1 |
#!/usr/bin/env python
|
2 |
import sys
|
3 |
import os
|
4 |
from array import *
|
5 |
from decimal import *
|
6 |
from optparse import OptionParser
|
7 |
from OSUT3Analysis.Configuration.configurationOptions import *
|
8 |
|
9 |
parser = OptionParser()
|
10 |
|
11 |
parser.add_option("-l", "--localConfig", dest="localConfig",
|
12 |
help="local configuration file")
|
13 |
|
14 |
parser.add_option("-c", "--condorDir", dest="condorDir",
|
15 |
help="condor output directory")
|
16 |
|
17 |
parser.add_option("-n", "--normalize", action="store_true", dest="normalize", default=False,
|
18 |
help="normalize total background MC yield to the data")
|
19 |
|
20 |
(options, args) = parser.parse_args()
|
21 |
|
22 |
if options.localConfig:
|
23 |
sys.path.append(os.getcwd())
|
24 |
exec("from " + options.localConfig.rstrip('.py') + " import *")
|
25 |
|
26 |
if options.condorDir:
|
27 |
condor_dir = "condor/%s" % options.condorDir
|
28 |
else: #get most recent condor submission directory
|
29 |
dir_list = []
|
30 |
for directory in os.listdir("./condor/"):
|
31 |
if directory.find("condor_") is not -1:
|
32 |
dir_list.append(directory)
|
33 |
if len(dir_list) is 0:
|
34 |
sys.exit("Cannot find last condor working directory")
|
35 |
dir_list.sort(reverse=True)
|
36 |
condor_dir = "condor/%s" % dir_list[0]
|
37 |
|
38 |
|
39 |
|
40 |
|
41 |
from ROOT import TFile, gROOT, gStyle, gDirectory, TStyle, THStack, TH1F, TCanvas, TString, TLegend, TArrow, THStack, TIter, TKey, TPaveLabel
|
42 |
|
43 |
gROOT.SetBatch()
|
44 |
gStyle.SetOptStat(0)
|
45 |
gStyle.SetCanvasBorderMode(0)
|
46 |
gStyle.SetPadBorderMode(0)
|
47 |
gStyle.SetPadColor(0)
|
48 |
gStyle.SetCanvasColor(0)
|
49 |
gStyle.SetTextFont(42)
|
50 |
gROOT.ForceStyle()
|
51 |
outputFile = TFile(condor_dir + "/stacked_histograms.root", "RECREATE")
|
52 |
|
53 |
channels = []
|
54 |
processed_datasets = []
|
55 |
|
56 |
#### check which input datasets have valid output files
|
57 |
for sample in datasets:
|
58 |
fileName = condor_dir + "/" + sample + ".root"
|
59 |
if not os.path.exists(fileName):
|
60 |
continue
|
61 |
testFile = TFile(fileName)
|
62 |
if not (testFile.IsZombie()):
|
63 |
processed_datasets.append(sample)
|
64 |
|
65 |
if len(processed_datasets) is 0:
|
66 |
sys.exit("No datasets have been processed")
|
67 |
|
68 |
#### open first input file and re-make its directory structure in the output file
|
69 |
testFile = TFile(condor_dir + "/" + processed_datasets[0] + ".root")
|
70 |
testFile.cd()
|
71 |
for key in testFile.GetListOfKeys():
|
72 |
if (key.GetClassName() != "TDirectoryFile"):
|
73 |
continue
|
74 |
outputFile.cd()
|
75 |
outputFile.mkdir(key.GetName())
|
76 |
rootDirectory = key.GetName()
|
77 |
|
78 |
testFile.cd(key.GetName())
|
79 |
for key2 in gDirectory.GetListOfKeys():
|
80 |
if (key2.GetClassName() != "TDirectoryFile"):
|
81 |
continue
|
82 |
outputFile.cd(key.GetName())
|
83 |
gDirectory.mkdir(key2.GetName())
|
84 |
channels.append(key2.GetName())
|
85 |
|
86 |
|
87 |
|
88 |
|
89 |
for channel in channels: # loop over final states, which each have their own directory
|
90 |
|
91 |
testFile.cd(rootDirectory+"/"+channel)
|
92 |
histograms = []
|
93 |
for key in gDirectory.GetListOfKeys():
|
94 |
histograms.append(key.GetName())
|
95 |
|
96 |
for histogramName in histograms: # loop over histograms in the current directory
|
97 |
|
98 |
numBgMCSamples = 0
|
99 |
numDataSamples = 0
|
100 |
numSignalSamples = 0
|
101 |
|
102 |
Stack = THStack("stack",histogramName)
|
103 |
|
104 |
if(intLumi < 1000.):
|
105 |
LumiText = "L_{int} = " + str(intLumi) + " pb^{-1}"
|
106 |
else:
|
107 |
getcontext().prec = 2
|
108 |
LumiInFb = intLumi/1000.
|
109 |
LumiText = "L_{int} = " + str(LumiInFb) + " fb^{-1}"
|
110 |
|
111 |
LumiLabel = TPaveLabel(0.1,0.8,0.34,0.9,LumiText,"NDC")
|
112 |
LumiLabel.SetBorderSize(0)
|
113 |
LumiLabel.SetFillColor(0)
|
114 |
LumiLabel.SetFillStyle(0)
|
115 |
|
116 |
BgMCLegend = TLegend(0.70,0.65,0.99,0.89, "Data & Bkgd. MC")
|
117 |
BgMCLegend.SetBorderSize(0)
|
118 |
BgMCLegend.SetFillColor(0)
|
119 |
BgMCLegend.SetFillStyle(0)
|
120 |
SignalMCLegend = TLegend(0.45,0.65,0.70,0.89,"Signal MC")
|
121 |
SignalMCLegend.SetBorderSize(0)
|
122 |
SignalMCLegend.SetFillColor(0)
|
123 |
SignalMCLegend.SetFillStyle(0)
|
124 |
|
125 |
|
126 |
|
127 |
outputFile.cd(rootDirectory+"/"+channel)
|
128 |
Canvas = TCanvas(histogramName)
|
129 |
BgMCHistograms = []
|
130 |
SignalMCHistograms = []
|
131 |
DataHistograms = []
|
132 |
|
133 |
backgroundIntegral = 0
|
134 |
dataIntegral = 0
|
135 |
scaleFactor = 1
|
136 |
|
137 |
|
138 |
for sample in processed_datasets: # loop over different samples as listed in configurationOptions.py
|
139 |
inputFile = TFile(condor_dir + "/" + sample + ".root")
|
140 |
if(inputFile.IsZombie()):
|
141 |
continue
|
142 |
Histogram = inputFile.Get(rootDirectory+"/"+channel+"/"+histogramName).Clone()
|
143 |
Histogram.SetDirectory(0)
|
144 |
xAxisLabel = Histogram.GetXaxis().GetTitle()
|
145 |
|
146 |
if( types[sample] == "bgMC"):
|
147 |
|
148 |
numBgMCSamples += 1
|
149 |
|
150 |
Histogram.SetFillStyle(1001)
|
151 |
Histogram.SetFillColor(colors[sample])
|
152 |
Histogram.SetLineColor(1)
|
153 |
Histogram.SetLineStyle(1)
|
154 |
Histogram.SetLineWidth(1)
|
155 |
|
156 |
backgroundIntegral += Histogram.Integral()
|
157 |
|
158 |
BgMCLegend.AddEntry(Histogram,labels[sample],"F")
|
159 |
BgMCHistograms.append(Histogram)
|
160 |
|
161 |
elif( types[sample] == "signalMC"):
|
162 |
|
163 |
numSignalSamples += 1
|
164 |
|
165 |
Histogram.SetFillStyle(0)
|
166 |
Histogram.SetLineColor(colors[sample])
|
167 |
Histogram.SetLineStyle(1)
|
168 |
Histogram.SetLineWidth(2)
|
169 |
|
170 |
SignalMCLegend.AddEntry(Histogram,labels[sample],"L")
|
171 |
SignalMCHistograms.append(Histogram)
|
172 |
|
173 |
elif( types[sample] == "data"):
|
174 |
|
175 |
numDataSamples += 1
|
176 |
|
177 |
Histogram.SetFillStyle(0)
|
178 |
Histogram.SetLineColor(colors[sample])
|
179 |
Histogram.SetLineStyle(1)
|
180 |
Histogram.SetLineWidth(2)
|
181 |
|
182 |
dataIntegral += Histogram.Integral()
|
183 |
|
184 |
BgMCLegend.AddEntry(Histogram,labels[sample],"LEP")
|
185 |
DataHistograms.append(Histogram)
|
186 |
|
187 |
if dataIntegral > 0 and backgroundIntegral > 0:
|
188 |
scaleFactor = dataIntegral/backgroundIntegral
|
189 |
for bgMCHist in BgMCHistograms:
|
190 |
if options.normalize:
|
191 |
bgMCHist.Scale(scaleFactor)
|
192 |
Stack.Add(bgMCHist)
|
193 |
|
194 |
|
195 |
stackMax = Stack.GetMaximum()
|
196 |
finalMax = stackMax
|
197 |
for signalMCHist in SignalMCHistograms:
|
198 |
if(signalMCHist.GetMaximum() > finalMax):
|
199 |
finalMax = signalMCHist.GetMaximum()
|
200 |
for dataHist in DataHistograms:
|
201 |
if(dataHist.GetMaximum() > finalMax):
|
202 |
finalMax = dataHist.GetMaximum()
|
203 |
|
204 |
|
205 |
if len(DataHistograms) is 1:
|
206 |
dataIntegral += DataHistograms[0].Integral()
|
207 |
|
208 |
outputFile.cd(rootDirectory+"/"+channel)
|
209 |
|
210 |
if(numBgMCSamples is not 0):
|
211 |
Stack.Draw("HIST")
|
212 |
Stack.SetMaximum(1.1*finalMax)
|
213 |
for signalMCHist in SignalMCHistograms:
|
214 |
signalMCHist.Draw("HIST SAME")
|
215 |
for dataHist in DataHistograms:
|
216 |
dataHist.Draw("E SAME")
|
217 |
|
218 |
elif(numSignalSamples is not 0):
|
219 |
SignalMCHistograms[0].Draw("HIST")
|
220 |
SignalMCHistograms[0].SetMaximum(1.1*finalMax)
|
221 |
for signalMCHist in SignalMCHistograms:
|
222 |
if(signalMCHist is not SignalMCHistograms[0]):
|
223 |
signalMCHist.Draw("HIST SAME")
|
224 |
for dataHist in DataHistograms:
|
225 |
dataHist.Draw("E SAME")
|
226 |
elif(numDataSamples is not 0):
|
227 |
DataHistograms[0].Draw("E")
|
228 |
DataHistograms[0].SetMaximum(1.1*finalMax)
|
229 |
for dataHist in DataHistograms:
|
230 |
if(dataHist is not DataHistograms[0]):
|
231 |
dataHist.Draw("E SAME")
|
232 |
|
233 |
|
234 |
|
235 |
|
236 |
if(numBgMCSamples is not 0):
|
237 |
Stack.GetXaxis().SetTitle(xAxisLabel)
|
238 |
elif(numSignalSamples is not 0):
|
239 |
SignalMCHistograms[0].GetXaxis().SetTitle(xAxisLabel)
|
240 |
elif(numDataSamples is not 0):
|
241 |
DataHistograms[0].GetXaxis().SetTitle(xAxisLabel)
|
242 |
|
243 |
if(numBgMCSamples is not 0 or numDataSamples is not 0):
|
244 |
BgMCLegend.Draw()
|
245 |
if(numSignalSamples is not 0):
|
246 |
SignalMCLegend.Draw()
|
247 |
|
248 |
LumiLabel.Draw()
|
249 |
if options.normalize:
|
250 |
NormLabel = TPaveLabel(0.1,0.75,0.35,0.85,"MC scaled to data","NDC")
|
251 |
NormLabel.SetBorderSize(0)
|
252 |
NormLabel.SetFillColor(0)
|
253 |
NormLabel.SetFillStyle(0)
|
254 |
NormLabel.Draw()
|
255 |
|
256 |
|
257 |
Canvas.Write()
|
258 |
|
259 |
|
260 |
outputFile.Close()
|