1 |
lantonel |
1.1 |
#!/usr/bin/env python
|
2 |
|
|
import sys
|
3 |
|
|
import os
|
4 |
ahart |
1.6 |
import re
|
5 |
lantonel |
1.1 |
from array import *
|
6 |
lantonel |
1.3 |
from decimal import *
|
7 |
lantonel |
1.1 |
from optparse import OptionParser
|
8 |
lantonel |
1.2 |
from OSUT3Analysis.Configuration.configurationOptions import *
|
9 |
lantonel |
1.7 |
from OSUT3Analysis.Configuration.processingUtilities import *
|
10 |
lantonel |
1.1 |
|
11 |
|
|
parser = OptionParser()
|
12 |
lantonel |
1.7 |
parser = set_commandline_arguments(parser)
|
13 |
lantonel |
1.4 |
|
14 |
lantonel |
1.1 |
(options, args) = parser.parse_args()
|
15 |
|
|
|
16 |
|
|
if options.localConfig:
|
17 |
|
|
sys.path.append(os.getcwd())
|
18 |
|
|
exec("from " + options.localConfig.rstrip('.py') + " import *")
|
19 |
|
|
|
20 |
lantonel |
1.7 |
condor_dir = set_condor_output_dir(options)
|
21 |
lantonel |
1.1 |
|
22 |
|
|
|
23 |
|
|
from ROOT import TFile, gROOT, gStyle, gDirectory, TStyle, THStack, TH1F, TCanvas, TString, TLegend, TArrow, THStack, TIter, TKey, TPaveLabel
|
24 |
|
|
|
25 |
|
|
gROOT.SetBatch()
|
26 |
|
|
gStyle.SetOptStat(0)
|
27 |
|
|
gStyle.SetCanvasBorderMode(0)
|
28 |
|
|
gStyle.SetPadBorderMode(0)
|
29 |
|
|
gStyle.SetPadColor(0)
|
30 |
|
|
gStyle.SetCanvasColor(0)
|
31 |
|
|
gStyle.SetTextFont(42)
|
32 |
lantonel |
1.3 |
gROOT.ForceStyle()
|
33 |
lantonel |
1.1 |
outputFile = TFile(condor_dir + "/stacked_histograms.root", "RECREATE")
|
34 |
|
|
|
35 |
|
|
channels = []
|
36 |
|
|
processed_datasets = []
|
37 |
|
|
|
38 |
|
|
#### check which input datasets have valid output files
|
39 |
|
|
for sample in datasets:
|
40 |
|
|
fileName = condor_dir + "/" + sample + ".root"
|
41 |
|
|
if not os.path.exists(fileName):
|
42 |
|
|
continue
|
43 |
|
|
testFile = TFile(fileName)
|
44 |
|
|
if not (testFile.IsZombie()):
|
45 |
|
|
processed_datasets.append(sample)
|
46 |
|
|
|
47 |
|
|
if len(processed_datasets) is 0:
|
48 |
|
|
sys.exit("No datasets have been processed")
|
49 |
|
|
|
50 |
|
|
#### open first input file and re-make its directory structure in the output file
|
51 |
|
|
testFile = TFile(condor_dir + "/" + processed_datasets[0] + ".root")
|
52 |
|
|
testFile.cd()
|
53 |
|
|
for key in testFile.GetListOfKeys():
|
54 |
|
|
if (key.GetClassName() != "TDirectoryFile"):
|
55 |
|
|
continue
|
56 |
|
|
outputFile.cd()
|
57 |
|
|
outputFile.mkdir(key.GetName())
|
58 |
|
|
rootDirectory = key.GetName()
|
59 |
|
|
|
60 |
|
|
testFile.cd(key.GetName())
|
61 |
|
|
for key2 in gDirectory.GetListOfKeys():
|
62 |
|
|
if (key2.GetClassName() != "TDirectoryFile"):
|
63 |
|
|
continue
|
64 |
|
|
outputFile.cd(key.GetName())
|
65 |
|
|
gDirectory.mkdir(key2.GetName())
|
66 |
|
|
channels.append(key2.GetName())
|
67 |
|
|
|
68 |
|
|
|
69 |
ahart |
1.6 |
weight = intLumi / 10000.0
|
70 |
|
|
for dataset in processed_datasets:
|
71 |
|
|
dataset_file = "%s/%s.root" % (condor_dir,dataset)
|
72 |
|
|
os.system("mergeTFileServiceHistograms -i %s -o %s -w %g" % (dataset_file, dataset_file + "_tmp", weight))
|
73 |
lantonel |
1.1 |
|
74 |
|
|
for channel in channels: # loop over final states, which each have their own directory
|
75 |
|
|
|
76 |
|
|
testFile.cd(rootDirectory+"/"+channel)
|
77 |
|
|
histograms = []
|
78 |
|
|
for key in gDirectory.GetListOfKeys():
|
79 |
ahart |
1.6 |
if re.match ('TH1', key.GetClassName()):
|
80 |
|
|
histograms.append(key.GetName())
|
81 |
lantonel |
1.1 |
|
82 |
|
|
for histogramName in histograms: # loop over histograms in the current directory
|
83 |
|
|
|
84 |
lantonel |
1.3 |
numBgMCSamples = 0
|
85 |
|
|
numDataSamples = 0
|
86 |
|
|
numSignalSamples = 0
|
87 |
|
|
|
88 |
lantonel |
1.1 |
Stack = THStack("stack",histogramName)
|
89 |
|
|
|
90 |
|
|
if(intLumi < 1000.):
|
91 |
|
|
LumiText = "L_{int} = " + str(intLumi) + " pb^{-1}"
|
92 |
|
|
else:
|
93 |
lantonel |
1.3 |
getcontext().prec = 2
|
94 |
|
|
LumiInFb = intLumi/1000.
|
95 |
lantonel |
1.1 |
LumiText = "L_{int} = " + str(LumiInFb) + " fb^{-1}"
|
96 |
|
|
|
97 |
lantonel |
1.3 |
LumiLabel = TPaveLabel(0.1,0.8,0.34,0.9,LumiText,"NDC")
|
98 |
|
|
LumiLabel.SetBorderSize(0)
|
99 |
|
|
LumiLabel.SetFillColor(0)
|
100 |
|
|
LumiLabel.SetFillStyle(0)
|
101 |
lantonel |
1.1 |
|
102 |
|
|
BgMCLegend = TLegend(0.70,0.65,0.99,0.89, "Data & Bkgd. MC")
|
103 |
lantonel |
1.3 |
BgMCLegend.SetBorderSize(0)
|
104 |
|
|
BgMCLegend.SetFillColor(0)
|
105 |
|
|
BgMCLegend.SetFillStyle(0)
|
106 |
lantonel |
1.1 |
SignalMCLegend = TLegend(0.45,0.65,0.70,0.89,"Signal MC")
|
107 |
lantonel |
1.3 |
SignalMCLegend.SetBorderSize(0)
|
108 |
|
|
SignalMCLegend.SetFillColor(0)
|
109 |
|
|
SignalMCLegend.SetFillStyle(0)
|
110 |
lantonel |
1.1 |
|
111 |
|
|
|
112 |
|
|
|
113 |
|
|
outputFile.cd(rootDirectory+"/"+channel)
|
114 |
|
|
Canvas = TCanvas(histogramName)
|
115 |
lantonel |
1.4 |
BgMCHistograms = []
|
116 |
lantonel |
1.1 |
SignalMCHistograms = []
|
117 |
|
|
DataHistograms = []
|
118 |
lantonel |
1.4 |
|
119 |
|
|
backgroundIntegral = 0
|
120 |
|
|
dataIntegral = 0
|
121 |
|
|
scaleFactor = 1
|
122 |
|
|
|
123 |
lantonel |
1.1 |
|
124 |
|
|
for sample in processed_datasets: # loop over different samples as listed in configurationOptions.py
|
125 |
ahart |
1.6 |
dataset_file = "%s/%s.root_tmp" % (condor_dir,sample)
|
126 |
|
|
inputFile = TFile(dataset_file)
|
127 |
lantonel |
1.1 |
if(inputFile.IsZombie()):
|
128 |
|
|
continue
|
129 |
|
|
Histogram = inputFile.Get(rootDirectory+"/"+channel+"/"+histogramName).Clone()
|
130 |
|
|
Histogram.SetDirectory(0)
|
131 |
ahart |
1.6 |
inputFile.Close()
|
132 |
lantonel |
1.1 |
xAxisLabel = Histogram.GetXaxis().GetTitle()
|
133 |
|
|
|
134 |
|
|
if( types[sample] == "bgMC"):
|
135 |
lantonel |
1.3 |
|
136 |
|
|
numBgMCSamples += 1
|
137 |
lantonel |
1.1 |
|
138 |
|
|
Histogram.SetFillStyle(1001)
|
139 |
|
|
Histogram.SetFillColor(colors[sample])
|
140 |
|
|
Histogram.SetLineColor(1)
|
141 |
|
|
Histogram.SetLineStyle(1)
|
142 |
|
|
Histogram.SetLineWidth(1)
|
143 |
lantonel |
1.4 |
|
144 |
|
|
backgroundIntegral += Histogram.Integral()
|
145 |
|
|
|
146 |
|
|
BgMCLegend.AddEntry(Histogram,labels[sample],"F")
|
147 |
|
|
BgMCHistograms.append(Histogram)
|
148 |
lantonel |
1.1 |
|
149 |
|
|
elif( types[sample] == "signalMC"):
|
150 |
lantonel |
1.3 |
|
151 |
|
|
numSignalSamples += 1
|
152 |
lantonel |
1.1 |
|
153 |
|
|
Histogram.SetFillStyle(0)
|
154 |
|
|
Histogram.SetLineColor(colors[sample])
|
155 |
|
|
Histogram.SetLineStyle(1)
|
156 |
|
|
Histogram.SetLineWidth(2)
|
157 |
|
|
|
158 |
|
|
SignalMCLegend.AddEntry(Histogram,labels[sample],"L")
|
159 |
|
|
SignalMCHistograms.append(Histogram)
|
160 |
|
|
|
161 |
|
|
elif( types[sample] == "data"):
|
162 |
lantonel |
1.3 |
|
163 |
|
|
numDataSamples += 1
|
164 |
lantonel |
1.1 |
|
165 |
|
|
Histogram.SetFillStyle(0)
|
166 |
|
|
Histogram.SetLineColor(colors[sample])
|
167 |
|
|
Histogram.SetLineStyle(1)
|
168 |
|
|
Histogram.SetLineWidth(2)
|
169 |
lantonel |
1.4 |
|
170 |
|
|
dataIntegral += Histogram.Integral()
|
171 |
lantonel |
1.1 |
|
172 |
|
|
BgMCLegend.AddEntry(Histogram,labels[sample],"LEP")
|
173 |
|
|
DataHistograms.append(Histogram)
|
174 |
|
|
|
175 |
lantonel |
1.5 |
if dataIntegral > 0 and backgroundIntegral > 0:
|
176 |
lantonel |
1.4 |
scaleFactor = dataIntegral/backgroundIntegral
|
177 |
|
|
for bgMCHist in BgMCHistograms:
|
178 |
|
|
if options.normalize:
|
179 |
|
|
bgMCHist.Scale(scaleFactor)
|
180 |
|
|
Stack.Add(bgMCHist)
|
181 |
|
|
|
182 |
lantonel |
1.1 |
|
183 |
|
|
stackMax = Stack.GetMaximum()
|
184 |
|
|
finalMax = stackMax
|
185 |
|
|
for signalMCHist in SignalMCHistograms:
|
186 |
|
|
if(signalMCHist.GetMaximum() > finalMax):
|
187 |
|
|
finalMax = signalMCHist.GetMaximum()
|
188 |
|
|
for dataHist in DataHistograms:
|
189 |
|
|
if(dataHist.GetMaximum() > finalMax):
|
190 |
|
|
finalMax = dataHist.GetMaximum()
|
191 |
lantonel |
1.4 |
|
192 |
|
|
|
193 |
|
|
if len(DataHistograms) is 1:
|
194 |
|
|
dataIntegral += DataHistograms[0].Integral()
|
195 |
lantonel |
1.1 |
|
196 |
lantonel |
1.3 |
outputFile.cd(rootDirectory+"/"+channel)
|
197 |
|
|
|
198 |
|
|
if(numBgMCSamples is not 0):
|
199 |
|
|
Stack.Draw("HIST")
|
200 |
|
|
Stack.SetMaximum(1.1*finalMax)
|
201 |
|
|
for signalMCHist in SignalMCHistograms:
|
202 |
|
|
signalMCHist.Draw("HIST SAME")
|
203 |
|
|
for dataHist in DataHistograms:
|
204 |
|
|
dataHist.Draw("E SAME")
|
205 |
|
|
|
206 |
|
|
elif(numSignalSamples is not 0):
|
207 |
|
|
SignalMCHistograms[0].Draw("HIST")
|
208 |
|
|
SignalMCHistograms[0].SetMaximum(1.1*finalMax)
|
209 |
|
|
for signalMCHist in SignalMCHistograms:
|
210 |
|
|
if(signalMCHist is not SignalMCHistograms[0]):
|
211 |
|
|
signalMCHist.Draw("HIST SAME")
|
212 |
|
|
for dataHist in DataHistograms:
|
213 |
|
|
dataHist.Draw("E SAME")
|
214 |
|
|
elif(numDataSamples is not 0):
|
215 |
|
|
DataHistograms[0].Draw("E")
|
216 |
|
|
DataHistograms[0].SetMaximum(1.1*finalMax)
|
217 |
|
|
for dataHist in DataHistograms:
|
218 |
|
|
if(dataHist is not DataHistograms[0]):
|
219 |
|
|
dataHist.Draw("E SAME")
|
220 |
|
|
|
221 |
lantonel |
1.4 |
|
222 |
|
|
|
223 |
lantonel |
1.3 |
|
224 |
|
|
if(numBgMCSamples is not 0):
|
225 |
|
|
Stack.GetXaxis().SetTitle(xAxisLabel)
|
226 |
|
|
elif(numSignalSamples is not 0):
|
227 |
|
|
SignalMCHistograms[0].GetXaxis().SetTitle(xAxisLabel)
|
228 |
|
|
elif(numDataSamples is not 0):
|
229 |
|
|
DataHistograms[0].GetXaxis().SetTitle(xAxisLabel)
|
230 |
|
|
|
231 |
|
|
if(numBgMCSamples is not 0 or numDataSamples is not 0):
|
232 |
|
|
BgMCLegend.Draw()
|
233 |
|
|
if(numSignalSamples is not 0):
|
234 |
|
|
SignalMCLegend.Draw()
|
235 |
lantonel |
1.1 |
|
236 |
|
|
LumiLabel.Draw()
|
237 |
lantonel |
1.4 |
if options.normalize:
|
238 |
|
|
NormLabel = TPaveLabel(0.1,0.75,0.35,0.85,"MC scaled to data","NDC")
|
239 |
|
|
NormLabel.SetBorderSize(0)
|
240 |
|
|
NormLabel.SetFillColor(0)
|
241 |
|
|
NormLabel.SetFillStyle(0)
|
242 |
|
|
NormLabel.Draw()
|
243 |
|
|
|
244 |
|
|
|
245 |
lantonel |
1.1 |
Canvas.Write()
|
246 |
|
|
|
247 |
ahart |
1.6 |
for dataset in processed_datasets:
|
248 |
|
|
dataset_file = "%s/%s.root_tmp" % (condor_dir,dataset)
|
249 |
|
|
os.remove(dataset_file)
|
250 |
lantonel |
1.1 |
|
251 |
|
|
outputFile.Close()
|