][1][1]=0.0142669;
|
1001 |
|
|
_meanR9[1][1][2]=-0.125721;
|
1002 |
|
|
_meanR9[1][1][3]=0;
|
1003 |
|
|
|
1004 |
|
|
_sigmaScale[1][1][0]=0.471767;
|
1005 |
|
|
_sigmaScale[1][1][1]=0.211196;
|
1006 |
|
|
_sigmaScale[1][1][2]=0.0240124;
|
1007 |
|
|
_sigmaScale[1][1][3]=0;
|
1008 |
|
|
_sigmaAT[1][1][0]=0.404395;
|
1009 |
|
|
_sigmaAT[1][1][1]=0;
|
1010 |
|
|
_sigmaAT[1][1][2]=0;
|
1011 |
|
|
_sigmaAT[1][1][3]=0;
|
1012 |
|
|
_sigmaAC[1][1][0]=0.00173151;
|
1013 |
|
|
_sigmaAC[1][1][1]=-0.479291;
|
1014 |
|
|
_sigmaAC[1][1][2]=11583.5;
|
1015 |
|
|
_sigmaAC[1][1][3]=-7e+09;
|
1016 |
|
|
_sigmaAS[1][1][0]=0.000450387;
|
1017 |
|
|
_sigmaAS[1][1][1]=0.662978;
|
1018 |
|
|
_sigmaAS[1][1][2]=924.051;
|
1019 |
|
|
_sigmaAS[1][1][3]=448.417;
|
1020 |
|
|
_sigmaAM[1][1][0]=0.00335603;
|
1021 |
|
|
_sigmaAM[1][1][1]=0.648407;
|
1022 |
|
|
_sigmaAM[1][1][2]=134.672;
|
1023 |
|
|
_sigmaAM[1][1][3]=27.4139;
|
1024 |
|
|
_sigmaBT[1][1][0]=0.602402;
|
1025 |
|
|
_sigmaBT[1][1][1]=0;
|
1026 |
|
|
_sigmaBT[1][1][2]=0;
|
1027 |
|
|
_sigmaBT[1][1][3]=0;
|
1028 |
|
|
_sigmaBC[1][1][0]=-0.00256192;
|
1029 |
|
|
_sigmaBC[1][1][1]=2.01276;
|
1030 |
|
|
_sigmaBC[1][1][2]=114558;
|
1031 |
|
|
_sigmaBC[1][1][3]=2.15421e+06;
|
1032 |
|
|
_sigmaBS[1][1][0]=0.00151576;
|
1033 |
|
|
_sigmaBS[1][1][1]=0.359084;
|
1034 |
|
|
_sigmaBS[1][1][2]=329.414;
|
1035 |
|
|
_sigmaBS[1][1][3]=154.509;
|
1036 |
|
|
_sigmaBM[1][1][0]=-0.0452587;
|
1037 |
|
|
_sigmaBM[1][1][1]=1.26253;
|
1038 |
|
|
_sigmaBM[1][1][2]=1.9e+09;
|
1039 |
|
|
_sigmaBM[1][1][3]=1058.76;
|
1040 |
|
|
_sigmaR9[1][1][0]=4.59667;
|
1041 |
|
|
_sigmaR9[1][1][1]=-5.14404;
|
1042 |
|
|
_sigmaR9[1][1][2]=0;
|
1043 |
|
|
_sigmaR9[1][1][3]=0;
|
1044 |
|
|
|
1045 |
|
|
_initialised=true;
|
1046 |
|
|
}
|
1047 |
|
|
|
1048 |
|
|
if(s=="3_11") {
|
1049 |
|
|
_meanScale[0][0][0]=0.994363;
|
1050 |
|
|
_meanScale[0][0][1]=4.84904e-07;
|
1051 |
|
|
_meanScale[0][0][2]=1.54475e-05;
|
1052 |
|
|
_meanScale[0][0][3]=-0.103309;
|
1053 |
|
|
_meanAT[0][0][0]=0.0;
|
1054 |
|
|
_meanAT[0][0][1]=0.0;
|
1055 |
|
|
_meanAT[0][0][2]=0.0;
|
1056 |
|
|
_meanAT[0][0][3]=0.0;
|
1057 |
|
|
_meanAC[0][0][0]=-0.00360057;
|
1058 |
|
|
_meanAC[0][0][1]=0.00970858;
|
1059 |
|
|
_meanAC[0][0][2]=409.406;
|
1060 |
|
|
_meanAC[0][0][3]=527.952;
|
1061 |
|
|
_meanAS[0][0][0]=-1.1;
|
1062 |
|
|
_meanAS[0][0][1]=0.00135995;
|
1063 |
|
|
_meanAS[0][0][2]=295.712;
|
1064 |
|
|
_meanAS[0][0][3]=5.13202e+07;
|
1065 |
|
|
_meanAM[0][0][0]=-0.00129854;
|
1066 |
|
|
_meanAM[0][0][1]=0.151466;
|
1067 |
|
|
_meanAM[0][0][2]=261.828;
|
1068 |
|
|
_meanAM[0][0][3]=214.662;
|
1069 |
|
|
_meanBT[0][0][0]=0.0;
|
1070 |
|
|
_meanBT[0][0][1]=0.0;
|
1071 |
|
|
_meanBT[0][0][2]=0.0;
|
1072 |
|
|
_meanBT[0][0][3]=0.0;
|
1073 |
|
|
_meanBC[0][0][0]=-0.00286864;
|
1074 |
|
|
_meanBC[0][0][1]=0.0114118;
|
1075 |
|
|
_meanBC[0][0][2]=563.962;
|
1076 |
|
|
_meanBC[0][0][3]=412.922;
|
1077 |
|
|
_meanBS[0][0][0]=-0.00210996;
|
1078 |
|
|
_meanBS[0][0][1]=0.00327867;
|
1079 |
|
|
_meanBS[0][0][2]=23.617;
|
1080 |
|
|
_meanBS[0][0][3]=1018.45;
|
1081 |
|
|
_meanBM[0][0][0]=-0.002287;
|
1082 |
|
|
_meanBM[0][0][1]=0.0848984;
|
1083 |
|
|
_meanBM[0][0][2]=235.575;
|
1084 |
|
|
_meanBM[0][0][3]=260.773;
|
1085 |
|
|
_meanR9[0][0][0]=0.951724;
|
1086 |
|
|
_meanR9[0][0][1]=23.7181;
|
1087 |
|
|
_meanR9[0][0][2]=177.34;
|
1088 |
|
|
_meanR9[0][0][3]=0;
|
1089 |
|
|
|
1090 |
|
|
_sigmaScale[0][0][0]=0.187578;
|
1091 |
|
|
_sigmaScale[0][0][1]=-0.000901045;
|
1092 |
|
|
_sigmaScale[0][0][2]=0.00673186;
|
1093 |
|
|
_sigmaScale[0][0][3]=0;
|
1094 |
|
|
_sigmaAT[0][0][0]=0.183777;
|
1095 |
|
|
_sigmaAT[0][0][1]=0;
|
1096 |
|
|
_sigmaAT[0][0][2]=0;
|
1097 |
|
|
_sigmaAT[0][0][3]=0;
|
1098 |
|
|
_sigmaAC[0][0][0]=-0.00430202;
|
1099 |
|
|
_sigmaAC[0][0][1]=0.122501;
|
1100 |
|
|
_sigmaAC[0][0][2]=51.9772;
|
1101 |
|
|
_sigmaAC[0][0][3]=-3e+17;
|
1102 |
|
|
_sigmaAS[0][0][0]=0;
|
1103 |
|
|
_sigmaAS[0][0][1]=0;
|
1104 |
|
|
_sigmaAS[0][0][2]=0;
|
1105 |
|
|
_sigmaAS[0][0][3]=0;
|
1106 |
|
|
_sigmaAM[0][0][0]=0.00101883;
|
1107 |
|
|
_sigmaAM[0][0][1]=11.2009;
|
1108 |
|
|
_sigmaAM[0][0][2]=593.111;
|
1109 |
|
|
_sigmaAM[0][0][3]=345.433;
|
1110 |
|
|
_sigmaBT[0][0][0]=-6.02356e-05;
|
1111 |
|
|
_sigmaBT[0][0][1]=6.99896;
|
1112 |
|
|
_sigmaBT[0][0][2]=235.996;
|
1113 |
|
|
_sigmaBT[0][0][3]=196;
|
1114 |
|
|
_sigmaBC[0][0][0]=-0.00282254;
|
1115 |
|
|
_sigmaBC[0][0][1]=0.18764;
|
1116 |
|
|
_sigmaBC[0][0][2]=509.825;
|
1117 |
|
|
_sigmaBC[0][0][3]=1400.14;
|
1118 |
|
|
_sigmaBS[0][0][0]=0;
|
1119 |
|
|
_sigmaBS[0][0][1]=0;
|
1120 |
|
|
_sigmaBS[0][0][2]=0;
|
1121 |
|
|
_sigmaBS[0][0][3]=0;
|
1122 |
|
|
_sigmaBM[0][0][0]=-0.00252199;
|
1123 |
|
|
_sigmaBM[0][0][1]=39.1544;
|
1124 |
|
|
_sigmaBM[0][0][2]=612.481;
|
1125 |
|
|
_sigmaBM[0][0][3]=905.994;
|
1126 |
|
|
_sigmaR9[0][0][0]=0.95608;
|
1127 |
|
|
_sigmaR9[0][0][1]=2203.31;
|
1128 |
|
|
_sigmaR9[0][0][2]=-22454.2;
|
1129 |
|
|
_sigmaR9[0][0][3]=0;
|
1130 |
|
|
|
1131 |
|
|
_meanScale[0][1][0]=0.889415;
|
1132 |
|
|
_meanScale[0][1][1]=1.21788e-05;
|
1133 |
|
|
_meanScale[0][1][2]=-4.3438e-06;
|
1134 |
|
|
_meanScale[0][1][3]=-0.629968;
|
1135 |
|
|
_meanAT[0][1][0]=0.0;
|
1136 |
|
|
_meanAT[0][1][1]=0.0;
|
1137 |
|
|
_meanAT[0][1][2]=0.0;
|
1138 |
|
|
_meanAT[0][1][3]=0.0;
|
1139 |
|
|
_meanAC[0][1][0]=-0.00313701;
|
1140 |
|
|
_meanAC[0][1][1]=0.0227998;
|
1141 |
|
|
_meanAC[0][1][2]=128.653;
|
1142 |
|
|
_meanAC[0][1][3]=234.333;
|
1143 |
|
|
_meanAS[0][1][0]=0.0346198;
|
1144 |
|
|
_meanAS[0][1][1]=-0.00261336;
|
1145 |
|
|
_meanAS[0][1][2]=177.983;
|
1146 |
|
|
_meanAS[0][1][3]=1.19839e+14;
|
1147 |
|
|
_meanAM[0][1][0]=-0.00100745;
|
1148 |
|
|
_meanAM[0][1][1]=0.264247;
|
1149 |
|
|
_meanAM[0][1][2]=337.255;
|
1150 |
|
|
_meanAM[0][1][3]=251.454;
|
1151 |
|
|
_meanBT[0][1][0]=0.0;
|
1152 |
|
|
_meanBT[0][1][1]=0.0;
|
1153 |
|
|
_meanBT[0][1][2]=0.0;
|
1154 |
|
|
_meanBT[0][1][3]=0.0;
|
1155 |
|
|
_meanBC[0][1][0]=-0.00397794;
|
1156 |
|
|
_meanBC[0][1][1]=0.00219079;
|
1157 |
|
|
_meanBC[0][1][2]=176.842;
|
1158 |
|
|
_meanBC[0][1][3]=450.29;
|
1159 |
|
|
_meanBS[0][1][0]=-2e+07;
|
1160 |
|
|
_meanBS[0][1][1]=0.0957598;
|
1161 |
|
|
_meanBS[0][1][2]=-8.88573e-27;
|
1162 |
|
|
_meanBS[0][1][3]=11442.2;
|
1163 |
|
|
_meanBM[0][1][0]=-0.00366315;
|
1164 |
|
|
_meanBM[0][1][1]=0.0622186;
|
1165 |
|
|
_meanBM[0][1][2]=94.5155;
|
1166 |
|
|
_meanBM[0][1][3]=126.404;
|
1167 |
|
|
_meanR9[0][1][0]=0.00636789;
|
1168 |
|
|
_meanR9[0][1][1]=0.000336062;
|
1169 |
|
|
_meanR9[0][1][2]=-0.0092699;
|
1170 |
|
|
_meanR9[0][1][3]=0;
|
1171 |
|
|
|
1172 |
|
|
_sigmaScale[0][1][0]=0.685096;
|
1173 |
|
|
_sigmaScale[0][1][1]=0.129065;
|
1174 |
|
|
_sigmaScale[0][1][2]=-0.00212486;
|
1175 |
|
|
_sigmaScale[0][1][3]=0;
|
1176 |
|
|
_sigmaAT[0][1][0]=0.898865;
|
1177 |
|
|
_sigmaAT[0][1][1]=0;
|
1178 |
|
|
_sigmaAT[0][1][2]=0;
|
1179 |
|
|
_sigmaAT[0][1][3]=0;
|
1180 |
|
|
_sigmaAC[0][1][0]=-0.00492979;
|
1181 |
|
|
_sigmaAC[0][1][1]=-1.20123;
|
1182 |
|
|
_sigmaAC[0][1][2]=2.89231;
|
1183 |
|
|
_sigmaAC[0][1][3]=18.2059;
|
1184 |
|
|
_sigmaAS[0][1][0]=0;
|
1185 |
|
|
_sigmaAS[0][1][1]=0;
|
1186 |
|
|
_sigmaAS[0][1][2]=0;
|
1187 |
|
|
_sigmaAS[0][1][3]=0;
|
1188 |
|
|
_sigmaAM[0][1][0]=-0.000727825;
|
1189 |
|
|
_sigmaAM[0][1][1]=8.42395;
|
1190 |
|
|
_sigmaAM[0][1][2]=512.032;
|
1191 |
|
|
_sigmaAM[0][1][3]=415.962;
|
1192 |
|
|
_sigmaBT[0][1][0]=-0.0336364;
|
1193 |
|
|
_sigmaBT[0][1][1]=2.45182;
|
1194 |
|
|
_sigmaBT[0][1][2]=-0.284353;
|
1195 |
|
|
_sigmaBT[0][1][3]=-0.31679;
|
1196 |
|
|
_sigmaBC[0][1][0]=0.00510553;
|
1197 |
|
|
_sigmaBC[0][1][1]=-0.953869;
|
1198 |
|
|
_sigmaBC[0][1][2]=113872;
|
1199 |
|
|
_sigmaBC[0][1][3]=1.35966e+09;
|
1200 |
|
|
_sigmaBS[0][1][0]=0;
|
1201 |
|
|
_sigmaBS[0][1][1]=0;
|
1202 |
|
|
_sigmaBS[0][1][2]=0;
|
1203 |
|
|
_sigmaBS[0][1][3]=0;
|
1204 |
|
|
_sigmaBM[0][1][0]=-0.0034071;
|
1205 |
|
|
_sigmaBM[0][1][1]=4.19719;
|
1206 |
|
|
_sigmaBM[0][1][2]=128.952;
|
1207 |
|
|
_sigmaBM[0][1][3]=180.604;
|
1208 |
|
|
_sigmaR9[0][1][0]=-3.38988;
|
1209 |
|
|
_sigmaR9[0][1][1]=2.0714;
|
1210 |
|
|
_sigmaR9[0][1][2]=0;
|
1211 |
|
|
_sigmaR9[0][1][3]=0;
|
1212 |
|
|
|
1213 |
|
|
_meanScale[1][0][0]=1.0009;
|
1214 |
|
|
_meanScale[1][0][1]=-4.79805e-06;
|
1215 |
|
|
_meanScale[1][0][2]=3.34625e-05;
|
1216 |
|
|
_meanScale[1][0][3]=-0.194267;
|
1217 |
|
|
_meanAT[1][0][0]=0.0;
|
1218 |
|
|
_meanAT[1][0][1]=0.0;
|
1219 |
|
|
_meanAT[1][0][2]=0.0;
|
1220 |
|
|
_meanAT[1][0][3]=0.0;
|
1221 |
|
|
_meanAC[1][0][0]=-0.000177563;
|
1222 |
|
|
_meanAC[1][0][1]=0.0122839;
|
1223 |
|
|
_meanAC[1][0][2]=1798.92;
|
1224 |
|
|
_meanAC[1][0][3]=776.856;
|
1225 |
|
|
_meanAS[1][0][0]=-0.000533039;
|
1226 |
|
|
_meanAS[1][0][1]=0.0642604;
|
1227 |
|
|
_meanAS[1][0][2]=969.596;
|
1228 |
|
|
_meanAS[1][0][3]=1004.15;
|
1229 |
|
|
_meanAM[1][0][0]=0.000163185;
|
1230 |
|
|
_meanAM[1][0][1]=0.085936;
|
1231 |
|
|
_meanAM[1][0][2]=1593.17;
|
1232 |
|
|
_meanAM[1][0][3]=681.623;
|
1233 |
|
|
_meanBT[1][0][0]=0.0;
|
1234 |
|
|
_meanBT[1][0][1]=0.0;
|
1235 |
|
|
_meanBT[1][0][2]=0.0;
|
1236 |
|
|
_meanBT[1][0][3]=0.0;
|
1237 |
|
|
_meanBC[1][0][0]=-0.000518186;
|
1238 |
|
|
_meanBC[1][0][1]=0.0121868;
|
1239 |
|
|
_meanBC[1][0][2]=1112.53;
|
1240 |
|
|
_meanBC[1][0][3]=933.281;
|
1241 |
|
|
_meanBS[1][0][0]=-0.000750734;
|
1242 |
|
|
_meanBS[1][0][1]=0.03859;
|
1243 |
|
|
_meanBS[1][0][2]=547.579;
|
1244 |
|
|
_meanBS[1][0][3]=775.887;
|
1245 |
|
|
_meanBM[1][0][0]=-0.190395;
|
1246 |
|
|
_meanBM[1][0][1]=-0.00362647;
|
1247 |
|
|
_meanBM[1][0][2]=5.25687;
|
1248 |
|
|
_meanBM[1][0][3]=-2.8e+08;
|
1249 |
|
|
_meanR9[1][0][0]=0.972346;
|
1250 |
|
|
_meanR9[1][0][1]=53.9185;
|
1251 |
|
|
_meanR9[1][0][2]=1354.5;
|
1252 |
|
|
_meanR9[1][0][3]=0;
|
1253 |
|
|
|
1254 |
|
|
_sigmaScale[1][0][0]=0.348019;
|
1255 |
|
|
_sigmaScale[1][0][1]=-6.43731e-11;
|
1256 |
|
|
_sigmaScale[1][0][2]=0.0158647;
|
1257 |
|
|
_sigmaScale[1][0][3]=0;
|
1258 |
|
|
_sigmaAT[1][0][0]=0.215239;
|
1259 |
|
|
_sigmaAT[1][0][1]=0;
|
1260 |
|
|
_sigmaAT[1][0][2]=0;
|
1261 |
|
|
_sigmaAT[1][0][3]=0;
|
1262 |
|
|
_sigmaAC[1][0][0]=-0.00492298;
|
1263 |
|
|
_sigmaAC[1][0][1]=-3.40058;
|
1264 |
|
|
_sigmaAC[1][0][2]=17263.9;
|
1265 |
|
|
_sigmaAC[1][0][3]=2.6e+11;
|
1266 |
|
|
_sigmaAS[1][0][0]=-0.000237998;
|
1267 |
|
|
_sigmaAS[1][0][1]=3.0258;
|
1268 |
|
|
_sigmaAS[1][0][2]=1811.25;
|
1269 |
|
|
_sigmaAS[1][0][3]=1846.79;
|
1270 |
|
|
_sigmaAM[1][0][0]=0.0210134;
|
1271 |
|
|
_sigmaAM[1][0][1]=0.328359;
|
1272 |
|
|
_sigmaAM[1][0][2]=22.49;
|
1273 |
|
|
_sigmaAM[1][0][3]=14.5021;
|
1274 |
|
|
_sigmaBT[1][0][0]=-0.495072;
|
1275 |
|
|
_sigmaBT[1][0][1]=0;
|
1276 |
|
|
_sigmaBT[1][0][2]=0;
|
1277 |
|
|
_sigmaBT[1][0][3]=0;
|
1278 |
|
|
_sigmaBC[1][0][0]=-0.00265007;
|
1279 |
|
|
_sigmaBC[1][0][1]=0.970549;
|
1280 |
|
|
_sigmaBC[1][0][2]=-6.89119e+07;
|
1281 |
|
|
_sigmaBC[1][0][3]=180110;
|
1282 |
|
|
_sigmaBS[1][0][0]=0.00045833;
|
1283 |
|
|
_sigmaBS[1][0][1]=2.16342;
|
1284 |
|
|
_sigmaBS[1][0][2]=3582.4;
|
1285 |
|
|
_sigmaBS[1][0][3]=1100.36;
|
1286 |
|
|
_sigmaBM[1][0][0]=0.00188871;
|
1287 |
|
|
_sigmaBM[1][0][1]=1.66177;
|
1288 |
|
|
_sigmaBM[1][0][2]=3.2e+08;
|
1289 |
|
|
_sigmaBM[1][0][3]=2163.81;
|
1290 |
|
|
_sigmaR9[1][0][0]=-220.415;
|
1291 |
|
|
_sigmaR9[1][0][1]=5.19136e-08;
|
1292 |
|
|
_sigmaR9[1][0][2]=3.04028e-10;
|
1293 |
|
|
_sigmaR9[1][0][3]=0;
|
1294 |
|
|
|
1295 |
|
|
_meanScale[1][1][0]=0.338011;
|
1296 |
|
|
_meanScale[1][1][1]=9.47815e-05;
|
1297 |
|
|
_meanScale[1][1][2]=-0.000238735;
|
1298 |
|
|
_meanScale[1][1][3]=-0.846414;
|
1299 |
|
|
_meanAT[1][1][0]=0.0;
|
1300 |
|
|
_meanAT[1][1][1]=0.0;
|
1301 |
|
|
_meanAT[1][1][2]=0.0;
|
1302 |
|
|
_meanAT[1][1][3]=0.0;
|
1303 |
|
|
_meanAC[1][1][0]=-0.00125367;
|
1304 |
|
|
_meanAC[1][1][1]=0.013324;
|
1305 |
|
|
_meanAC[1][1][2]=203.988;
|
1306 |
|
|
_meanAC[1][1][3]=431.951;
|
1307 |
|
|
_meanAS[1][1][0]=0.000282607;
|
1308 |
|
|
_meanAS[1][1][1]=0.0307431;
|
1309 |
|
|
_meanAS[1][1][2]=343.509;
|
1310 |
|
|
_meanAS[1][1][3]=274.957;
|
1311 |
|
|
_meanAM[1][1][0]=0.0020258;
|
1312 |
|
|
_meanAM[1][1][1]=0.643913;
|
1313 |
|
|
_meanAM[1][1][2]=0.0693877;
|
1314 |
|
|
_meanAM[1][1][3]=0.0816029;
|
1315 |
|
|
_meanBT[1][1][0]=0.0;
|
1316 |
|
|
_meanBT[1][1][1]=0.0;
|
1317 |
|
|
_meanBT[1][1][2]=0.0;
|
1318 |
|
|
_meanBT[1][1][3]=0.0;
|
1319 |
|
|
_meanBC[1][1][0]=-0.00513833;
|
1320 |
|
|
_meanBC[1][1][1]=5.94424e+08;
|
1321 |
|
|
_meanBC[1][1][2]=-62814.9;
|
1322 |
|
|
_meanBC[1][1][3]=118612;
|
1323 |
|
|
_meanBS[1][1][0]=-0.00152129;
|
1324 |
|
|
_meanBS[1][1][1]=0.0234694;
|
1325 |
|
|
_meanBS[1][1][2]=186.483;
|
1326 |
|
|
_meanBS[1][1][3]=754.201;
|
1327 |
|
|
_meanBM[1][1][0]=-0.000404987;
|
1328 |
|
|
_meanBM[1][1][1]=0.156384;
|
1329 |
|
|
_meanBM[1][1][2]=-1.7e+08;
|
1330 |
|
|
_meanBM[1][1][3]=1793.83;
|
1331 |
|
|
_meanR9[1][1][0]=0.0645278;
|
1332 |
|
|
_meanR9[1][1][1]=0.161614;
|
1333 |
|
|
_meanR9[1][1][2]=-0.215822;
|
1334 |
|
|
_meanR9[1][1][3]=0;
|
1335 |
|
|
|
1336 |
|
|
_sigmaScale[1][1][0]=1.07376;
|
1337 |
|
|
_sigmaScale[1][1][1]=7.47238e-13;
|
1338 |
|
|
_sigmaScale[1][1][2]=0.0289594;
|
1339 |
|
|
_sigmaScale[1][1][3]=0;
|
1340 |
|
|
_sigmaAT[1][1][0]=-0.520907;
|
1341 |
|
|
_sigmaAT[1][1][1]=0;
|
1342 |
|
|
_sigmaAT[1][1][2]=0;
|
1343 |
|
|
_sigmaAT[1][1][3]=0;
|
1344 |
|
|
_sigmaAC[1][1][0]=0.00165941;
|
1345 |
|
|
_sigmaAC[1][1][1]=-0.351422;
|
1346 |
|
|
_sigmaAC[1][1][2]=8968.94;
|
1347 |
|
|
_sigmaAC[1][1][3]=-7e+09;
|
1348 |
|
|
_sigmaAS[1][1][0]=0.000490279;
|
1349 |
|
|
_sigmaAS[1][1][1]=0.554531;
|
1350 |
|
|
_sigmaAS[1][1][2]=469.111;
|
1351 |
|
|
_sigmaAS[1][1][3]=457.541;
|
1352 |
|
|
_sigmaAM[1][1][0]=0.00102079;
|
1353 |
|
|
_sigmaAM[1][1][1]=0.628055;
|
1354 |
|
|
_sigmaAM[1][1][2]=53.9452;
|
1355 |
|
|
_sigmaAM[1][1][3]=72.911;
|
1356 |
|
|
_sigmaBT[1][1][0]=-0.461542;
|
1357 |
|
|
_sigmaBT[1][1][1]=0;
|
1358 |
|
|
_sigmaBT[1][1][2]=0;
|
1359 |
|
|
_sigmaBT[1][1][3]=0;
|
1360 |
|
|
_sigmaBC[1][1][0]=-0.00219303;
|
1361 |
|
|
_sigmaBC[1][1][1]=0.874327;
|
1362 |
|
|
_sigmaBC[1][1][2]=71353.2;
|
1363 |
|
|
_sigmaBC[1][1][3]=2.09924e+08;
|
1364 |
|
|
_sigmaBS[1][1][0]=0.00104021;
|
1365 |
|
|
_sigmaBS[1][1][1]=0.236098;
|
1366 |
|
|
_sigmaBS[1][1][2]=482.954;
|
1367 |
|
|
_sigmaBS[1][1][3]=191.984;
|
1368 |
|
|
_sigmaBM[1][1][0]=-0.000116086;
|
1369 |
|
|
_sigmaBM[1][1][1]=2.4438;
|
1370 |
|
|
_sigmaBM[1][1][2]=1.9e+09;
|
1371 |
|
|
_sigmaBM[1][1][3]=-700.271;
|
1372 |
|
|
_sigmaR9[1][1][0]=4.59374;
|
1373 |
|
|
_sigmaR9[1][1][1]=-5.06202;
|
1374 |
|
|
_sigmaR9[1][1][2]=0;
|
1375 |
|
|
_sigmaR9[1][1][3]=0;
|
1376 |
|
|
|
1377 |
|
|
_initialised=true;
|
1378 |
|
|
}
|
1379 |
|
|
|
1380 |
|
|
if(s=="4_2") {
|
1381 |
|
|
_meanScale[0][0][0]=0.995941423;
|
1382 |
|
|
_meanScale[0][0][1]=-1.41986304e-05;
|
1383 |
|
|
_meanScale[0][0][2]=3.66129541e-05;
|
1384 |
|
|
_meanScale[0][0][3]=-0.0774047233;
|
1385 |
|
|
_meanAT[0][0][0]=0.000720281545;
|
1386 |
|
|
_meanAT[0][0][1]=0;
|
1387 |
|
|
_meanAT[0][0][2]=0;
|
1388 |
|
|
_meanAT[0][0][3]=0;
|
1389 |
|
|
_meanAC[0][0][0]=-0.00344862444;
|
1390 |
|
|
_meanAC[0][0][1]=0.0101395802;
|
1391 |
|
|
_meanAC[0][0][2]=466.112225;
|
1392 |
|
|
_meanAC[0][0][3]=507.628173;
|
1393 |
|
|
_meanAS[0][0][0]=0;
|
1394 |
|
|
_meanAS[0][0][1]=0;
|
1395 |
|
|
_meanAS[0][0][2]=0;
|
1396 |
|
|
_meanAS[0][0][3]=0;
|
1397 |
|
|
_meanAM[0][0][0]=-0.000871553792;
|
1398 |
|
|
_meanAM[0][0][1]=0.141419889;
|
1399 |
|
|
_meanAM[0][0][2]=281.104504;
|
1400 |
|
|
_meanAM[0][0][3]=195.875679;
|
1401 |
|
|
_meanBT[0][0][0]=0;
|
1402 |
|
|
_meanBT[0][0][1]=0.026344491;
|
1403 |
|
|
_meanBT[0][0][2]=-104.20518;
|
1404 |
|
|
_meanBT[0][0][3]=-176099;
|
1405 |
|
|
_meanBC[0][0][0]=-0.00272095949;
|
1406 |
|
|
_meanBC[0][0][1]=0.012411788;
|
1407 |
|
|
_meanBC[0][0][2]=587.318903;
|
1408 |
|
|
_meanBC[0][0][3]=381.415059;
|
1409 |
|
|
_meanBS[0][0][0]=-0.00201265145;
|
1410 |
|
|
_meanBS[0][0][1]=0.00372948657;
|
1411 |
|
|
_meanBS[0][0][2]=41.2773112;
|
1412 |
|
|
_meanBS[0][0][3]=748.890936;
|
1413 |
|
|
_meanBM[0][0][0]=-0.00168471013;
|
1414 |
|
|
_meanBM[0][0][1]=0.0685484442;
|
1415 |
|
|
_meanBM[0][0][2]=217.983503;
|
1416 |
|
|
_meanBM[0][0][3]=207.660928;
|
1417 |
|
|
_meanR9[0][0][0]=0.946581139;
|
1418 |
|
|
_meanR9[0][0][1]=20.6034189;
|
1419 |
|
|
_meanR9[0][0][2]=187.28856;
|
1420 |
|
|
_meanR9[0][0][3]=0;
|
1421 |
|
|
|
1422 |
|
|
_sigmaScale[0][0][0]=0.206349443;
|
1423 |
|
|
_sigmaScale[0][0][1]=0.0206592338;
|
1424 |
|
|
_sigmaScale[0][0][2]=0.00653752299;
|
1425 |
|
|
_sigmaScale[0][0][3]=0;
|
1426 |
|
|
_sigmaAT[0][0][0]=0.178629422;
|
1427 |
|
|
_sigmaAT[0][0][1]=0;
|
1428 |
|
|
_sigmaAT[0][0][2]=0;
|
1429 |
|
|
_sigmaAT[0][0][3]=0;
|
1430 |
|
|
_sigmaAC[0][0][0]=-0.00335501889;
|
1431 |
|
|
_sigmaAC[0][0][1]=0.0997921532;
|
1432 |
|
|
_sigmaAC[0][0][2]=93.6397821;
|
1433 |
|
|
_sigmaAC[0][0][3]=1519.43272;
|
1434 |
|
|
_sigmaAS[0][0][0]=0;
|
1435 |
|
|
_sigmaAS[0][0][1]=0;
|
1436 |
|
|
_sigmaAS[0][0][2]=0;
|
1437 |
|
|
_sigmaAS[0][0][3]=0;
|
1438 |
|
|
_sigmaAM[0][0][0]=0.000927325527;
|
1439 |
|
|
_sigmaAM[0][0][1]=10.2678389;
|
1440 |
|
|
_sigmaAM[0][0][2]=619.975988;
|
1441 |
|
|
_sigmaAM[0][0][3]=285.190815;
|
1442 |
|
|
_sigmaBT[0][0][0]=0;
|
1443 |
|
|
_sigmaBT[0][0][1]=0.895041707;
|
1444 |
|
|
_sigmaBT[0][0][2]=94.6834192;
|
1445 |
|
|
_sigmaBT[0][0][3]=62.3012502;
|
1446 |
|
|
_sigmaBC[0][0][0]=-0.00169896783;
|
1447 |
|
|
_sigmaBC[0][0][1]=0.323973706;
|
1448 |
|
|
_sigmaBC[0][0][2]=1234.03309;
|
1449 |
|
|
_sigmaBC[0][0][3]=907.352988;
|
1450 |
|
|
_sigmaBS[0][0][0]=0;
|
1451 |
|
|
_sigmaBS[0][0][1]=0;
|
1452 |
|
|
_sigmaBS[0][0][2]=0;
|
1453 |
|
|
_sigmaBS[0][0][3]=0;
|
1454 |
|
|
_sigmaBM[0][0][0]=-0.00249508825;
|
1455 |
|
|
_sigmaBM[0][0][1]=57.8982306;
|
1456 |
|
|
_sigmaBM[0][0][2]=665.068952;
|
1457 |
|
|
_sigmaBM[0][0][3]=1075.1094;
|
1458 |
|
|
_sigmaR9[0][0][0]=0.952890416;
|
1459 |
|
|
_sigmaR9[0][0][1]=1958.37946;
|
1460 |
|
|
_sigmaR9[0][0][2]=21612.0219;
|
1461 |
|
|
_sigmaR9[0][0][3]=0;
|
1462 |
|
|
|
1463 |
|
|
_meanScale[0][1][0]=0.982680412;
|
1464 |
|
|
_meanScale[0][1][1]=3.13860176e-05;
|
1465 |
|
|
_meanScale[0][1][2]=-2.89107109e-05;
|
1466 |
|
|
_meanScale[0][1][3]=-0.458678502;
|
1467 |
|
|
_meanAT[0][1][0]=-0.00204222443;
|
1468 |
|
|
_meanAT[0][1][1]=0;
|
1469 |
|
|
_meanAT[0][1][2]=0;
|
1470 |
|
|
_meanAT[0][1][3]=0;
|
1471 |
|
|
_meanAC[0][1][0]=-0.00329797061;
|
1472 |
|
|
_meanAC[0][1][1]=0.0212879256;
|
1473 |
|
|
_meanAC[0][1][2]=135.879912;
|
1474 |
|
|
_meanAC[0][1][3]=238.247576;
|
1475 |
|
|
_meanAS[0][1][0]=0;
|
1476 |
|
|
_meanAS[0][1][1]=0;
|
1477 |
|
|
_meanAS[0][1][2]=0;
|
1478 |
|
|
_meanAS[0][1][3]=0;
|
1479 |
|
|
_meanAM[0][1][0]=-0.000512006976;
|
1480 |
|
|
_meanAM[0][1][1]=0.124281288;
|
1481 |
|
|
_meanAM[0][1][2]=480.326634;
|
1482 |
|
|
_meanAM[0][1][3]=286.165783;
|
1483 |
|
|
_meanBT[0][1][0]=0;
|
1484 |
|
|
_meanBT[0][1][1]=0.204384889;
|
1485 |
|
|
_meanBT[0][1][2]=303.764745;
|
1486 |
|
|
_meanBT[0][1][3]=408.14741;
|
1487 |
|
|
_meanBC[0][1][0]=-0.0035698745;
|
1488 |
|
|
_meanBC[0][1][1]=0.00402323151;
|
1489 |
|
|
_meanBC[0][1][2]=980.296598;
|
1490 |
|
|
_meanBC[0][1][3]=869.711616;
|
1491 |
|
|
_meanBS[0][1][0]=0;
|
1492 |
|
|
_meanBS[0][1][1]=0;
|
1493 |
|
|
_meanBS[0][1][2]=0;
|
1494 |
|
|
_meanBS[0][1][3]=0;
|
1495 |
|
|
_meanBM[0][1][0]=-0.00321305828;
|
1496 |
|
|
_meanBM[0][1][1]=0.0454848819;
|
1497 |
|
|
_meanBM[0][1][2]=147.827487;
|
1498 |
|
|
_meanBM[0][1][3]=227.625382;
|
1499 |
|
|
_meanR9[0][1][0]=0.0253777359;
|
1500 |
|
|
_meanR9[0][1][1]=-0.0420810898;
|
1501 |
|
|
_meanR9[0][1][2]=0.0181966013;
|
1502 |
|
|
_meanR9[0][1][3]=0;
|
1503 |
|
|
|
1504 |
|
|
_sigmaScale[0][1][0]=1.53707929;
|
1505 |
|
|
_sigmaScale[0][1][1]=0.0946423194;
|
1506 |
|
|
_sigmaScale[0][1][2]=-0.00765920151;
|
1507 |
|
|
_sigmaScale[0][1][3]=0;
|
1508 |
|
|
_sigmaAT[0][1][0]=0.808880052;
|
1509 |
|
|
_sigmaAT[0][1][1]=0;
|
1510 |
|
|
_sigmaAT[0][1][2]=0;
|
1511 |
|
|
_sigmaAT[0][1][3]=0;
|
1512 |
|
|
_sigmaAC[0][1][0]=-0.00195542375;
|
1513 |
|
|
_sigmaAC[0][1][1]=-2.09949949;
|
1514 |
|
|
_sigmaAC[0][1][2]=4.30292193;
|
1515 |
|
|
_sigmaAC[0][1][3]=5.09475964;
|
1516 |
|
|
_sigmaAS[0][1][0]=0;
|
1517 |
|
|
_sigmaAS[0][1][1]=0;
|
1518 |
|
|
_sigmaAS[0][1][2]=0;
|
1519 |
|
|
_sigmaAS[0][1][3]=0;
|
1520 |
|
|
_sigmaAM[0][1][0]=-0.00105652021;
|
1521 |
|
|
_sigmaAM[0][1][1]=5.83420851;
|
1522 |
|
|
_sigmaAM[0][1][2]=506.986527;
|
1523 |
|
|
_sigmaAM[0][1][3]=468.330744;
|
1524 |
|
|
_sigmaBT[0][1][0]=0;
|
1525 |
|
|
_sigmaBT[0][1][1]=2.83411417;
|
1526 |
|
|
_sigmaBT[0][1][2]=-0.211242292;
|
1527 |
|
|
_sigmaBT[0][1][3]=-0.198231087;
|
1528 |
|
|
_sigmaBC[0][1][0]=0.00580038243;
|
1529 |
|
|
_sigmaBC[0][1][1]=0.165505659;
|
1530 |
|
|
_sigmaBC[0][1][2]=4133.45418;
|
1531 |
|
|
_sigmaBC[0][1][3]=375000000;
|
1532 |
|
|
_sigmaBS[0][1][0]=0;
|
1533 |
|
|
_sigmaBS[0][1][1]=0;
|
1534 |
|
|
_sigmaBS[0][1][2]=0;
|
1535 |
|
|
_sigmaBS[0][1][3]=0;
|
1536 |
|
|
_sigmaBM[0][1][0]=-0.00269993666;
|
1537 |
|
|
_sigmaBM[0][1][1]=3.42390459;
|
1538 |
|
|
_sigmaBM[0][1][2]=171.300481;
|
1539 |
|
|
_sigmaBM[0][1][3]=284.718025;
|
1540 |
|
|
_sigmaR9[0][1][0]=-3.75255938;
|
1541 |
|
|
_sigmaR9[0][1][1]=4.3849733;
|
1542 |
|
|
_sigmaR9[0][1][2]=-1.81745726;
|
1543 |
|
|
_sigmaR9[0][1][3]=0;
|
1544 |
|
|
|
1545 |
|
|
_meanScale[1][0][0]=0.990082016;
|
1546 |
|
|
_meanScale[1][0][1]=-3.75802712e-06;
|
1547 |
|
|
_meanScale[1][0][2]=2.56693516e-05;
|
1548 |
|
|
_meanScale[1][0][3]=-0.0492813428;
|
1549 |
|
|
_meanAT[1][0][0]=0.072352478;
|
1550 |
|
|
_meanAT[1][0][1]=0;
|
1551 |
|
|
_meanAT[1][0][2]=0;
|
1552 |
|
|
_meanAT[1][0][3]=0;
|
1553 |
|
|
_meanAC[1][0][0]=-0.0002936899;
|
1554 |
|
|
_meanAC[1][0][1]=0.0160546814;
|
1555 |
|
|
_meanAC[1][0][2]=1183.48593;
|
1556 |
|
|
_meanAC[1][0][3]=761.29774;
|
1557 |
|
|
_meanAS[1][0][0]=-0.000462243216;
|
1558 |
|
|
_meanAS[1][0][1]=0.0795658256;
|
1559 |
|
|
_meanAS[1][0][2]=887.080242;
|
1560 |
|
|
_meanAS[1][0][3]=1067.72442;
|
1561 |
|
|
_meanAM[1][0][0]=0.000354495505;
|
1562 |
|
|
_meanAM[1][0][1]=0.516700576;
|
1563 |
|
|
_meanAM[1][0][2]=4376.14811;
|
1564 |
|
|
_meanAM[1][0][3]=2093.33478;
|
1565 |
|
|
_meanBT[1][0][0]=0.077752944;
|
1566 |
|
|
_meanBT[1][0][1]=0;
|
1567 |
|
|
_meanBT[1][0][2]=0;
|
1568 |
|
|
_meanBT[1][0][3]=0;
|
1569 |
|
|
_meanBC[1][0][0]=-0.000411367107;
|
1570 |
|
|
_meanBC[1][0][1]=0.0161135906;
|
1571 |
|
|
_meanBC[1][0][2]=1414.07982;
|
1572 |
|
|
_meanBC[1][0][3]=951.556042;
|
1573 |
|
|
_meanBS[1][0][0]=8.51070829e-05;
|
1574 |
|
|
_meanBS[1][0][1]=0.0699037982;
|
1575 |
|
|
_meanBS[1][0][2]=1565.72963;
|
1576 |
|
|
_meanBS[1][0][3]=841.509573;
|
1577 |
|
|
_meanBM[1][0][0]=-0.00252281385;
|
1578 |
|
|
_meanBM[1][0][1]=0.00600665031;
|
1579 |
|
|
_meanBM[1][0][2]=268.761304;
|
1580 |
|
|
_meanBM[1][0][3]=46.5945865;
|
1581 |
|
|
_meanR9[1][0][0]=0.964231565;
|
1582 |
|
|
_meanR9[1][0][1]=30.1631606;
|
1583 |
|
|
_meanR9[1][0][2]=414.510458;
|
1584 |
|
|
_meanR9[1][0][3]=0;
|
1585 |
|
|
|
1586 |
|
|
_sigmaScale[1][0][0]=0.218991853;
|
1587 |
|
|
_sigmaScale[1][0][1]=6.93889e-18;
|
1588 |
|
|
_sigmaScale[1][0][2]=0.00939222285;
|
1589 |
|
|
_sigmaScale[1][0][3]=0;
|
1590 |
|
|
_sigmaAT[1][0][0]=1.61339852;
|
1591 |
|
|
_sigmaAT[1][0][1]=0;
|
1592 |
|
|
_sigmaAT[1][0][2]=0;
|
1593 |
|
|
_sigmaAT[1][0][3]=0;
|
1594 |
|
|
_sigmaAC[1][0][0]=0.00019476922;
|
1595 |
|
|
_sigmaAC[1][0][1]=0.697650974;
|
1596 |
|
|
_sigmaAC[1][0][2]=-0.000125668382;
|
1597 |
|
|
_sigmaAC[1][0][3]=12.8659982;
|
1598 |
|
|
_sigmaAS[1][0][0]=-1.68218147e-05;
|
1599 |
|
|
_sigmaAS[1][0][1]=6.57794255;
|
1600 |
|
|
_sigmaAS[1][0][2]=1555.93015;
|
1601 |
|
|
_sigmaAS[1][0][3]=1401.542;
|
1602 |
|
|
_sigmaAM[1][0][0]=0.0570038229;
|
1603 |
|
|
_sigmaAM[1][0][1]=0.633551691;
|
1604 |
|
|
_sigmaAM[1][0][2]=9.59639e+11;
|
1605 |
|
|
_sigmaAM[1][0][3]=16.4637695;
|
1606 |
|
|
_sigmaBT[1][0][0]=-0.0591443023;
|
1607 |
|
|
_sigmaBT[1][0][1]=0;
|
1608 |
|
|
_sigmaBT[1][0][2]=0;
|
1609 |
|
|
_sigmaBT[1][0][3]=0;
|
1610 |
|
|
_sigmaBC[1][0][0]=-0.00320070019;
|
1611 |
|
|
_sigmaBC[1][0][1]=25.5502578;
|
1612 |
|
|
_sigmaBC[1][0][2]=7.49509e+12;
|
1613 |
|
|
_sigmaBC[1][0][3]=3798165.72;
|
1614 |
|
|
_sigmaBS[1][0][0]=9.63685051e-05;
|
1615 |
|
|
_sigmaBS[1][0][1]=6.91673581;
|
1616 |
|
|
_sigmaBS[1][0][2]=2447.68053;
|
1617 |
|
|
_sigmaBS[1][0][3]=1721.11327;
|
1618 |
|
|
_sigmaBM[1][0][0]=0.00148006;
|
1619 |
|
|
_sigmaBM[1][0][1]=28;
|
1620 |
|
|
_sigmaBM[1][0][2]=5400000;
|
1621 |
|
|
_sigmaBM[1][0][3]=-9000000;
|
1622 |
|
|
_sigmaR9[1][0][0]=187.987786;
|
1623 |
|
|
_sigmaR9[1][0][1]=-1.91777372e-07;
|
1624 |
|
|
_sigmaR9[1][0][2]=8.29820105e-09;
|
1625 |
|
|
_sigmaR9[1][0][3]=0;
|
1626 |
|
|
|
1627 |
|
|
_meanScale[1][1][0]=0.331585644;
|
1628 |
|
|
_meanScale[1][1][1]=-4.97323079e-05;
|
1629 |
|
|
_meanScale[1][1][2]=0.000208912195;
|
1630 |
|
|
_meanScale[1][1][3]=-1.36032052;
|
1631 |
|
|
_meanAT[1][1][0]=-0.0640673292;
|
1632 |
|
|
_meanAT[1][1][1]=0;
|
1633 |
|
|
_meanAT[1][1][2]=0;
|
1634 |
|
|
_meanAT[1][1][3]=0;
|
1635 |
|
|
_meanAC[1][1][0]=-0.00129027954;
|
1636 |
|
|
_meanAC[1][1][1]=0.00733510902;
|
1637 |
|
|
_meanAC[1][1][2]=182.714706;
|
1638 |
|
|
_meanAC[1][1][3]=621.652554;
|
1639 |
|
|
_meanAS[1][1][0]=-0.000490574173;
|
1640 |
|
|
_meanAS[1][1][1]=0.0308208884;
|
1641 |
|
|
_meanAS[1][1][2]=385.372647;
|
1642 |
|
|
_meanAS[1][1][3]=492.313289;
|
1643 |
|
|
_meanAM[1][1][0]=-0.0064828927;
|
1644 |
|
|
_meanAM[1][1][1]=0.649443452;
|
1645 |
|
|
_meanAM[1][1][2]=0.0573092773;
|
1646 |
|
|
_meanAM[1][1][3]=0.0743069;
|
1647 |
|
|
_meanBT[1][1][0]=-0.147343956;
|
1648 |
|
|
_meanBT[1][1][1]=0;
|
1649 |
|
|
_meanBT[1][1][2]=0;
|
1650 |
|
|
_meanBT[1][1][3]=0;
|
1651 |
|
|
_meanBC[1][1][0]=-0.00503351921;
|
1652 |
|
|
_meanBC[1][1][1]=-57691.5085;
|
1653 |
|
|
_meanBC[1][1][2]=46202.9758;
|
1654 |
|
|
_meanBC[1][1][3]=118612;
|
1655 |
|
|
_meanBS[1][1][0]=-0.000793147706;
|
1656 |
|
|
_meanBS[1][1][1]=0.0238305184;
|
1657 |
|
|
_meanBS[1][1][2]=402.215233;
|
1658 |
|
|
_meanBS[1][1][3]=455.848092;
|
1659 |
|
|
_meanBM[1][1][0]=0.000434549102;
|
1660 |
|
|
_meanBM[1][1][1]=0.0443539812;
|
1661 |
|
|
_meanBM[1][1][2]=-39970930.5;
|
1662 |
|
|
_meanBM[1][1][3]=-635.815445;
|
1663 |
|
|
_meanR9[1][1][0]=-0.411370898;
|
1664 |
|
|
_meanR9[1][1][1]=1.30133082;
|
1665 |
|
|
_meanR9[1][1][2]=-0.890618718;
|
1666 |
|
|
_meanR9[1][1][3]=0;
|
1667 |
|
|
|
1668 |
|
|
_sigmaScale[1][1][0]=1.49352299;
|
1669 |
|
|
_sigmaScale[1][1][1]=1.38778e-17;
|
1670 |
|
|
_sigmaScale[1][1][2]=0.0248352105;
|
1671 |
|
|
_sigmaScale[1][1][3]=0;
|
1672 |
|
|
_sigmaAT[1][1][0]=-1.18239629;
|
1673 |
|
|
_sigmaAT[1][1][1]=0;
|
1674 |
|
|
_sigmaAT[1][1][2]=0;
|
1675 |
|
|
_sigmaAT[1][1][3]=0;
|
1676 |
|
|
_sigmaAC[1][1][0]=0.00155030534;
|
1677 |
|
|
_sigmaAC[1][1][1]=-0.673931391;
|
1678 |
|
|
_sigmaAC[1][1][2]=134075.829;
|
1679 |
|
|
_sigmaAC[1][1][3]=-7e+09;
|
1680 |
|
|
_sigmaAS[1][1][0]=6.95848091e-05;
|
1681 |
|
|
_sigmaAS[1][1][1]=0.522471203;
|
1682 |
|
|
_sigmaAS[1][1][2]=463.305497;
|
1683 |
|
|
_sigmaAS[1][1][3]=1159.49992;
|
1684 |
|
|
_sigmaAM[1][1][0]=-0.00509006951;
|
1685 |
|
|
_sigmaAM[1][1][1]=0.945276887;
|
1686 |
|
|
_sigmaAM[1][1][2]=46.4072512;
|
1687 |
|
|
_sigmaAM[1][1][3]=7.11474e+12;
|
1688 |
|
|
_sigmaBT[1][1][0]=-1.59480683;
|
1689 |
|
|
_sigmaBT[1][1][1]=0;
|
1690 |
|
|
_sigmaBT[1][1][2]=0;
|
1691 |
|
|
_sigmaBT[1][1][3]=0;
|
1692 |
|
|
_sigmaBC[1][1][0]=-0.00202302997;
|
1693 |
|
|
_sigmaBC[1][1][1]=15.4301057;
|
1694 |
|
|
_sigmaBC[1][1][2]=-33315545.5;
|
1695 |
|
|
_sigmaBC[1][1][3]=-6e+09;
|
1696 |
|
|
_sigmaBS[1][1][0]=0.00271126099;
|
1697 |
|
|
_sigmaBS[1][1][1]=0.325669289;
|
1698 |
|
|
_sigmaBS[1][1][2]=2322.66097;
|
1699 |
|
|
_sigmaBS[1][1][3]=298.692034;
|
1700 |
|
|
_sigmaBM[1][1][0]=-0.0454765849;
|
1701 |
|
|
_sigmaBM[1][1][1]=6.81541098;
|
1702 |
|
|
_sigmaBM[1][1][2]=1.9e+09;
|
1703 |
|
|
_sigmaBM[1][1][3]=-26353.4449;
|
1704 |
|
|
_sigmaR9[1][1][0]=41.1074567;
|
1705 |
|
|
_sigmaR9[1][1][1]=-86.9595346;
|
1706 |
|
|
_sigmaR9[1][1][2]=45.7818889;
|
1707 |
|
|
_sigmaR9[1][1][3]=0;
|
1708 |
|
|
|
1709 |
|
|
_initialised=true;
|
1710 |
|
|
}
|
1711 |
|
|
|
1712 |
|
|
if(s=="4_2e") {
|
1713 |
|
|
_meanScale[0][0][0]=1.03294629;
|
1714 |
|
|
_meanScale[0][0][1]=-0.000210626517;
|
1715 |
|
|
_meanScale[0][0][2]=0.000268568795;
|
1716 |
|
|
_meanScale[0][0][3]=0.338053561;
|
1717 |
|
|
_meanAT[0][0][0]=0.0200811135;
|
1718 |
|
|
_meanAT[0][0][1]=0;
|
1719 |
|
|
_meanAT[0][0][2]=0;
|
1720 |
|
|
_meanAT[0][0][3]=0;
|
1721 |
|
|
_meanAC[0][0][0]=-0.00326696352;
|
1722 |
|
|
_meanAC[0][0][1]=0.010765809;
|
1723 |
|
|
_meanAC[0][0][2]=513.763513;
|
1724 |
|
|
_meanAC[0][0][3]=546.438243;
|
1725 |
|
|
_meanAS[0][0][0]=0;
|
1726 |
|
|
_meanAS[0][0][1]=0;
|
1727 |
|
|
_meanAS[0][0][2]=0;
|
1728 |
|
|
_meanAS[0][0][3]=0;
|
1729 |
|
|
_meanAM[0][0][0]=-0.00135522301;
|
1730 |
|
|
_meanAM[0][0][1]=0.166490439;
|
1731 |
|
|
_meanAM[0][0][2]=278.324187;
|
1732 |
|
|
_meanAM[0][0][3]=245.998361;
|
1733 |
|
|
_meanBT[0][0][0]=0;
|
1734 |
|
|
_meanBT[0][0][1]=0;
|
1735 |
|
|
_meanBT[0][0][2]=0;
|
1736 |
|
|
_meanBT[0][0][3]=0;
|
1737 |
|
|
_meanBC[0][0][0]=-0.00332906015;
|
1738 |
|
|
_meanBC[0][0][1]=0.00792585358;
|
1739 |
|
|
_meanBC[0][0][2]=514.766605;
|
1740 |
|
|
_meanBC[0][0][3]=488.870257;
|
1741 |
|
|
_meanBS[0][0][0]=-0.00199241828;
|
1742 |
|
|
_meanBS[0][0][1]=0.0037942702;
|
1743 |
|
|
_meanBS[0][0][2]=29.9438726;
|
1744 |
|
|
_meanBS[0][0][3]=1077.1644;
|
1745 |
|
|
_meanBM[0][0][0]=-0.00159080193;
|
1746 |
|
|
_meanBM[0][0][1]=0.107998922;
|
1747 |
|
|
_meanBM[0][0][2]=229.934523;
|
1748 |
|
|
_meanBM[0][0][3]=231.786153;
|
1749 |
|
|
_meanR9[0][0][0]=0.857844414;
|
1750 |
|
|
_meanR9[0][0][1]=-16.8494499;
|
1751 |
|
|
_meanR9[0][0][2]=125.493331;
|
1752 |
|
|
_meanR9[0][0][3]=0;
|
1753 |
|
|
|
1754 |
|
|
_sigmaScale[0][0][0]=0.392737806;
|
1755 |
|
|
_sigmaScale[0][0][1]=0.0353140568;
|
1756 |
|
|
_sigmaScale[0][0][2]=-0.00613223131;
|
1757 |
|
|
_sigmaScale[0][0][3]=0;
|
1758 |
|
|
_sigmaAT[0][0][0]=1.02977565;
|
1759 |
|
|
_sigmaAT[0][0][1]=0;
|
1760 |
|
|
_sigmaAT[0][0][2]=0;
|
1761 |
|
|
_sigmaAT[0][0][3]=0;
|
1762 |
|
|
_sigmaAC[0][0][0]=-0.00350109526;
|
1763 |
|
|
_sigmaAC[0][0][1]=-0.951103069;
|
1764 |
|
|
_sigmaAC[0][0][2]=-54434.4267;
|
1765 |
|
|
_sigmaAC[0][0][3]=-3e+17;
|
1766 |
|
|
_sigmaAS[0][0][0]=0;
|
1767 |
|
|
_sigmaAS[0][0][1]=0;
|
1768 |
|
|
_sigmaAS[0][0][2]=0;
|
1769 |
|
|
_sigmaAS[0][0][3]=0;
|
1770 |
|
|
_sigmaAM[0][0][0]=0.00127749544;
|
1771 |
|
|
_sigmaAM[0][0][1]=5.03867192;
|
1772 |
|
|
_sigmaAM[0][0][2]=563.047721;
|
1773 |
|
|
_sigmaAM[0][0][3]=272.293234;
|
1774 |
|
|
_sigmaBT[0][0][0]=0.00480679465;
|
1775 |
|
|
_sigmaBT[0][0][1]=7.56230742;
|
1776 |
|
|
_sigmaBT[0][0][2]=-33600000;
|
1777 |
|
|
_sigmaBT[0][0][3]=-257.677353;
|
1778 |
|
|
_sigmaBC[0][0][0]=-0.00169935002;
|
1779 |
|
|
_sigmaBC[0][0][1]=2790083.26;
|
1780 |
|
|
_sigmaBC[0][0][2]=-97275416.4;
|
1781 |
|
|
_sigmaBC[0][0][3]=23710676.7;
|
1782 |
|
|
_sigmaBS[0][0][0]=0;
|
1783 |
|
|
_sigmaBS[0][0][1]=0;
|
1784 |
|
|
_sigmaBS[0][0][2]=0;
|
1785 |
|
|
_sigmaBS[0][0][3]=0;
|
1786 |
|
|
_sigmaBM[0][0][0]=-0.00194553738;
|
1787 |
|
|
_sigmaBM[0][0][1]=7.77713222;
|
1788 |
|
|
_sigmaBM[0][0][2]=264.960159;
|
1789 |
|
|
_sigmaBM[0][0][3]=363.487107;
|
1790 |
|
|
_sigmaR9[0][0][0]=0.952571;
|
1791 |
|
|
_sigmaR9[0][0][1]=0;
|
1792 |
|
|
_sigmaR9[0][0][2]=0;
|
1793 |
|
|
_sigmaR9[0][0][3]=0;
|
1794 |
|
|
|
1795 |
|
|
_meanScale[0][1][0]=0.86164193;
|
1796 |
|
|
_meanScale[0][1][1]=-0.0001184458;
|
1797 |
|
|
_meanScale[0][1][2]=0.000232979403;
|
1798 |
|
|
_meanScale[0][1][3]=0.310305987;
|
1799 |
|
|
_meanAT[0][1][0]=0.0103409006;
|
1800 |
|
|
_meanAT[0][1][1]=0;
|
1801 |
|
|
_meanAT[0][1][2]=0;
|
1802 |
|
|
_meanAT[0][1][3]=0;
|
1803 |
|
|
_meanAC[0][1][0]=-0.00325081301;
|
1804 |
|
|
_meanAC[0][1][1]=0.0208748426;
|
1805 |
|
|
_meanAC[0][1][2]=165.245698;
|
1806 |
|
|
_meanAC[0][1][3]=292.03632;
|
1807 |
|
|
_meanAS[0][1][0]=0.0330004;
|
1808 |
|
|
_meanAS[0][1][1]=-148569.764;
|
1809 |
|
|
_meanAS[0][1][2]=87999432.1;
|
1810 |
|
|
_meanAS[0][1][3]=7787218.96;
|
1811 |
|
|
_meanAM[0][1][0]=-0.000867413605;
|
1812 |
|
|
_meanAM[0][1][1]=0.10580464;
|
1813 |
|
|
_meanAM[0][1][2]=396.92529;
|
1814 |
|
|
_meanAM[0][1][3]=263.112883;
|
1815 |
|
|
_meanBT[0][1][0]=0;
|
1816 |
|
|
_meanBT[0][1][1]=0.216283067;
|
1817 |
|
|
_meanBT[0][1][2]=312.543466;
|
1818 |
|
|
_meanBT[0][1][3]=463.601293;
|
1819 |
|
|
_meanBC[0][1][0]=-0.00505883024;
|
1820 |
|
|
_meanBC[0][1][1]=0.00182528255;
|
1821 |
|
|
_meanBC[0][1][2]=507.478054;
|
1822 |
|
|
_meanBC[0][1][3]=-6837.26736;
|
1823 |
|
|
_meanBS[0][1][0]=-166707004;
|
1824 |
|
|
_meanBS[0][1][1]=0.0928055999;
|
1825 |
|
|
_meanBS[0][1][2]=-5.30004162e-11;
|
1826 |
|
|
_meanBS[0][1][3]=11442.2;
|
1827 |
|
|
_meanBM[0][1][0]=-5.93998135e-05;
|
1828 |
|
|
_meanBM[0][1][1]=0.0096852184;
|
1829 |
|
|
_meanBM[0][1][2]=59.8040186;
|
1830 |
|
|
_meanBM[0][1][3]=-440000000;
|
1831 |
|
|
_meanR9[0][1][0]=0.0716647946;
|
1832 |
|
|
_meanR9[0][1][1]=-0.204241803;
|
1833 |
|
|
_meanR9[0][1][2]=0.154962477;
|
1834 |
|
|
_meanR9[0][1][3]=0;
|
1835 |
|
|
|
1836 |
|
|
_sigmaScale[0][1][0]=0.469123815;
|
1837 |
|
|
_sigmaScale[0][1][1]=-0.090283052;
|
1838 |
|
|
_sigmaScale[0][1][2]=0.000469934719;
|
1839 |
|
|
_sigmaScale[0][1][3]=0;
|
1840 |
|
|
_sigmaAT[0][1][0]=1.77629522;
|
1841 |
|
|
_sigmaAT[0][1][1]=0;
|
1842 |
|
|
_sigmaAT[0][1][2]=0;
|
1843 |
|
|
_sigmaAT[0][1][3]=0;
|
1844 |
|
|
_sigmaAC[0][1][0]=-0.00636220086;
|
1845 |
|
|
_sigmaAC[0][1][1]=-0.781271127;
|
1846 |
|
|
_sigmaAC[0][1][2]=4.90734224;
|
1847 |
|
|
_sigmaAC[0][1][3]=65.6835127;
|
1848 |
|
|
_sigmaAS[0][1][0]=0;
|
1849 |
|
|
_sigmaAS[0][1][1]=0;
|
1850 |
|
|
_sigmaAS[0][1][2]=0;
|
1851 |
|
|
_sigmaAS[0][1][3]=0;
|
1852 |
|
|
_sigmaAM[0][1][0]=0.000179292631;
|
1853 |
|
|
_sigmaAM[0][1][1]=7.62815501;
|
1854 |
|
|
_sigmaAM[0][1][2]=743.55507;
|
1855 |
|
|
_sigmaAM[0][1][3]=354.656661;
|
1856 |
|
|
_sigmaBT[0][1][0]=-0.0507778073;
|
1857 |
|
|
_sigmaBT[0][1][1]=3.00903133;
|
1858 |
|
|
_sigmaBT[0][1][2]=-0.526032834;
|
1859 |
|
|
_sigmaBT[0][1][3]=-0.630748789;
|
1860 |
|
|
_sigmaBC[0][1][0]=0.00490009575;
|
1861 |
|
|
_sigmaBC[0][1][1]=-1.53772346;
|
1862 |
|
|
_sigmaBC[0][1][2]=553415.545;
|
1863 |
|
|
_sigmaBC[0][1][3]=2.36808e+19;
|
1864 |
|
|
_sigmaBS[0][1][0]=0;
|
1865 |
|
|
_sigmaBS[0][1][1]=0;
|
1866 |
|
|
_sigmaBS[0][1][2]=0;
|
1867 |
|
|
_sigmaBS[0][1][3]=0;
|
1868 |
|
|
_sigmaBM[0][1][0]=-0.00113947453;
|
1869 |
|
|
_sigmaBM[0][1][1]=3.74348887;
|
1870 |
|
|
_sigmaBM[0][1][2]=91.9478901;
|
1871 |
|
|
_sigmaBM[0][1][3]=101.304882;
|
1872 |
|
|
_sigmaR9[0][1][0]=-0.261512815;
|
1873 |
|
|
_sigmaR9[0][1][1]=-1.69974425;
|
1874 |
|
|
_sigmaR9[0][1][2]=0;
|
1875 |
|
|
_sigmaR9[0][1][3]=0;
|
1876 |
|
|
|
1877 |
|
|
_meanScale[1][0][0]=0.961072344;
|
1878 |
|
|
_meanScale[1][0][1]=8.81367775e-05;
|
1879 |
|
|
_meanScale[1][0][2]=-0.000270690177;
|
1880 |
|
|
_meanScale[1][0][3]=0.745461418;
|
1881 |
|
|
_meanAT[1][0][0]=0.532495533;
|
1882 |
|
|
_meanAT[1][0][1]=0;
|
1883 |
|
|
_meanAT[1][0][2]=0;
|
1884 |
|
|
_meanAT[1][0][3]=0;
|
1885 |
|
|
_meanAC[1][0][0]=-0.000539999855;
|
1886 |
|
|
_meanAC[1][0][1]=0.0100918811;
|
1887 |
|
|
_meanAC[1][0][2]=953.905309;
|
1888 |
|
|
_meanAC[1][0][3]=808.944612;
|
1889 |
|
|
_meanAS[1][0][0]=-0.000597157153;
|
1890 |
|
|
_meanAS[1][0][1]=0.0571921693;
|
1891 |
|
|
_meanAS[1][0][2]=700.692431;
|
1892 |
|
|
_meanAS[1][0][3]=924.653733;
|
1893 |
|
|
_meanAM[1][0][0]=0.000230736156;
|
1894 |
|
|
_meanAM[1][0][1]=1.77368196;
|
1895 |
|
|
_meanAM[1][0][2]=4461.03178;
|
1896 |
|
|
_meanAM[1][0][3]=3300.73792;
|
1897 |
|
|
_meanBT[1][0][0]=0.483274186;
|
1898 |
|
|
_meanBT[1][0][1]=0;
|
1899 |
|
|
_meanBT[1][0][2]=0;
|
1900 |
|
|
_meanBT[1][0][3]=0;
|
1901 |
|
|
_meanBC[1][0][0]=-0.000651403853;
|
1902 |
|
|
_meanBC[1][0][1]=0.0111101805;
|
1903 |
|
|
_meanBC[1][0][2]=1276.07724;
|
1904 |
|
|
_meanBC[1][0][3]=1489.51887;
|
1905 |
|
|
_meanBS[1][0][0]=-0.000251246189;
|
1906 |
|
|
_meanBS[1][0][1]=0.0530409004;
|
1907 |
|
|
_meanBS[1][0][2]=767.699586;
|
1908 |
|
|
_meanBS[1][0][3]=835.195311;
|
1909 |
|
|
_meanBM[1][0][0]=-0.187856578;
|
1910 |
|
|
_meanBM[1][0][1]=-0.00821848896;
|
1911 |
|
|
_meanBM[1][0][2]=0.891813494;
|
1912 |
|
|
_meanBM[1][0][3]=-580000000;
|
1913 |
|
|
_meanR9[1][0][0]=0.96358076;
|
1914 |
|
|
_meanR9[1][0][1]=28.7116938;
|
1915 |
|
|
_meanR9[1][0][2]=697.709731;
|
1916 |
|
|
_meanR9[1][0][3]=0;
|
1917 |
|
|
|
1918 |
|
|
_sigmaScale[1][0][0]=0.46256953;
|
1919 |
|
|
_sigmaScale[1][0][1]=-2.50963561e-08;
|
1920 |
|
|
_sigmaScale[1][0][2]=0.0139636379;
|
1921 |
|
|
_sigmaScale[1][0][3]=0;
|
1922 |
|
|
_sigmaAT[1][0][0]=6.47165025;
|
1923 |
|
|
_sigmaAT[1][0][1]=0;
|
1924 |
|
|
_sigmaAT[1][0][2]=0;
|
1925 |
|
|
_sigmaAT[1][0][3]=0;
|
1926 |
|
|
_sigmaAC[1][0][0]=48.1275;
|
1927 |
|
|
_sigmaAC[1][0][1]=150005000;
|
1928 |
|
|
_sigmaAC[1][0][2]=21231.6;
|
1929 |
|
|
_sigmaAC[1][0][3]=2.6e+11;
|
1930 |
|
|
_sigmaAS[1][0][0]=0.000209127817;
|
1931 |
|
|
_sigmaAS[1][0][1]=2.19868731;
|
1932 |
|
|
_sigmaAS[1][0][2]=1695.98579;
|
1933 |
|
|
_sigmaAS[1][0][3]=967.250228;
|
1934 |
|
|
_sigmaAM[1][0][0]=0.0217972665;
|
1935 |
|
|
_sigmaAM[1][0][1]=1.26317651;
|
1936 |
|
|
_sigmaAM[1][0][2]=34.0924905;
|
1937 |
|
|
_sigmaAM[1][0][3]=55.1895282;
|
1938 |
|
|
_sigmaBT[1][0][0]=5.21983754;
|
1939 |
|
|
_sigmaBT[1][0][1]=0;
|
1940 |
|
|
_sigmaBT[1][0][2]=0;
|
1941 |
|
|
_sigmaBT[1][0][3]=0;
|
1942 |
|
|
_sigmaBC[1][0][0]=-0.004;
|
1943 |
|
|
_sigmaBC[1][0][1]=-120000;
|
1944 |
|
|
_sigmaBC[1][0][2]=7.49509e+12;
|
1945 |
|
|
_sigmaBC[1][0][3]=36643600;
|
1946 |
|
|
_sigmaBS[1][0][0]=0.000250338051;
|
1947 |
|
|
_sigmaBS[1][0][1]=1.98819262;
|
1948 |
|
|
_sigmaBS[1][0][2]=1967.55308;
|
1949 |
|
|
_sigmaBS[1][0][3]=1098.23855;
|
1950 |
|
|
_sigmaBM[1][0][0]=0.00101799874;
|
1951 |
|
|
_sigmaBM[1][0][1]=88.0546723;
|
1952 |
|
|
_sigmaBM[1][0][2]=8.47552e+10;
|
1953 |
|
|
_sigmaBM[1][0][3]=-132255.757;
|
1954 |
|
|
_sigmaR9[1][0][0]=144.031062;
|
1955 |
|
|
_sigmaR9[1][0][1]=-6.11507616e-07;
|
1956 |
|
|
_sigmaR9[1][0][2]=1.18181734e-08;
|
1957 |
|
|
_sigmaR9[1][0][3]=0;
|
1958 |
|
|
|
1959 |
|
|
_meanScale[1][1][0]=0.288888347;
|
1960 |
|
|
_meanScale[1][1][1]=6.52038486e-06;
|
1961 |
|
|
_meanScale[1][1][2]=0.000173654897;
|
1962 |
|
|
_meanScale[1][1][3]=0.422671325;
|
1963 |
|
|
_meanAT[1][1][0]=0.0614964598;
|
1964 |
|
|
_meanAT[1][1][1]=0;
|
1965 |
|
|
_meanAT[1][1][2]=0;
|
1966 |
|
|
_meanAT[1][1][3]=0;
|
1967 |
|
|
_meanAC[1][1][0]=-0.00123181641;
|
1968 |
|
|
_meanAC[1][1][1]=0.0133568947;
|
1969 |
|
|
_meanAC[1][1][2]=165.847556;
|
1970 |
|
|
_meanAC[1][1][3]=332.705784;
|
1971 |
|
|
_meanAS[1][1][0]=-0.00088161986;
|
1972 |
|
|
_meanAS[1][1][1]=0.0304986746;
|
1973 |
|
|
_meanAS[1][1][2]=382.755876;
|
1974 |
|
|
_meanAS[1][1][3]=616.470187;
|
1975 |
|
|
_meanAM[1][1][0]=0.000980695422;
|
1976 |
|
|
_meanAM[1][1][1]=0.63575757;
|
1977 |
|
|
_meanAM[1][1][2]=0.0336097848;
|
1978 |
|
|
_meanAM[1][1][3]=0.043315868;
|
1979 |
|
|
_meanBT[1][1][0]=0.11623414;
|
1980 |
|
|
_meanBT[1][1][1]=0;
|
1981 |
|
|
_meanBT[1][1][2]=0;
|
1982 |
|
|
_meanBT[1][1][3]=0;
|
1983 |
|
|
_meanBC[1][1][0]=-0.00716072255;
|
1984 |
|
|
_meanBC[1][1][1]=-0.440696266;
|
1985 |
|
|
_meanBC[1][1][2]=1887.74154;
|
1986 |
|
|
_meanBC[1][1][3]=118612;
|
1987 |
|
|
_meanBS[1][1][0]=-0.000492035977;
|
1988 |
|
|
_meanBS[1][1][1]=0.0292167014;
|
1989 |
|
|
_meanBS[1][1][2]=433.232787;
|
1990 |
|
|
_meanBS[1][1][3]=484.310448;
|
1991 |
|
|
_meanBM[1][1][0]=0.00299476541;
|
1992 |
|
|
_meanBM[1][1][1]=0.0149328977;
|
1993 |
|
|
_meanBM[1][1][2]=-48728700;
|
1994 |
|
|
_meanBM[1][1][3]=37.0041547;
|
1995 |
|
|
_meanR9[1][1][0]=0.19617696;
|
1996 |
|
|
_meanR9[1][1][1]=-0.350976375;
|
1997 |
|
|
_meanR9[1][1][2]=0.181094838;
|
1998 |
|
|
_meanR9[1][1][3]=0;
|
1999 |
|
|
|
2000 |
|
|
_sigmaScale[1][1][0]=1.26164895;
|
2001 |
|
|
_sigmaScale[1][1][1]=-6.61150347e-07;
|
2002 |
|
|
_sigmaScale[1][1][2]=0.0280532297;
|
2003 |
|
|
_sigmaScale[1][1][3]=0;
|
2004 |
|
|
_sigmaAT[1][1][0]=-0.232612761;
|
2005 |
|
|
_sigmaAT[1][1][1]=0;
|
2006 |
|
|
_sigmaAT[1][1][2]=0;
|
2007 |
|
|
_sigmaAT[1][1][3]=0;
|
2008 |
|
|
_sigmaAC[1][1][0]=0.00137406444;
|
2009 |
|
|
_sigmaAC[1][1][1]=-0.377659364;
|
2010 |
|
|
_sigmaAC[1][1][2]=27171.5802;
|
2011 |
|
|
_sigmaAC[1][1][3]=-560000000;
|
2012 |
|
|
_sigmaAS[1][1][0]=0.00022943714;
|
2013 |
|
|
_sigmaAS[1][1][1]=0.335082568;
|
2014 |
|
|
_sigmaAS[1][1][2]=590.511812;
|
2015 |
|
|
_sigmaAS[1][1][3]=387.352521;
|
2016 |
|
|
_sigmaAM[1][1][0]=-0.000780390674;
|
2017 |
|
|
_sigmaAM[1][1][1]=1.05127796;
|
2018 |
|
|
_sigmaAM[1][1][2]=33.7378914;
|
2019 |
|
|
_sigmaAM[1][1][3]=61.3730807;
|
2020 |
|
|
_sigmaBT[1][1][0]=0.529507693;
|
2021 |
|
|
_sigmaBT[1][1][1]=0;
|
2022 |
|
|
_sigmaBT[1][1][2]=0;
|
2023 |
|
|
_sigmaBT[1][1][3]=0;
|
2024 |
|
|
_sigmaBC[1][1][0]=-0.00203996;
|
2025 |
|
|
_sigmaBC[1][1][1]=93000;
|
2026 |
|
|
_sigmaBC[1][1][2]=61225800;
|
2027 |
|
|
_sigmaBC[1][1][3]=-4.43323e+17;
|
2028 |
|
|
_sigmaBS[1][1][0]=0.00125939613;
|
2029 |
|
|
_sigmaBS[1][1][1]=0.31048111;
|
2030 |
|
|
_sigmaBS[1][1][2]=295.258764;
|
2031 |
|
|
_sigmaBS[1][1][3]=263.974257;
|
2032 |
|
|
_sigmaBM[1][1][0]=-0.046100748;
|
2033 |
|
|
_sigmaBM[1][1][1]=1.22348596;
|
2034 |
|
|
_sigmaBM[1][1][2]=1.9e+09;
|
2035 |
|
|
_sigmaBM[1][1][3]=1254.99;
|
2036 |
|
|
_sigmaR9[1][1][0]=9.09347838;
|
2037 |
|
|
_sigmaR9[1][1][1]=-10.0390435;
|
2038 |
|
|
_sigmaR9[1][1][2]=0;
|
2039 |
|
|
_sigmaR9[1][1][3]=0;
|
2040 |
|
|
|
2041 |
|
|
_initialised=true;
|
2042 |
|
|
}
|
2043 |
|
|
|
2044 |
|
|
assert(_initialised);
|
2045 |
|
|
return true;
|
2046 |
|
|
}
|
2047 |
|
|
|
2048 |
|
|
// Get the geometry of cracks and gaps from file
|
2049 |
|
|
bool PhotonFix::initialiseGeometry(const std::string &s,const std::string &infile) {
|
2050 |
|
|
|
2051 |
|
|
std::ifstream fin(infile.c_str());
|
2052 |
|
|
assert(fin);
|
2053 |
|
|
|
2054 |
|
|
std::cout << "Reading in here" << std::endl;
|
2055 |
|
|
for(unsigned i(0);i<169;i++) {
|
2056 |
|
|
for(unsigned j(0);j<360;j++) {
|
2057 |
|
|
for(unsigned k(0);k<2;k++) {
|
2058 |
|
|
fin >> _barrelCGap[i][j][k];
|
2059 |
|
|
}
|
2060 |
|
|
}
|
2061 |
|
|
}
|
2062 |
|
|
|
2063 |
|
|
for(unsigned i(0);i<33;i++) {
|
2064 |
|
|
for(unsigned j(0);j<180;j++) {
|
2065 |
|
|
for(unsigned k(0);k<2;k++) {
|
2066 |
|
|
fin >> _barrelSGap[i][j][k];
|
2067 |
|
|
}
|
2068 |
|
|
}
|
2069 |
|
|
}
|
2070 |
|
|
|
2071 |
|
|
for(unsigned i(0);i<7;i++) {
|
2072 |
|
|
for(unsigned j(0);j<18;j++) {
|
2073 |
|
|
for(unsigned k(0);k<2;k++) {
|
2074 |
|
|
fin >> _barrelMGap[i][j][k];
|
2075 |
|
|
}
|
2076 |
|
|
}
|
2077 |
|
|
}
|
2078 |
|
|
for(unsigned i(0);i<100;i++) {
|
2079 |
|
|
for(unsigned j(0);j<100;j++) {
|
2080 |
|
|
unsigned k;
|
2081 |
|
|
fin >> k;
|
2082 |
|
|
_endcapCrystal[i][j]=(k==0);
|
2083 |
|
|
}
|
2084 |
|
|
}
|
2085 |
|
|
|
2086 |
|
|
for(unsigned i(0);i<2;i++) {
|
2087 |
|
|
for(unsigned j(0);j<7080;j++) {
|
2088 |
|
|
for(unsigned k(0);k<2;k++) {
|
2089 |
|
|
fin >> _endcapCGap[i][j][k];
|
2090 |
|
|
}
|
2091 |
|
|
}
|
2092 |
|
|
}
|
2093 |
|
|
|
2094 |
|
|
for(unsigned i(0);i<2;i++) {
|
2095 |
|
|
for(unsigned j(0);j<264;j++) {
|
2096 |
|
|
for(unsigned k(0);k<2;k++) {
|
2097 |
|
|
fin >> _endcapSGap[i][j][k];
|
2098 |
|
|
}
|
2099 |
|
|
}
|
2100 |
|
|
}
|
2101 |
|
|
|
2102 |
|
|
for(unsigned i(0);i<2;i++) {
|
2103 |
|
|
for(unsigned j(0);j<1;j++) {
|
2104 |
|
|
for(unsigned k(0);k<2;k++) {
|
2105 |
|
|
fin >> _endcapMGap[i][j][k];
|
2106 |
|
|
}
|
2107 |
|
|
}
|
2108 |
|
|
}
|
2109 |
|
|
|
2110 |
|
|
assert(fin);
|
2111 |
|
|
|
2112 |
|
|
return true;
|
2113 |
|
|
}
|
2114 |
|
|
|
2115 |
|
|
|
2116 |
|
|
// bool PhotonFix::_initialised=false;
|
2117 |
|
|
//
|
2118 |
|
|
// double PhotonFix::_meanScale[2][2][4];
|
2119 |
|
|
// double PhotonFix::_meanAT[2][2][4];
|
2120 |
|
|
// double PhotonFix::_meanAC[2][2][4];
|
2121 |
|
|
// double PhotonFix::_meanAS[2][2][4];
|
2122 |
|
|
// double PhotonFix::_meanAM[2][2][4];
|
2123 |
|
|
// double PhotonFix::_meanBT[2][2][4];
|
2124 |
|
|
// double PhotonFix::_meanBC[2][2][4];
|
2125 |
|
|
// double PhotonFix::_meanBS[2][2][4];
|
2126 |
|
|
// double PhotonFix::_meanBM[2][2][4];
|
2127 |
|
|
// double PhotonFix::_meanR9[2][2][4];
|
2128 |
|
|
//
|
2129 |
|
|
// double PhotonFix::_sigmaScale[2][2][4];
|
2130 |
|
|
// double PhotonFix::_sigmaAT[2][2][4];
|
2131 |
|
|
// double PhotonFix::_sigmaAC[2][2][4];
|
2132 |
|
|
// double PhotonFix::_sigmaAS[2][2][4];
|
2133 |
|
|
// double PhotonFix::_sigmaAM[2][2][4];
|
2134 |
|
|
// double PhotonFix::_sigmaBT[2][2][4];
|
2135 |
|
|
// double PhotonFix::_sigmaBC[2][2][4];
|
2136 |
|
|
// double PhotonFix::_sigmaBS[2][2][4];
|
2137 |
|
|
// double PhotonFix::_sigmaBM[2][2][4];
|
2138 |
|
|
// double PhotonFix::_sigmaR9[2][2][4];
|
2139 |
|
|
//
|
2140 |
|
|
// double PhotonFix::_barrelCGap[169][360][2];
|
2141 |
|
|
// double PhotonFix::_barrelSGap[33][180][2];
|
2142 |
|
|
// double PhotonFix::_barrelMGap[7][18][2];
|
2143 |
|
|
//
|
2144 |
|
|
// bool PhotonFix::_endcapCrystal[100][100];
|
2145 |
|
|
// double PhotonFix::_endcapCGap[2][7080][2];
|
2146 |
|
|
// double PhotonFix::_endcapSGap[2][264][2];
|
2147 |
|
|
// double PhotonFix::_endcapMGap[2][1][2];
|