1 |
lantonel |
1.1 |
#!/usr/bin/env python
|
2 |
|
|
import sys
|
3 |
|
|
import os
|
4 |
ahart |
1.6 |
import re
|
5 |
lantonel |
1.1 |
from array import *
|
6 |
lantonel |
1.3 |
from decimal import *
|
7 |
lantonel |
1.1 |
from optparse import OptionParser
|
8 |
lantonel |
1.2 |
from OSUT3Analysis.Configuration.configurationOptions import *
|
9 |
lantonel |
1.7 |
from OSUT3Analysis.Configuration.processingUtilities import *
|
10 |
lantonel |
1.1 |
|
11 |
|
|
parser = OptionParser()
|
12 |
lantonel |
1.7 |
parser = set_commandline_arguments(parser)
|
13 |
lantonel |
1.4 |
|
14 |
lantonel |
1.1 |
(options, args) = parser.parse_args()
|
15 |
|
|
|
16 |
|
|
if options.localConfig:
|
17 |
|
|
sys.path.append(os.getcwd())
|
18 |
|
|
exec("from " + options.localConfig.rstrip('.py') + " import *")
|
19 |
|
|
|
20 |
lantonel |
1.7 |
condor_dir = set_condor_output_dir(options)
|
21 |
lantonel |
1.1 |
|
22 |
|
|
|
23 |
|
|
from ROOT import TFile, gROOT, gStyle, gDirectory, TStyle, THStack, TH1F, TCanvas, TString, TLegend, TArrow, THStack, TIter, TKey, TPaveLabel
|
24 |
|
|
|
25 |
|
|
gROOT.SetBatch()
|
26 |
|
|
gStyle.SetOptStat(0)
|
27 |
|
|
gStyle.SetCanvasBorderMode(0)
|
28 |
|
|
gStyle.SetPadBorderMode(0)
|
29 |
|
|
gStyle.SetPadColor(0)
|
30 |
|
|
gStyle.SetCanvasColor(0)
|
31 |
|
|
gStyle.SetTextFont(42)
|
32 |
lantonel |
1.3 |
gROOT.ForceStyle()
|
33 |
lantonel |
1.1 |
outputFile = TFile(condor_dir + "/stacked_histograms.root", "RECREATE")
|
34 |
|
|
|
35 |
|
|
channels = []
|
36 |
|
|
processed_datasets = []
|
37 |
|
|
|
38 |
|
|
#### check which input datasets have valid output files
|
39 |
|
|
for sample in datasets:
|
40 |
|
|
fileName = condor_dir + "/" + sample + ".root"
|
41 |
|
|
if not os.path.exists(fileName):
|
42 |
|
|
continue
|
43 |
|
|
testFile = TFile(fileName)
|
44 |
|
|
if not (testFile.IsZombie()):
|
45 |
|
|
processed_datasets.append(sample)
|
46 |
|
|
|
47 |
|
|
if len(processed_datasets) is 0:
|
48 |
|
|
sys.exit("No datasets have been processed")
|
49 |
|
|
|
50 |
|
|
#### open first input file and re-make its directory structure in the output file
|
51 |
|
|
testFile = TFile(condor_dir + "/" + processed_datasets[0] + ".root")
|
52 |
|
|
testFile.cd()
|
53 |
|
|
for key in testFile.GetListOfKeys():
|
54 |
|
|
if (key.GetClassName() != "TDirectoryFile"):
|
55 |
|
|
continue
|
56 |
|
|
outputFile.cd()
|
57 |
|
|
outputFile.mkdir(key.GetName())
|
58 |
|
|
rootDirectory = key.GetName()
|
59 |
|
|
|
60 |
|
|
testFile.cd(key.GetName())
|
61 |
|
|
for key2 in gDirectory.GetListOfKeys():
|
62 |
|
|
if (key2.GetClassName() != "TDirectoryFile"):
|
63 |
|
|
continue
|
64 |
|
|
outputFile.cd(key.GetName())
|
65 |
|
|
gDirectory.mkdir(key2.GetName())
|
66 |
|
|
channels.append(key2.GetName())
|
67 |
|
|
|
68 |
|
|
|
69 |
ahart |
1.6 |
weight = intLumi / 10000.0
|
70 |
|
|
for dataset in processed_datasets:
|
71 |
|
|
dataset_file = "%s/%s.root" % (condor_dir,dataset)
|
72 |
ahart |
1.9 |
if types[dataset] != "data":
|
73 |
|
|
os.system("mergeTFileServiceHistograms -i %s -o %s -w %g" % (dataset_file, dataset_file + "_tmp", weight))
|
74 |
|
|
else:
|
75 |
|
|
os.system("mergeTFileServiceHistograms -i %s -o %s -w %g" % (dataset_file, dataset_file + "_tmp", 1.0))
|
76 |
lantonel |
1.1 |
|
77 |
|
|
for channel in channels: # loop over final states, which each have their own directory
|
78 |
|
|
|
79 |
|
|
testFile.cd(rootDirectory+"/"+channel)
|
80 |
lantonel |
1.3 |
|
81 |
lantonel |
1.10 |
for key in gDirectory.GetListOfKeys(): # loop over histograms in the current directory
|
82 |
|
|
histogramName = key.GetName()
|
83 |
lantonel |
1.1 |
|
84 |
lantonel |
1.10 |
if re.match ('TH1', key.GetClassName()): # plot a 1-D histogram
|
85 |
|
|
|
86 |
|
|
numBgMCSamples = 0
|
87 |
|
|
numDataSamples = 0
|
88 |
|
|
numSignalSamples = 0
|
89 |
lantonel |
1.1 |
|
90 |
lantonel |
1.10 |
Stack = THStack("stack",histogramName)
|
91 |
lantonel |
1.1 |
|
92 |
lantonel |
1.10 |
if(intLumi < 1000.):
|
93 |
|
|
LumiText = "L_{int} = " + str(intLumi) + " pb^{-1}"
|
94 |
|
|
else:
|
95 |
|
|
getcontext().prec = 2
|
96 |
|
|
LumiInFb = intLumi/1000.
|
97 |
|
|
LumiText = "L_{int} = " + str(LumiInFb) + " fb^{-1}"
|
98 |
|
|
|
99 |
|
|
LumiLabel = TPaveLabel(0.1,0.8,0.34,0.9,LumiText,"NDC")
|
100 |
|
|
LumiLabel.SetBorderSize(0)
|
101 |
|
|
LumiLabel.SetFillColor(0)
|
102 |
|
|
LumiLabel.SetFillStyle(0)
|
103 |
lantonel |
1.1 |
|
104 |
lantonel |
1.10 |
BgMCLegend = TLegend(0.70,0.65,0.99,0.89, "Data & Bkgd. MC")
|
105 |
|
|
BgMCLegend.SetBorderSize(0)
|
106 |
|
|
BgMCLegend.SetFillColor(0)
|
107 |
|
|
BgMCLegend.SetFillStyle(0)
|
108 |
|
|
SignalMCLegend = TLegend(0.45,0.65,0.70,0.89,"Signal MC")
|
109 |
|
|
SignalMCLegend.SetBorderSize(0)
|
110 |
|
|
SignalMCLegend.SetFillColor(0)
|
111 |
|
|
SignalMCLegend.SetFillStyle(0)
|
112 |
|
|
|
113 |
|
|
outputFile.cd(rootDirectory+"/"+channel)
|
114 |
|
|
Canvas = TCanvas(histogramName)
|
115 |
|
|
BgMCHistograms = []
|
116 |
|
|
SignalMCHistograms = []
|
117 |
|
|
DataHistograms = []
|
118 |
|
|
|
119 |
|
|
backgroundIntegral = 0
|
120 |
|
|
dataIntegral = 0
|
121 |
|
|
scaleFactor = 1
|
122 |
|
|
|
123 |
|
|
for sample in processed_datasets: # loop over different samples as listed in configurationOptions.py
|
124 |
|
|
dataset_file = "%s/%s.root_tmp" % (condor_dir,sample)
|
125 |
|
|
inputFile = TFile(dataset_file)
|
126 |
|
|
if(inputFile.IsZombie()):
|
127 |
|
|
continue
|
128 |
|
|
Histogram = inputFile.Get(rootDirectory+"/"+channel+"/"+histogramName).Clone()
|
129 |
|
|
Histogram.SetDirectory(0)
|
130 |
|
|
inputFile.Close()
|
131 |
|
|
xAxisLabel = Histogram.GetXaxis().GetTitle()
|
132 |
|
|
histoTitle = Histogram.GetTitle()
|
133 |
lantonel |
1.1 |
|
134 |
lantonel |
1.10 |
if( types[sample] == "bgMC"):
|
135 |
|
|
|
136 |
|
|
numBgMCSamples += 1
|
137 |
|
|
|
138 |
|
|
Histogram.SetFillStyle(1001)
|
139 |
|
|
Histogram.SetFillColor(colors[sample])
|
140 |
|
|
Histogram.SetLineColor(1)
|
141 |
|
|
Histogram.SetLineStyle(1)
|
142 |
|
|
Histogram.SetLineWidth(1)
|
143 |
|
|
|
144 |
|
|
backgroundIntegral += Histogram.Integral()
|
145 |
|
|
|
146 |
|
|
BgMCLegend.AddEntry(Histogram,labels[sample],"F")
|
147 |
|
|
BgMCHistograms.append(Histogram)
|
148 |
|
|
|
149 |
|
|
elif( types[sample] == "signalMC"):
|
150 |
|
|
|
151 |
|
|
numSignalSamples += 1
|
152 |
lantonel |
1.11 |
|
153 |
lantonel |
1.10 |
Histogram.SetFillStyle(0)
|
154 |
|
|
Histogram.SetLineColor(colors[sample])
|
155 |
|
|
Histogram.SetLineStyle(1)
|
156 |
|
|
Histogram.SetLineWidth(2)
|
157 |
lantonel |
1.12 |
if(options.normalizeToUnitArea and Histogram.Integral() > 0):
|
158 |
lantonel |
1.11 |
Histogram.Scale(1./Histogram.Integral())
|
159 |
lantonel |
1.10 |
SignalMCLegend.AddEntry(Histogram,labels[sample],"L")
|
160 |
|
|
SignalMCHistograms.append(Histogram)
|
161 |
|
|
|
162 |
|
|
elif( types[sample] == "data"):
|
163 |
|
|
|
164 |
|
|
numDataSamples += 1
|
165 |
|
|
|
166 |
|
|
Histogram.SetFillStyle(0)
|
167 |
|
|
Histogram.SetLineColor(colors[sample])
|
168 |
|
|
Histogram.SetLineStyle(1)
|
169 |
|
|
Histogram.SetLineWidth(2)
|
170 |
lantonel |
1.12 |
if(options.normalizeToUnitArea and Histogram.Integral() > 0):
|
171 |
lantonel |
1.11 |
Histogram.Scale(1./Histogram.Integral())
|
172 |
lantonel |
1.10 |
|
173 |
|
|
dataIntegral += Histogram.Integral()
|
174 |
|
|
|
175 |
|
|
BgMCLegend.AddEntry(Histogram,labels[sample],"LEP")
|
176 |
|
|
DataHistograms.append(Histogram)
|
177 |
|
|
|
178 |
|
|
if dataIntegral > 0 and backgroundIntegral > 0:
|
179 |
|
|
scaleFactor = dataIntegral/backgroundIntegral
|
180 |
|
|
for bgMCHist in BgMCHistograms:
|
181 |
lantonel |
1.11 |
if options.normalizeToData:
|
182 |
lantonel |
1.10 |
bgMCHist.Scale(scaleFactor)
|
183 |
lantonel |
1.11 |
if options.normalizeToUnitArea and backgroundIntegral > 0:
|
184 |
|
|
bgMCHist.Scale(1./backgroundIntegral)
|
185 |
lantonel |
1.10 |
Stack.Add(bgMCHist)
|
186 |
lantonel |
1.3 |
|
187 |
lantonel |
1.11 |
|
188 |
lantonel |
1.1 |
|
189 |
lantonel |
1.10 |
stackMax = Stack.GetMaximum()
|
190 |
|
|
finalMax = stackMax
|
191 |
|
|
for signalMCHist in SignalMCHistograms:
|
192 |
|
|
if(signalMCHist.GetMaximum() > finalMax):
|
193 |
|
|
finalMax = signalMCHist.GetMaximum()
|
194 |
|
|
for dataHist in DataHistograms:
|
195 |
|
|
if(dataHist.GetMaximum() > finalMax):
|
196 |
|
|
finalMax = dataHist.GetMaximum()
|
197 |
lantonel |
1.4 |
|
198 |
lantonel |
1.10 |
if len(DataHistograms) is 1:
|
199 |
|
|
dataIntegral += DataHistograms[0].Integral()
|
200 |
|
|
|
201 |
|
|
outputFile.cd(rootDirectory+"/"+channel)
|
202 |
lantonel |
1.3 |
|
203 |
lantonel |
1.10 |
if(numBgMCSamples is not 0):
|
204 |
|
|
Stack.SetTitle(histoTitle)
|
205 |
|
|
Stack.Draw("HIST")
|
206 |
|
|
Stack.GetXaxis().SetTitle(xAxisLabel)
|
207 |
|
|
Stack.SetMaximum(1.1*finalMax)
|
208 |
|
|
for signalMCHist in SignalMCHistograms:
|
209 |
|
|
signalMCHist.Draw("HIST SAME")
|
210 |
|
|
for dataHist in DataHistograms:
|
211 |
|
|
dataHist.Draw("E SAME")
|
212 |
|
|
|
213 |
|
|
elif(numSignalSamples is not 0):
|
214 |
|
|
SignalMCHistograms[0].SetTitle(histoTitle)
|
215 |
|
|
SignalMCHistograms[0].Draw("HIST")
|
216 |
|
|
SignalMCHistograms[0].GetXaxis().SetTitle(xAxisLabel)
|
217 |
|
|
SignalMCHistograms[0].SetMaximum(1.1*finalMax)
|
218 |
|
|
for signalMCHist in SignalMCHistograms:
|
219 |
|
|
if(signalMCHist is not SignalMCHistograms[0]):
|
220 |
|
|
signalMCHist.Draw("HIST SAME")
|
221 |
|
|
for dataHist in DataHistograms:
|
222 |
|
|
dataHist.Draw("E SAME")
|
223 |
lantonel |
1.1 |
|
224 |
lantonel |
1.10 |
elif(numDataSamples is not 0):
|
225 |
|
|
DataHistograms[0].SetTitle(histoTitle)
|
226 |
|
|
DataHistograms[0].Draw("E")
|
227 |
|
|
DataHistograms[0].GetXaxis().SetTitle(xAxisLabel)
|
228 |
|
|
DataHistograms[0].SetMaximum(1.1*finalMax)
|
229 |
|
|
for dataHist in DataHistograms:
|
230 |
|
|
if(dataHist is not DataHistograms[0]):
|
231 |
|
|
dataHist.Draw("E SAME")
|
232 |
lantonel |
1.3 |
|
233 |
lantonel |
1.10 |
|
234 |
|
|
if(numBgMCSamples is not 0 or numDataSamples is not 0):
|
235 |
|
|
BgMCLegend.Draw()
|
236 |
|
|
if(numSignalSamples is not 0):
|
237 |
|
|
SignalMCLegend.Draw()
|
238 |
|
|
|
239 |
|
|
LumiLabel.Draw()
|
240 |
lantonel |
1.11 |
if options.normalizeToData and numBgMCSamples > 0 and numDataSamples > 0:
|
241 |
lantonel |
1.10 |
NormLabel = TPaveLabel(0.1,0.75,0.35,0.85,"MC scaled to data","NDC")
|
242 |
|
|
NormLabel.SetBorderSize(0)
|
243 |
|
|
NormLabel.SetFillColor(0)
|
244 |
|
|
NormLabel.SetFillStyle(0)
|
245 |
|
|
NormLabel.Draw()
|
246 |
lantonel |
1.1 |
|
247 |
lantonel |
1.4 |
|
248 |
lantonel |
1.10 |
Canvas.Write()
|
249 |
lantonel |
1.1 |
|
250 |
lantonel |
1.4 |
|
251 |
lantonel |
1.10 |
if re.match ('TH2', key.GetClassName()): # plot a 2-D histogram
|
252 |
lantonel |
1.4 |
|
253 |
lantonel |
1.10 |
numBgMCSamples = 0
|
254 |
|
|
numDataSamples = 0
|
255 |
|
|
numSignalSamples = 0
|
256 |
|
|
|
257 |
|
|
if(intLumi < 1000.):
|
258 |
|
|
LumiText = "L_{int} = " + str(intLumi) + " pb^{-1}"
|
259 |
|
|
else:
|
260 |
|
|
getcontext().prec = 2
|
261 |
|
|
LumiInFb = intLumi/1000.
|
262 |
|
|
LumiText = "L_{int} = " + str(LumiInFb) + " fb^{-1}"
|
263 |
|
|
|
264 |
|
|
LumiLabel = TPaveLabel(0.1,0.8,0.34,0.9,LumiText,"NDC")
|
265 |
|
|
LumiLabel.SetBorderSize(0)
|
266 |
|
|
LumiLabel.SetFillColor(0)
|
267 |
|
|
LumiLabel.SetFillStyle(0)
|
268 |
|
|
|
269 |
|
|
BgMCLegend = TLegend(0.76,0.65,0.99,0.9, "Data & Bkgd. MC")
|
270 |
|
|
BgMCLegend.SetBorderSize(0)
|
271 |
|
|
BgMCLegend.SetFillColor(0)
|
272 |
|
|
BgMCLegend.SetFillStyle(0)
|
273 |
|
|
SignalMCLegend = TLegend(0.76,0.135,0.99,0.377,"Signal MC")
|
274 |
|
|
SignalMCLegend.SetBorderSize(0)
|
275 |
|
|
SignalMCLegend.SetFillColor(0)
|
276 |
|
|
SignalMCLegend.SetFillStyle(0)
|
277 |
|
|
|
278 |
|
|
outputFile.cd(rootDirectory+"/"+channel)
|
279 |
|
|
Canvas = TCanvas(histogramName)
|
280 |
|
|
Canvas.SetRightMargin(0.2413793);
|
281 |
|
|
BgMCHistograms = []
|
282 |
|
|
SignalMCHistograms = []
|
283 |
|
|
DataHistograms = []
|
284 |
|
|
|
285 |
|
|
for sample in processed_datasets: # loop over different samples as listed in configurationOptions.py
|
286 |
|
|
dataset_file = "%s/%s.root_tmp" % (condor_dir,sample)
|
287 |
|
|
inputFile = TFile(dataset_file)
|
288 |
|
|
if(inputFile.IsZombie()):
|
289 |
|
|
continue
|
290 |
|
|
Histogram = inputFile.Get(rootDirectory+"/"+channel+"/"+histogramName).Clone()
|
291 |
|
|
Histogram.SetDirectory(0)
|
292 |
|
|
inputFile.Close()
|
293 |
|
|
xAxisLabel = Histogram.GetXaxis().GetTitle()
|
294 |
|
|
yAxisLabel = Histogram.GetYaxis().GetTitle()
|
295 |
|
|
histoTitle = Histogram.GetTitle()
|
296 |
|
|
|
297 |
|
|
if( types[sample] == "bgMC"):
|
298 |
lantonel |
1.4 |
|
299 |
lantonel |
1.10 |
numBgMCSamples += 1
|
300 |
|
|
Histogram.SetMarkerColor(colors[sample])
|
301 |
|
|
Histogram.SetMarkerStyle(6)
|
302 |
|
|
Histogram.SetFillColor(colors[sample])
|
303 |
|
|
BgMCLegend.AddEntry(Histogram,labels[sample],"F")
|
304 |
|
|
BgMCHistograms.append(Histogram)
|
305 |
|
|
|
306 |
|
|
elif( types[sample] == "signalMC"):
|
307 |
lantonel |
1.3 |
|
308 |
lantonel |
1.10 |
numSignalSamples += 1
|
309 |
|
|
Histogram.SetMarkerColor(colors[sample])
|
310 |
|
|
Histogram.SetMarkerStyle(6)
|
311 |
|
|
Histogram.SetFillColor(colors[sample])
|
312 |
|
|
SignalMCLegend.AddEntry(Histogram,labels[sample],"F")
|
313 |
|
|
SignalMCHistograms.append(Histogram)
|
314 |
|
|
|
315 |
|
|
elif( types[sample] == "data"):
|
316 |
|
|
|
317 |
|
|
numDataSamples += 1
|
318 |
|
|
Histogram.SetMarkerColor(colors[sample])
|
319 |
|
|
Histogram.SetMarkerStyle(6)
|
320 |
|
|
Histogram.SetFillColor(colors[sample])
|
321 |
|
|
BgMCLegend.AddEntry(Histogram,labels[sample],"F")
|
322 |
|
|
DataHistograms.append(Histogram)
|
323 |
|
|
|
324 |
|
|
|
325 |
|
|
outputFile.cd(rootDirectory+"/"+channel)
|
326 |
|
|
|
327 |
|
|
if(numBgMCSamples is not 0):
|
328 |
|
|
BgMCHistograms[0].SetTitle(histoTitle)
|
329 |
|
|
BgMCHistograms[0].GetXaxis().SetTitle(xAxisLabel)
|
330 |
|
|
BgMCHistograms[0].GetYaxis().SetTitle(yAxisLabel)
|
331 |
|
|
BgMCHistograms[0].Draw()
|
332 |
|
|
for signalMCHist in SignalMCHistograms:
|
333 |
|
|
signalMCHist.Draw("SAME")
|
334 |
|
|
for dataHist in DataHistograms:
|
335 |
|
|
dataHist.Draw("SAME")
|
336 |
lantonel |
1.3 |
|
337 |
lantonel |
1.10 |
elif(numSignalSamples is not 0):
|
338 |
|
|
SignalMCHistograms[0].SetTitle(histoTitle)
|
339 |
|
|
SignalMCHistograms[0].Draw()
|
340 |
|
|
SignalMCHistograms[0].GetXaxis().SetTitle(xAxisLabel)
|
341 |
|
|
SignalMCHistograms[0].GetYaxis().SetTitle(yAxisLabel)
|
342 |
|
|
for signalMCHist in SignalMCHistograms:
|
343 |
|
|
if(signalMCHist is not SignalMCHistograms[0]):
|
344 |
|
|
signalMCHist.Draw("SAME")
|
345 |
|
|
for dataHist in DataHistograms:
|
346 |
|
|
dataHist.Draw("SAME")
|
347 |
|
|
|
348 |
|
|
elif(numDataSamples is not 0):
|
349 |
|
|
DataHistograms[0].SetTitle(histoTitle)
|
350 |
|
|
DataHistograms[0].GetXaxis().SetTitle(xAxisLabel)
|
351 |
|
|
DataHistograms[0].GetYaxis().SetTitle(yAxisLabel)
|
352 |
|
|
DataHistograms[0].Draw()
|
353 |
|
|
for dataHist in DataHistograms:
|
354 |
|
|
if(dataHist is not DataHistograms[0]):
|
355 |
|
|
dataHist.Draw("SAME")
|
356 |
lantonel |
1.3 |
|
357 |
lantonel |
1.8 |
|
358 |
lantonel |
1.10 |
if(numBgMCSamples is not 0 or numDataSamples is not 0):
|
359 |
|
|
BgMCLegend.Draw()
|
360 |
|
|
if(numSignalSamples is not 0):
|
361 |
|
|
SignalMCLegend.Draw()
|
362 |
|
|
|
363 |
|
|
LumiLabel.Draw()
|
364 |
lantonel |
1.4 |
|
365 |
lantonel |
1.10 |
Canvas.Write()
|
366 |
|
|
|
367 |
lantonel |
1.4 |
|
368 |
lantonel |
1.1 |
|
369 |
ahart |
1.6 |
for dataset in processed_datasets:
|
370 |
|
|
dataset_file = "%s/%s.root_tmp" % (condor_dir,dataset)
|
371 |
|
|
os.remove(dataset_file)
|
372 |
lantonel |
1.1 |
|
373 |
|
|
outputFile.Close()
|