1 |
#!/usr/bin/env python
|
2 |
import sys
|
3 |
import os
|
4 |
import re
|
5 |
import time
|
6 |
from math import *
|
7 |
from array import *
|
8 |
from decimal import *
|
9 |
from optparse import OptionParser
|
10 |
from OSUT3Analysis.Configuration.configurationOptions import *
|
11 |
from OSUT3Analysis.Configuration.processingUtilities import *
|
12 |
from OSUT3Analysis.Configuration.formattingUtilities import *
|
13 |
|
14 |
|
15 |
|
16 |
### parse the command-line options
|
17 |
|
18 |
parser = OptionParser()
|
19 |
parser = set_commandline_arguments(parser)
|
20 |
|
21 |
parser.add_option("-f", "--fancy", action="store_true", dest="makeFancy", default=False,
|
22 |
help="removes the title and replaces it with the official CMS plot heading")
|
23 |
parser.add_option("--ylog", action="store_true", dest="setLogY", default=False,
|
24 |
help="Set logarithmic scale on vertical axis on all plots")
|
25 |
parser.add_option("--ymin", dest="setYMin",
|
26 |
help="Minimum of y axis")
|
27 |
parser.add_option("--ymax", dest="setYMax",
|
28 |
help="Maximum of y axis")
|
29 |
parser.add_option("-E", "--ratioRelErrMax", dest="ratioRelErrMax",
|
30 |
help="maximum error used in rebinning the ratio histogram")
|
31 |
|
32 |
(arguments, args) = parser.parse_args()
|
33 |
|
34 |
|
35 |
if arguments.localConfig:
|
36 |
sys.path.append(os.getcwd())
|
37 |
exec("from " + arguments.localConfig.rstrip('.py') + " import *")
|
38 |
|
39 |
#### deal with conflicting arguments
|
40 |
if arguments.normalizeToData and arguments.normalizeToUnitArea:
|
41 |
print "Conflicting normalizations requsted, will normalize to unit area"
|
42 |
arguments.normalizeToData = False
|
43 |
if arguments.normalizeToData and arguments.noStack:
|
44 |
print "You have asked to scale non-stacked backgrounds to data. This is a very strange request. Will normalize to unit area instead"
|
45 |
arguments.normalizeToData = False
|
46 |
arguments.normalizeToUnitArea = True
|
47 |
if arguments.makeRatioPlots and arguments.makeDiffPlots:
|
48 |
print "You have requested both ratio and difference plots. Will make just ratio plots instead"
|
49 |
arguments.makeRatioPlots = False
|
50 |
if arguments.makeRatioPlots and arguments.noStack:
|
51 |
print "You have asked to make a ratio plot and to not stack the backgrounds. This is a very strange request. Will skip making the ratio plot."
|
52 |
arguments.makeRatioPlots = False
|
53 |
if arguments.makeDiffPlots and arguments.noStack:
|
54 |
print "You have asked to make a difference plot and to not stack the backgrounds. This is a very strange request. Will skip making the difference plot."
|
55 |
arguments.makeDiffPlots = False
|
56 |
|
57 |
|
58 |
from ROOT import TFile, gROOT, gStyle, gDirectory, TStyle, THStack, TH1F, TCanvas, TString, TLegend, TLegendEntry, THStack, TIter, TKey, TPaveLabel, TPaveText, TF1, gPad
|
59 |
|
60 |
|
61 |
### setting ROOT options so our plots will look awesome and everyone will love us
|
62 |
|
63 |
gROOT.SetBatch()
|
64 |
gStyle.SetOptStat(0)
|
65 |
gStyle.SetCanvasBorderMode(0)
|
66 |
gStyle.SetPadBorderMode(0)
|
67 |
gStyle.SetPadColor(0)
|
68 |
gStyle.SetCanvasColor(0)
|
69 |
gStyle.SetTextFont(42)
|
70 |
gStyle.SetCanvasDefH(600)
|
71 |
gStyle.SetCanvasDefW(600)
|
72 |
gStyle.SetCanvasDefX(0)
|
73 |
gStyle.SetCanvasDefY(0)
|
74 |
gStyle.SetPadTopMargin(0.07)
|
75 |
gStyle.SetPadBottomMargin(0.13)
|
76 |
gStyle.SetPadLeftMargin(0.15)
|
77 |
gStyle.SetPadRightMargin(0.05)
|
78 |
gStyle.SetTitleColor(1, "XYZ")
|
79 |
gStyle.SetTitleFont(42, "XYZ")
|
80 |
gStyle.SetTitleSize(0.04, "XYZ")
|
81 |
gStyle.SetTitleXOffset(1.1)
|
82 |
gStyle.SetTitleYOffset(2)
|
83 |
gStyle.SetTextAlign(12)
|
84 |
gStyle.SetLabelColor(1, "XYZ")
|
85 |
gStyle.SetLabelFont(42, "XYZ")
|
86 |
gStyle.SetLabelOffset(0.007, "XYZ")
|
87 |
gStyle.SetLabelSize(0.04, "XYZ")
|
88 |
gStyle.SetAxisColor(1, "XYZ")
|
89 |
gStyle.SetStripDecimals(True)
|
90 |
gStyle.SetTickLength(0.03, "XYZ")
|
91 |
gStyle.SetNdivisions(510, "XYZ")
|
92 |
gStyle.SetPadTickX(1)
|
93 |
gStyle.SetPadTickY(1)
|
94 |
gROOT.ForceStyle()
|
95 |
|
96 |
|
97 |
#set the text for the luminosity label
|
98 |
if(intLumi < 1000.):
|
99 |
LumiInPb = intLumi
|
100 |
LumiText = "L_{int} = " + str(intLumi) + " pb^{-1}"
|
101 |
LumiText = "L_{int} = " + str.format('{0:.1f}', LumiInPb) + " pb^{-1}"
|
102 |
else:
|
103 |
LumiInFb = intLumi/1000.
|
104 |
LumiText = "L_{int} = " + str.format('{0:.1f}', LumiInFb) + " fb^{-1}"
|
105 |
|
106 |
#bestest place for lumi. label, in top left corner
|
107 |
topLeft_x_left = 0.1375839
|
108 |
topLeft_x_right = 0.4580537
|
109 |
topLeft_y_bottom = 0.8479021
|
110 |
topLeft_y_top = 0.9475524
|
111 |
topLeft_y_offset = 0.035
|
112 |
|
113 |
#set the text for the fancy heading
|
114 |
HeaderText = "CMS Preliminary: " + LumiText + " at #sqrt{s} = 8 TeV"
|
115 |
|
116 |
#position for header
|
117 |
header_x_left = 0.2181208
|
118 |
header_x_right = 0.9562937
|
119 |
header_y_bottom = 0.9479866
|
120 |
header_y_top = 0.9947552
|
121 |
|
122 |
|
123 |
|
124 |
##########################################################################################################################################
|
125 |
##########################################################################################################################################
|
126 |
##########################################################################################################################################
|
127 |
|
128 |
# some fancy-ass code from Andrzej Zuranski to merge bins in the ratio plot until the error goes below some threshold
|
129 |
def ratioHistogram( dataHist, mcHist, relErrMax=0.10):
|
130 |
|
131 |
if not dataHist:
|
132 |
print "Error: trying to run ratioHistogram but dataHist is invalid"
|
133 |
return
|
134 |
|
135 |
if not mcHist:
|
136 |
print "Error: trying to run ratioHistogram but mcHist is invalid"
|
137 |
return
|
138 |
|
139 |
def groupR(group):
|
140 |
Data,MC = [float(sum(hist.GetBinContent(i) for i in group)) for hist in [dataHist,mcHist]]
|
141 |
return (Data-MC)/MC if MC else 0
|
142 |
|
143 |
def groupErr(group):
|
144 |
Data,MC = [float(sum(hist.GetBinContent(i) for i in group)) for hist in [dataHist,mcHist]]
|
145 |
dataErr2,mcErr2 = [sum(hist.GetBinError(i)**2 for i in group) for hist in [dataHist,mcHist]]
|
146 |
if Data > 0 and MC > 0 and Data != MC:
|
147 |
return abs(math.sqrt( (dataErr2+mcErr2)/(Data-MC)**2 + mcErr2/MC**2 ) * (Data-MC)/MC)
|
148 |
else:
|
149 |
return 0
|
150 |
|
151 |
def regroup(groups):
|
152 |
err,iG = max( (groupErr(g),groups.index(g)) for g in groups )
|
153 |
if err < relErrMax or len(groups)<3 : return groups
|
154 |
iH = max( [iG-1,iG+1], key = lambda i: groupErr(groups[i]) if 0<=i<len(groups) else -1 )
|
155 |
iLo,iHi = sorted([iG,iH])
|
156 |
return regroup(groups[:iLo] + [groups[iLo]+groups[iHi]] + groups[iHi+1:])
|
157 |
|
158 |
#don't rebin the histograms of the number of a given object (except for the pileup ones)
|
159 |
if ((dataHist.GetName().find("num") is not -1 and dataHist.GetName().find("Primaryvertexs") is -1) or
|
160 |
dataHist.GetName().find("CutFlow") is not -1 or
|
161 |
dataHist.GetName().find("GenMatch") is not -1):
|
162 |
ratio = dataHist.Clone()
|
163 |
ratio.Add(mcHist,-1)
|
164 |
ratio.Divide(mcHist)
|
165 |
ratio.SetTitle("")
|
166 |
else:
|
167 |
groups = regroup( [(i,) for i in range(1,1+dataHist.GetNbinsX())] )
|
168 |
ratio = TH1F("ratio","",len(groups), array('d', [dataHist.GetBinLowEdge(min(g)) for g in groups ] + [dataHist.GetXaxis().GetBinUpEdge(dataHist.GetNbinsX())]) )
|
169 |
for i,g in enumerate(groups) :
|
170 |
ratio.SetBinContent(i+1,groupR(g))
|
171 |
ratio.SetBinError(i+1,groupErr(g))
|
172 |
|
173 |
ratio.GetYaxis().SetTitle("#frac{Data-MC}{MC}")
|
174 |
ratio.SetLineColor(1)
|
175 |
ratio.SetLineWidth(2)
|
176 |
return ratio
|
177 |
|
178 |
##########################################################################################################################################
|
179 |
##########################################################################################################################################
|
180 |
##########################################################################################################################################
|
181 |
|
182 |
|
183 |
def MakeOneDHist(pathToDir,distribution):
|
184 |
|
185 |
numFittingSamples = 0
|
186 |
|
187 |
HeaderLabel = TPaveLabel(header_x_left,header_y_bottom,header_x_right,header_y_top,HeaderText,"NDC")
|
188 |
HeaderLabel.SetTextAlign(32)
|
189 |
HeaderLabel.SetBorderSize(0)
|
190 |
HeaderLabel.SetFillColor(0)
|
191 |
HeaderLabel.SetFillStyle(0)
|
192 |
|
193 |
LumiLabel = TPaveLabel(topLeft_x_left,topLeft_y_bottom,topLeft_x_right,topLeft_y_top,LumiText,"NDC")
|
194 |
LumiLabel.SetBorderSize(0)
|
195 |
LumiLabel.SetFillColor(0)
|
196 |
LumiLabel.SetFillStyle(0)
|
197 |
|
198 |
NormLabel = TPaveLabel()
|
199 |
NormLabel.SetDrawOption("NDC")
|
200 |
NormLabel.SetX1NDC(topLeft_x_left)
|
201 |
NormLabel.SetX2NDC(topLeft_x_right)
|
202 |
|
203 |
NormLabel.SetBorderSize(0)
|
204 |
NormLabel.SetFillColor(0)
|
205 |
NormLabel.SetFillStyle(0)
|
206 |
|
207 |
NormText = ""
|
208 |
if arguments.normalizeToUnitArea:
|
209 |
NormText = "Scaled to unit area"
|
210 |
elif arguments.normalizeToData:
|
211 |
NormText = "MC scaled to data"
|
212 |
NormLabel.SetLabel(NormText)
|
213 |
|
214 |
YieldsLabel = TPaveText(0.39, 0.7, 0.59, 0.9,"NDC")
|
215 |
YieldsLabel.SetBorderSize(0)
|
216 |
YieldsLabel.SetFillColor(0)
|
217 |
YieldsLabel.SetFillStyle(0)
|
218 |
YieldsLabel.SetTextAlign(12)
|
219 |
|
220 |
RatiosLabel = TPaveText()
|
221 |
RatiosLabel.SetDrawOption("NDC")
|
222 |
RatiosLabel.SetBorderSize(0)
|
223 |
RatiosLabel.SetFillColor(0)
|
224 |
RatiosLabel.SetFillStyle(0)
|
225 |
RatiosLabel.SetTextAlign(32)
|
226 |
|
227 |
|
228 |
Legend = TLegend()
|
229 |
Legend.SetBorderSize(0)
|
230 |
Legend.SetFillColor(0)
|
231 |
Legend.SetFillStyle(0)
|
232 |
|
233 |
|
234 |
# outputFile.cd(pathToDir)
|
235 |
|
236 |
fittingIntegral = 0
|
237 |
scaleFactor = 1
|
238 |
|
239 |
HistogramsToFit = []
|
240 |
TargetDataset = distribution['target_dataset']
|
241 |
|
242 |
FittingLegendEntries = []
|
243 |
DataLegendEntries = []
|
244 |
|
245 |
FittingHistogramDatasets = []
|
246 |
|
247 |
|
248 |
Stack_list = []
|
249 |
Stack_list.append (THStack("stack_before",distribution['name']))
|
250 |
Stack_list.append (THStack("stack_after",distribution['name']))
|
251 |
|
252 |
fileName = condor_dir + "/" + distribution['target_dataset'] + ".root"
|
253 |
if not os.path.exists(fileName):
|
254 |
return
|
255 |
inputFile = TFile(fileName)
|
256 |
if inputFile.IsZombie() or not inputFile.GetNkeys():
|
257 |
return
|
258 |
|
259 |
|
260 |
|
261 |
Target = inputFile.Get("OSUAnalysis/"+distribution['channel']+"/"+distribution['name']).Clone()
|
262 |
Target.SetDirectory(0)
|
263 |
inputFile.Close()
|
264 |
|
265 |
Target.SetMarkerStyle(20)
|
266 |
Target.SetMarkerSize(0.8)
|
267 |
Target.SetFillStyle(0)
|
268 |
Target.SetLineColor(colors[TargetDataset])
|
269 |
Target.SetLineStyle(1)
|
270 |
Target.SetLineWidth(2)
|
271 |
targetIntegral = Target.Integral()
|
272 |
if(arguments.normalizeToUnitArea and Target.Integral() > 0):
|
273 |
Target.Scale(1./Target.Integral())
|
274 |
|
275 |
### formatting target histogram and adding to legend
|
276 |
legendIndex = 0
|
277 |
Legend.AddEntry(Target,labels[TargetDataset],"LEP")
|
278 |
legendIndex = legendIndex+1
|
279 |
|
280 |
if not outputFile.Get ("OSUAnalysis"):
|
281 |
outputFile.mkdir ("OSUAnalysis")
|
282 |
if not outputFile.Get ("OSUAnalysis/" + distribution['channel']):
|
283 |
outputFile.Get ("OSUAnalysis").mkdir (distribution['channel'])
|
284 |
|
285 |
for sample in distribution['datasets']: # loop over different samples requested to be fit
|
286 |
|
287 |
dataset_file = "%s/%s.root" % (condor_dir,sample)
|
288 |
inputFile = TFile(dataset_file)
|
289 |
HistogramObj = inputFile.Get(pathToDir+"/"+distribution['channel']+"/"+distribution['name'])
|
290 |
if not HistogramObj:
|
291 |
print "WARNING: Could not find histogram " + pathToDir + "/" + distribution['name'] + " in file " + dataset_file + ". Will skip it and continue."
|
292 |
continue
|
293 |
Histogram = HistogramObj.Clone()
|
294 |
Histogram.SetDirectory(0)
|
295 |
inputFile.Close()
|
296 |
if arguments.rebinFactor:
|
297 |
RebinFactor = int(arguments.rebinFactor)
|
298 |
#don't rebin histograms which will have less than 5 bins or any gen-matching histograms
|
299 |
if Histogram.GetNbinsX() >= RebinFactor*5 and Histogram.GetName().find("GenMatch") is -1:
|
300 |
Histogram.Rebin(RebinFactor)
|
301 |
|
302 |
xAxisLabel = Histogram.GetXaxis().GetTitle()
|
303 |
unitBeginIndex = xAxisLabel.find("[")
|
304 |
unitEndIndex = xAxisLabel.find("]")
|
305 |
|
306 |
if unitBeginIndex is not -1 and unitEndIndex is not -1: #x axis has a unit
|
307 |
yAxisLabel = "Entries / " + str(Histogram.GetXaxis().GetBinWidth(1)) + " " + xAxisLabel[unitBeginIndex+1:unitEndIndex]
|
308 |
else:
|
309 |
yAxisLabel = "Entries per bin (" + str(Histogram.GetXaxis().GetBinWidth(1)) + " width)"
|
310 |
|
311 |
if not arguments.makeFancy:
|
312 |
histoTitle = Histogram.GetTitle()
|
313 |
else:
|
314 |
histoTitle = ""
|
315 |
|
316 |
|
317 |
legLabel = labels[sample]
|
318 |
if (arguments.printYields):
|
319 |
yieldHist = Histogram.Integral()
|
320 |
legLabel = legLabel + " (%.1f)" % yieldHist
|
321 |
FittingLegendEntries.append(legLabel)
|
322 |
|
323 |
if( types[sample] == "bgMC"):
|
324 |
|
325 |
numFittingSamples += 1
|
326 |
fittingIntegral += Histogram.Integral()
|
327 |
|
328 |
Histogram.SetLineStyle(1)
|
329 |
if(arguments.noStack):
|
330 |
Histogram.SetFillStyle(0)
|
331 |
Histogram.SetLineColor(colors[sample])
|
332 |
Histogram.SetLineWidth(2)
|
333 |
else:
|
334 |
Histogram.SetFillStyle(1001)
|
335 |
Histogram.SetFillColor(colors[sample])
|
336 |
Histogram.SetLineColor(1)
|
337 |
Histogram.SetLineWidth(1)
|
338 |
|
339 |
elif( types[sample] == "signalMC"):
|
340 |
|
341 |
numFittingSamples += 1
|
342 |
|
343 |
Histogram.SetFillStyle(0)
|
344 |
Histogram.SetLineColor(colors[sample])
|
345 |
Histogram.SetLineStyle(1)
|
346 |
Histogram.SetLineWidth(2)
|
347 |
if(arguments.normalizeToUnitArea and Histogram.Integral() > 0):
|
348 |
Histogram.Scale(1./Histogram.Integral())
|
349 |
|
350 |
HistogramsToFit.append(Histogram)
|
351 |
FittingHistogramDatasets.append(sample)
|
352 |
|
353 |
#scaling histograms as per user's specifications
|
354 |
if targetIntegral > 0 and fittingIntegral > 0:
|
355 |
scaleFactor = targetIntegral/fittingIntegral
|
356 |
for fittingHist in HistogramsToFit:
|
357 |
if arguments.normalizeToData:
|
358 |
fittingHist.Scale(scaleFactor)
|
359 |
|
360 |
if arguments.normalizeToUnitArea and not arguments.noStack and fittingIntegral > 0:
|
361 |
fittingHist.Scale(1./fittingIntegral)
|
362 |
elif arguments.normalizeToUnitArea and arguments.noStack and fittingHist.Integral() > 0:
|
363 |
fittingHist.Scale(1./fittingHist.Integral())
|
364 |
|
365 |
|
366 |
def fitf (x, par):
|
367 |
xBin = HistogramsToFit[0].FindBin (x[0])
|
368 |
value = 0.0
|
369 |
sumOfWeights = 0.0
|
370 |
|
371 |
for i in range (0, len (HistogramsToFit)):
|
372 |
weight = 1.0 / (HistogramsToFit[i].GetBinError (xBin) * HistogramsToFit[i].GetBinError (xBin))
|
373 |
sumOfWeights += weight
|
374 |
value += weight * par[i] * HistogramsToFit[i].GetBinContent (xBin)
|
375 |
value /= sumOfWeights
|
376 |
|
377 |
return value
|
378 |
|
379 |
lowerLimit = Target.GetBinLowEdge (1)
|
380 |
upperLimit = Target.GetBinLowEdge (Target.GetNbinsX ()) + Target.GetBinWidth (Target.GetNbinsX ())
|
381 |
if 'lowerLimit' in distribution:
|
382 |
lowerLimit = distribution['lowerLimit']
|
383 |
if 'upperLimit' in distribution:
|
384 |
upperLimit = distribution['upperLimit']
|
385 |
func = TF1 ("fit", fitf, lowerLimit, upperLimit, len (HistogramsToFit))
|
386 |
|
387 |
for i in range (0, len (HistogramsToFit)):
|
388 |
func.SetParameter (i, 1.0)
|
389 |
func.SetParName (i, labels[FittingHistogramDatasets[i]])
|
390 |
|
391 |
for i in range (0, distribution['iterations'] - 1):
|
392 |
print "Iteration " + str (i + 1) + "..."
|
393 |
Target.Fit ("fit", "QEMR0")
|
394 |
Target.Fit ("fit", "VEMR0")
|
395 |
|
396 |
|
397 |
finalMax = 0
|
398 |
if not arguments.noStack:
|
399 |
for fittingHist in HistogramsToFit:
|
400 |
finalMax += fittingHist.GetMaximum()
|
401 |
else:
|
402 |
for fittingHist in HistogramsToFit:
|
403 |
if(fittingHist.GetMaximum() > finalMax):
|
404 |
finalMax = fittingHist.GetMaximum()
|
405 |
if(Target.GetMaximum() > finalMax):
|
406 |
finalMax = Target.GetMaximum()
|
407 |
|
408 |
Target.SetMaximum(1.1*finalMax)
|
409 |
Target.SetMinimum(0.0001)
|
410 |
|
411 |
Canvas = TCanvas(distribution['name'] + "_FitFunction")
|
412 |
Canvas.cd (1)
|
413 |
Target.Draw ()
|
414 |
func.Draw ("same")
|
415 |
|
416 |
outputFile.cd ("OSUAnalysis/" + distribution['channel'])
|
417 |
Canvas.Write ()
|
418 |
if arguments.savePDFs:
|
419 |
if histogram == input_histograms[0]:
|
420 |
Canvas.Print (pdfFileName + "(", "pdf")
|
421 |
else:
|
422 |
Canvas.Print (pdfFileName, "pdf")
|
423 |
Target.SetStats (0)
|
424 |
|
425 |
|
426 |
|
427 |
|
428 |
### formatting bgMC histograms and adding to legend
|
429 |
legendIndex = numFittingSamples-1
|
430 |
for Histogram in reversed(HistogramsToFit):
|
431 |
if(arguments.noStack):
|
432 |
Legend.AddEntry(Histogram,FittingLegendEntries[legendIndex],"L")
|
433 |
else:
|
434 |
Legend.AddEntry(Histogram,FittingLegendEntries[legendIndex],"F")
|
435 |
legendIndex = legendIndex-1
|
436 |
|
437 |
|
438 |
### Drawing histograms to canvas
|
439 |
|
440 |
makeRatioPlots = arguments.makeRatioPlots
|
441 |
makeDiffPlots = arguments.makeDiffPlots
|
442 |
|
443 |
yAxisMin = 0.0001
|
444 |
if arguments.setYMin:
|
445 |
yAxisMin = float(arguments.setYMin)
|
446 |
|
447 |
|
448 |
### Draw everything to the canvases !!!!
|
449 |
|
450 |
for i in range (0, 2): # 0 => before, 1 => after
|
451 |
|
452 |
if i == 1:
|
453 |
ratios = []
|
454 |
for j in range (0, len (HistogramsToFit)):
|
455 |
HistogramsToFit[j].Scale (func.GetParameter (j))
|
456 |
ratios.append(func.GetParameter (j))
|
457 |
|
458 |
for fittingHist in HistogramsToFit:
|
459 |
if not arguments.noStack:
|
460 |
Stack_list[i].Add(fittingHist)
|
461 |
|
462 |
|
463 |
#creating the histogram to represent the statistical errors on the stack
|
464 |
if not arguments.noStack:
|
465 |
ErrorHisto = HistogramsToFit[0].Clone("errors")
|
466 |
ErrorHisto.SetFillStyle(3001)
|
467 |
ErrorHisto.SetFillColor(13)
|
468 |
ErrorHisto.SetLineWidth(0)
|
469 |
if i == 1:
|
470 |
Legend.AddEntry(ErrorHisto,"Stat. Errors","F")
|
471 |
for Histogram in HistogramsToFit:
|
472 |
if Histogram is not HistogramsToFit[0]:
|
473 |
ErrorHisto.Add(Histogram)
|
474 |
|
475 |
if i == 0:
|
476 |
Canvas = TCanvas(distribution['name'] + "_Before")
|
477 |
if i == 1:
|
478 |
Canvas = TCanvas(distribution['name'] + "_After")
|
479 |
|
480 |
|
481 |
if makeRatioPlots or makeDiffPlots:
|
482 |
Canvas.SetFillStyle(0)
|
483 |
Canvas.Divide(1,2)
|
484 |
Canvas.cd(1)
|
485 |
gPad.SetPad(0,0.25,1,1)
|
486 |
gPad.SetMargin(0.15,0.05,0.01,0.07)
|
487 |
gPad.SetFillStyle(0)
|
488 |
gPad.Update()
|
489 |
gPad.Draw()
|
490 |
if arguments.setLogY:
|
491 |
gPad.SetLogy()
|
492 |
Canvas.cd(2)
|
493 |
gPad.SetPad(0,0,1,0.25)
|
494 |
# format: gPad.SetMargin(l,r,b,t)
|
495 |
gPad.SetMargin(0.15,0.05,0.4,0.01)
|
496 |
gPad.SetFillStyle(0)
|
497 |
gPad.SetGridy(1)
|
498 |
gPad.Update()
|
499 |
gPad.Draw()
|
500 |
|
501 |
Canvas.cd(1)
|
502 |
|
503 |
### finding the maximum value of anything going on the canvas, so we know how to set the y-axis
|
504 |
finalMax = 0
|
505 |
if numFittingSamples is not 0 and not arguments.noStack:
|
506 |
finalMax = ErrorHisto.GetMaximum() + ErrorHisto.GetBinError(ErrorHisto.GetMaximumBin())
|
507 |
else:
|
508 |
for bgMCHist in HistogramsToFit:
|
509 |
if(bgMCHist.GetMaximum() > finalMax):
|
510 |
finalMax = bgMCHist.GetMaximum()
|
511 |
if(Target.GetMaximum() > finalMax):
|
512 |
finalMax = Target.GetMaximum() + Target.GetBinError(Target.GetMaximumBin())
|
513 |
finalMax = 1.15*finalMax
|
514 |
if arguments.setYMax:
|
515 |
finalMax = float(arguments.setYMax)
|
516 |
|
517 |
|
518 |
if not arguments.noStack: # draw stacked background samples
|
519 |
Stack_list[i].SetTitle(histoTitle)
|
520 |
Stack_list[i].Draw("HIST")
|
521 |
Stack_list[i].GetXaxis().SetTitle(xAxisLabel)
|
522 |
Stack_list[i].GetYaxis().SetTitle(yAxisLabel)
|
523 |
Stack_list[i].SetMaximum(finalMax)
|
524 |
Stack_list[i].SetMinimum(yAxisMin)
|
525 |
if makeRatioPlots or makeDiffPlots:
|
526 |
Stack_list[i].GetHistogram().GetXaxis().SetLabelSize(0)
|
527 |
#draw shaded error bands
|
528 |
ErrorHisto.Draw("A E2 SAME")
|
529 |
|
530 |
else: #draw the unstacked backgrounds
|
531 |
HistogramsToFit[0].SetTitle(histoTitle)
|
532 |
HistogramsToFit[0].Draw("HIST")
|
533 |
HistogramsToFit[0].GetXaxis().SetTitle(xAxisLabel)
|
534 |
HistogramsToFit[0].GetYaxis().SetTitle(yAxisLabel)
|
535 |
HistogramsToFit[0].SetMaximum(finalMax)
|
536 |
HistogramsToFit[0].SetMinimum(yAxisMin)
|
537 |
for bgMCHist in HistogramsToFit:
|
538 |
bgMCHist.Draw("A HIST SAME")
|
539 |
|
540 |
Target.Draw("A E X0 SAME")
|
541 |
|
542 |
|
543 |
|
544 |
#legend coordinates, empirically determined :-)
|
545 |
x_left = 0.6761745
|
546 |
x_right = 0.9328859
|
547 |
x_width = x_right - x_left
|
548 |
y_max = 0.9
|
549 |
entry_height = 0.05
|
550 |
|
551 |
if(numFittingSamples is not 0): #then draw the data & bgMC legend
|
552 |
|
553 |
numExtraEntries = 2 # count the target and (lack of) title
|
554 |
Legend.SetX1NDC(x_left)
|
555 |
numExtraEntries = numExtraEntries + 1 # count the stat. errors entry
|
556 |
|
557 |
Legend.SetY1NDC(y_max-entry_height*(numExtraEntries+numFittingSamples))
|
558 |
Legend.SetX2NDC(x_right)
|
559 |
Legend.SetY2NDC(y_max)
|
560 |
Legend.Draw()
|
561 |
|
562 |
RatiosLabel.SetX1NDC(x_left - 0.1)
|
563 |
RatiosLabel.SetX2NDC(x_right)
|
564 |
RatiosLabel.SetY2NDC(Legend.GetY1NDC() - 0.1)
|
565 |
RatiosLabel.SetY1NDC(RatiosLabel.GetY2NDC() - entry_height*(numFittingSamples))
|
566 |
|
567 |
# Deciding which text labels to draw and drawing them
|
568 |
drawLumiLabel = False
|
569 |
drawNormLabel = False
|
570 |
offsetNormLabel = False
|
571 |
drawHeaderLabel = False
|
572 |
|
573 |
if not arguments.normalizeToUnitArea: #don't draw the lumi label if there's no data and it's scaled to unit area
|
574 |
drawLumiLabel = True
|
575 |
# move the normalization label down before drawing if we drew the lumi. label
|
576 |
offsetNormLabel = True
|
577 |
if arguments.normalizeToUnitArea or arguments.normalizeToData:
|
578 |
drawNormLabel = True
|
579 |
if arguments.makeFancy:
|
580 |
drawHeaderLabel = True
|
581 |
drawLumiLabel = False
|
582 |
|
583 |
# now that flags are set, draw the appropriate labels
|
584 |
|
585 |
if drawLumiLabel:
|
586 |
LumiLabel.Draw()
|
587 |
|
588 |
if drawNormLabel:
|
589 |
if offsetNormLabel:
|
590 |
NormLabel.SetY1NDC(topLeft_y_bottom-topLeft_y_offset)
|
591 |
NormLabel.SetY2NDC(topLeft_y_top-topLeft_y_offset)
|
592 |
else:
|
593 |
NormLabel.SetY1NDC(topLeft_y_bottom)
|
594 |
NormLabel.SetY2NDC(topLeft_y_top)
|
595 |
NormLabel.Draw()
|
596 |
|
597 |
if drawHeaderLabel:
|
598 |
HeaderLabel.Draw()
|
599 |
|
600 |
YieldsLabel.Clear()
|
601 |
mcYield = Stack_list[i].GetStack().Last().Integral()
|
602 |
dataYield = Target.Integral()
|
603 |
if i == 0:
|
604 |
YieldsLabel.AddText ("Before Fit to Data")
|
605 |
if i == 1:
|
606 |
YieldsLabel.AddText ("After Fit to Data")
|
607 |
YieldsLabel.AddText ("data yield: " + '%.1f' % dataYield)
|
608 |
YieldsLabel.AddText ("MC yield: " + '%.1f' % mcYield)
|
609 |
if i == 1:
|
610 |
for j in range(0,len(FittingLegendEntries)):
|
611 |
RatiosLabel.AddText (FittingLegendEntries[j]+" ratio: " + '%.2f' % ratios[j])
|
612 |
YieldsLabel.Draw()
|
613 |
RatiosLabel.Draw()
|
614 |
|
615 |
# drawing the ratio or difference plot if requested
|
616 |
if (makeRatioPlots or makeDiffPlots):
|
617 |
Canvas.cd(2)
|
618 |
BgSum = Stack_list[i].GetStack().Last()
|
619 |
if makeRatioPlots:
|
620 |
if arguments.ratioRelErrMax:
|
621 |
Comparison = ratioHistogram(Target,BgSum,arguments.ratioRelErrMax)
|
622 |
else:
|
623 |
Comparison = ratioHistogram(Target,BgSum)
|
624 |
elif makeDiffPlots:
|
625 |
Comparison = Target.Clone("diff")
|
626 |
Comparison.Add(BgSum,-1)
|
627 |
Comparison.SetTitle("")
|
628 |
Comparison.GetYaxis().SetTitle("Data-MC")
|
629 |
Comparison.GetXaxis().SetTitle(xAxisLabel)
|
630 |
Comparison.GetYaxis().CenterTitle()
|
631 |
Comparison.GetYaxis().SetTitleSize(0.1)
|
632 |
Comparison.GetYaxis().SetTitleOffset(0.5)
|
633 |
Comparison.GetXaxis().SetTitleSize(0.15)
|
634 |
Comparison.GetYaxis().SetLabelSize(0.1)
|
635 |
Comparison.GetXaxis().SetLabelSize(0.15)
|
636 |
if makeRatioPlots:
|
637 |
RatioYRange = 1.15
|
638 |
if arguments.ratioYRange:
|
639 |
RatioYRange = float(arguments.ratioYRange)
|
640 |
Comparison.GetYaxis().SetRangeUser(-1*RatioYRange, RatioYRange)
|
641 |
elif makeDiffPlots:
|
642 |
YMax = Comparison.GetMaximum()
|
643 |
YMin = Comparison.GetMinimum()
|
644 |
if YMax <= 0 and YMin <= 0:
|
645 |
Comparison.GetYaxis().SetRangeUser(-1.2*YMin,0)
|
646 |
elif YMax >= 0 and YMin >= 0:
|
647 |
Comparison.GetYaxis().SetRangeUser(0,1.2*YMax)
|
648 |
else: #axis crosses y=0
|
649 |
if abs(YMax) > abs(YMin):
|
650 |
Comparison.GetYaxis().SetRangeUser(-1.2*YMax,1.2*YMax)
|
651 |
else:
|
652 |
Comparison.GetYaxis().SetRangeUser(-1.2*YMin,1.2*YMin)
|
653 |
|
654 |
Comparison.GetYaxis().SetNdivisions(205)
|
655 |
Comparison.Draw()
|
656 |
|
657 |
|
658 |
|
659 |
if i == 0:
|
660 |
Canvas.Write (distribution['name'] + "_Before")
|
661 |
if arguments.savePDFs:
|
662 |
pathToDirString = plainTextString(pathToDir)
|
663 |
Canvas.SaveAs(condor_dir+"/fitting_histogram_pdfs/"+pathToDirString+"/"+distribution['name']+"_Before.pdf")
|
664 |
|
665 |
if i == 1:
|
666 |
Canvas.Write (distribution['name'] + "_After")
|
667 |
if arguments.savePDFs:
|
668 |
pathToDirString = plainTextString(pathToDir)
|
669 |
Canvas.SaveAs(condor_dir+"/fitting_histogram_pdfs/"+pathToDirString+"/"+distribution['name']+"_After.pdf")
|
670 |
|
671 |
|
672 |
|
673 |
|
674 |
##########################################################################################################################################
|
675 |
##########################################################################################################################################
|
676 |
##########################################################################################################################################
|
677 |
|
678 |
|
679 |
##########################################################################################################################################
|
680 |
##########################################################################################################################################
|
681 |
##########################################################################################################################################
|
682 |
|
683 |
|
684 |
condor_dir = set_condor_output_dir(arguments)
|
685 |
|
686 |
|
687 |
# make output file
|
688 |
outputFileName = "mc_fit_to_data.root"
|
689 |
if arguments.outputFileName:
|
690 |
outputFileName = arguments.outputFileName
|
691 |
|
692 |
outputFile = TFile(condor_dir + "/" + outputFileName, "RECREATE")
|
693 |
|
694 |
|
695 |
if arguments.savePDFs:
|
696 |
os.system("rm -rf %s/fitting_histograms_pdfs" % (condor_dir))
|
697 |
os.system("mkdir %s/fitting_histograms_pdfs" % (condor_dir))
|
698 |
|
699 |
|
700 |
#get root directory in the first layer, generally "OSUAnalysis"
|
701 |
for distribution in input_distributions:
|
702 |
MakeOneDHist("OSUAnalysis",distribution)
|
703 |
|
704 |
outputFile.Close()
|